1
|
Insights into the multifaceted role of circular RNAs: implications for Parkinson's disease pathogenesis and diagnosis. NPJ Parkinsons Dis 2022; 8:7. [PMID: 35013342 PMCID: PMC8748951 DOI: 10.1038/s41531-021-00265-9] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2021] [Accepted: 12/10/2021] [Indexed: 12/13/2022] Open
Abstract
Parkinson's disease (PD) is a complex, age-related, neurodegenerative disease whose etiology, pathology, and clinical manifestations remain incompletely understood. As a result, care focuses primarily on symptoms relief. Circular RNAs (circRNAs) are a large class of mostly noncoding RNAs that accumulate with aging in the brain and are increasingly shown to regulate all aspects of neuronal and glial development and function. They are generated by the spliceosome through the backsplicing of linear RNA. Although their biological role remains largely unknown, they have been shown to regulate transcription and splicing, act as decoys for microRNAs and RNA binding proteins, used as templates for translation, and serve as scaffolding platforms for signaling components. Considering that they are stable, diverse, and detectable in easily accessible biofluids, they are deemed promising biomarkers for diagnosing diseases. CircRNAs are differentially expressed in the brain of patients with PD, and growing evidence suggests that they regulate PD pathogenetic processes. Here, the biogenesis, expression, degradation, and detection of circRNAs, as well as their proposed functions, are reviewed. Thereafter, research linking circRNAs to PD-related processes, including aging, alpha-synuclein dysregulation, neuroinflammation, and oxidative stress is highlighted, followed by recent evidence for their use as prognostic and diagnostic biomarkers for PD.
Collapse
|
2
|
Khan MS, Boileau I, Kolla N, Mizrahi R. A systematic review of the role of the nociceptin receptor system in stress, cognition, and reward: relevance to schizophrenia. Transl Psychiatry 2018; 8:38. [PMID: 29391391 PMCID: PMC5804030 DOI: 10.1038/s41398-017-0080-8] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/04/2017] [Revised: 10/13/2017] [Accepted: 11/13/2017] [Indexed: 01/08/2023] Open
Abstract
Schizophrenia is a debilitating neuropsychiatric illness that is characterized by positive, negative, and cognitive symptoms. Research over the past two decades suggests that the nociceptin receptor system may be involved in domains affected in schizophrenia, based on evidence aligning it with hallmark features of the disorder. First, aberrant glutamatergic and striatal dopaminergic function are associated with psychotic symptoms, and the nociceptin receptor system has been shown to regulate dopamine and glutamate transmission. Second, stress is a critical risk factor for first break and relapse in schizophrenia, and evidence suggests that the nociceptin receptor system is also directly involved in stress modulation. Third, cognitive deficits are prevalent in schizophrenia, and the nociceptin receptor system has significant impact on learning and working memory. Last, reward processing is disrupted in schizophrenia, and nociceptin signaling has been shown to regulate reward cue salience. These findings provide the foundation for the involvement of the nociceptin receptor system in the pathophysiology of schizophrenia and outline the need for future research into this system.
Collapse
Affiliation(s)
- Muhammad Saad Khan
- Research Imaging Centre, Centre for Addiction and Mental Health, 250 College St., Toronto, ON, M5T 1R8, Canada
- Institute of Medical Science, Faculty of Medicine, University of Toronto, 1 King's College Circle, Toronto, ON, M5S 1A8, Canada
| | - Isabelle Boileau
- Research Imaging Centre, Centre for Addiction and Mental Health, 250 College St., Toronto, ON, M5T 1R8, Canada
- Institute of Medical Science, Faculty of Medicine, University of Toronto, 1 King's College Circle, Toronto, ON, M5S 1A8, Canada
- Campbell Family Mental Health Research Institute, Centre for Addiction and Mental Health, 250 College St., Toronto, ON, M5T 1R8, Canada
| | - Nathan Kolla
- Research Imaging Centre, Centre for Addiction and Mental Health, 250 College St., Toronto, ON, M5T 1R8, Canada
- Institute of Medical Science, Faculty of Medicine, University of Toronto, 1 King's College Circle, Toronto, ON, M5S 1A8, Canada
- Campbell Family Mental Health Research Institute, Centre for Addiction and Mental Health, 250 College St., Toronto, ON, M5T 1R8, Canada
- Department of Psychiatry, University of Toronto, 250 College St., Toronto, ON, M5T 1R8, Canada
| | - Romina Mizrahi
- Research Imaging Centre, Centre for Addiction and Mental Health, 250 College St., Toronto, ON, M5T 1R8, Canada.
- Institute of Medical Science, Faculty of Medicine, University of Toronto, 1 King's College Circle, Toronto, ON, M5S 1A8, Canada.
- Campbell Family Mental Health Research Institute, Centre for Addiction and Mental Health, 250 College St., Toronto, ON, M5T 1R8, Canada.
- Department of Psychiatry, University of Toronto, 250 College St., Toronto, ON, M5T 1R8, Canada.
| |
Collapse
|
3
|
Zhang Z, Gong Q, Feng X, Zhang D, Quan L. Astrocytic clasmatodendrosis in the cerebral cortex of methamphetamine abusers. Forensic Sci Res 2017; 2:139-144. [PMID: 30483632 PMCID: PMC6197099 DOI: 10.1080/20961790.2017.1280890] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2016] [Accepted: 01/09/2017] [Indexed: 11/21/2022] Open
Abstract
Postmortem investigation of methamphetamine (MA) abuse is an important task in forensic pathology. The present study investigated morphological changes in the astrocytes in the parietal cerebral cortex of MA abusers. Glial fibrillary acidic protein immunoreactivity in the cerebral cortex was examined in forensic autopsy cases for MA-detected group and control group. Clasmatodendrotic astrocytes (including those with swollen cell bodies and disintegrating distal processes) were frequently observed in the cerebral cortex of MA abusers. Quantitative analysis using a colour image processor showed a concomitant increase in the astrocyte area and astrocyte-to-vessel area ratio (size and number of astrocytes) in the grey matter in acute MA fatality and other MA-involved cases, although the astrocyte area (size) was also increased in cases of asphyxiation. The total astrocyte area (size) in the white matter was significantly higher in MA fatalities and asphyxia than in the other groups involving MA abusers. Those indices were independent of blood MA level, age, sex, survival or postmortem time. These observations suggest the increasing number and hypertrophic changes of astrocytes in the grey matter in MA abusers can be the outcome of long-term abuse, while disintegrating distal processes may exist only in acute fatal MA intoxication.
Collapse
Affiliation(s)
- Zhiyong Zhang
- Department of Forensic Pathology, Zhongshan School of Medicine, Sun Yat-Sen University, Guangzhou, China.,Forensic Science Center, Shunde Branch of Foshan Public Security Bureau, Foshan, China
| | - Qingjin Gong
- Department of Forensic Pathology, Zhongshan School of Medicine, Sun Yat-Sen University, Guangzhou, China
| | - Xueying Feng
- Department of Forensic Pathology, Zhongshan School of Medicine, Sun Yat-Sen University, Guangzhou, China
| | - Dongchuan Zhang
- Shanghai Key Laboratory of Crime Scene Evidence, Shanghai Institute of Forensic Science, Shanghai, China
| | - Li Quan
- Department of Forensic Pathology, Zhongshan School of Medicine, Sun Yat-Sen University, Guangzhou, China
| |
Collapse
|
4
|
Kasai S, Nishizawa D, Hasegawa J, Sato N, Tanioka F, Sugimura H, Ikeda K. Nociceptin/orphanin FQ receptor gene variation is associated with smoking status in Japanese. Pharmacogenomics 2016; 17:1441-1451. [PMID: 27491383 DOI: 10.2217/pgs.15.184] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2014] [Accepted: 02/18/2016] [Indexed: 11/21/2022] Open
Abstract
AIM The endogenous opioid system has been reportedly implicated in tobacco/nicotine dependence. MATERIALS & METHODS We examined the genetic effects of eight SNPs in opioid receptor-related genes on smoking status and smoking-related traits in Japanese. RESULTS The genotypic and allelic variations of the rs2229205 SNP in the OPRL1 gene were significantly associated with smoking status, but no significant differences were found in the genetic variations of any of the SNPs with regard to smoking-related traits. The rs2229205 SNP did not show high linkage disequilibrium with the other SNPs in the linkage disequilibrium block that contained the SNP. CONCLUSION The rs2229205 SNP in the OPRL1 gene may be a genetic factor that contributes to individual differences in the vulnerability to smoking in Japanese individuals.
Collapse
Affiliation(s)
- Shinya Kasai
- Addictive Substance Project, Tokyo Metropolitan Institute of Medical Science, 2-1-6 Kamikitazawa, Setagaya-ku, Tokyo 156-8506, Japan
| | - Daisuke Nishizawa
- Addictive Substance Project, Tokyo Metropolitan Institute of Medical Science, 2-1-6 Kamikitazawa, Setagaya-ku, Tokyo 156-8506, Japan
| | - Junko Hasegawa
- Addictive Substance Project, Tokyo Metropolitan Institute of Medical Science, 2-1-6 Kamikitazawa, Setagaya-ku, Tokyo 156-8506, Japan
| | - Naomi Sato
- First Department of Tumor Pathology, Hamamatsu University School of Medicine, 1-20-1 Handayama, Higashi-ku, Hamamatsu, Shizuoka 431-3192, Japan
| | - Fumihiko Tanioka
- Division of Pathology, Iwata City Hospital, 512-3 Ookubo, Iwata, Shizuoka 438-8550, Japan
| | - Haruhiko Sugimura
- First Department of Tumor Pathology, Hamamatsu University School of Medicine, 1-20-1 Handayama, Higashi-ku, Hamamatsu, Shizuoka 431-3192, Japan
| | - Kazutaka Ikeda
- Addictive Substance Project, Tokyo Metropolitan Institute of Medical Science, 2-1-6 Kamikitazawa, Setagaya-ku, Tokyo 156-8506, Japan
| |
Collapse
|
5
|
Popiolek-Barczyk K, Rojewska E, Jurga AM, Makuch W, Zador F, Borsodi A, Piotrowska A, Przewlocka B, Mika J. Minocycline enhances the effectiveness of nociceptin/orphanin FQ during neuropathic pain. BIOMED RESEARCH INTERNATIONAL 2014; 2014:762930. [PMID: 25276817 PMCID: PMC4168034 DOI: 10.1155/2014/762930] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/14/2014] [Accepted: 08/01/2014] [Indexed: 12/27/2022]
Abstract
Nociceptin/orphanin FQ (N/OFQ) antinociception, which is mediated selectively by the N/OFQ peptide receptor (NOP), was demonstrated in pain models. In this study, we determine the role of activated microglia on the analgesic effects of N/OFQ in a rat model of neuropathic pain induced by chronic constriction injury (CCI) to the sciatic nerve. Repeated 7-day administration of minocycline (30 mg/kg i.p.), a drug that affects microglial activation, significantly reduced pain in CCI-exposed rats and it potentiates the analgesic effects of administered N/OFQ (2.5-5 μg i.t.). Minocycline also downregulates the nerve injury-induced upregulation of NOP protein in the dorsal lumbar spinal cord. Our in vitro study showed that minocycline reduced NOP mRNA, but not protein, level in rat primary microglial cell cultures. In [(35)S]GTPγS binding assays we have shown that minocycline increases the spinal N/OFQ-stimulated NOP signaling. We suggest that the modulation of the N/OFQ system by minocycline is due to the potentiation of its neuronal antinociceptive activity and weakening of the microglial cell activation. This effect is beneficial for pain relief, and these results suggest new targets for the development of drugs that are effective against neuropathic pain.
Collapse
Affiliation(s)
- Katarzyna Popiolek-Barczyk
- Department of Pain Pharmacology, Institute of Pharmacology, Polish Academy of Sciences, 12 Smetna Street, 31-343 Cracow, Poland
| | - Ewelina Rojewska
- Department of Pain Pharmacology, Institute of Pharmacology, Polish Academy of Sciences, 12 Smetna Street, 31-343 Cracow, Poland
| | - Agnieszka M. Jurga
- Department of Pain Pharmacology, Institute of Pharmacology, Polish Academy of Sciences, 12 Smetna Street, 31-343 Cracow, Poland
| | - Wioletta Makuch
- Department of Pain Pharmacology, Institute of Pharmacology, Polish Academy of Sciences, 12 Smetna Street, 31-343 Cracow, Poland
| | - Ferenz Zador
- Institute of Biochemistry, Biological Research Center, Hungarian Academy of Sciences, Temesvári krt 62 Street, Szeged 6726, Hungary
| | - Anna Borsodi
- Institute of Biochemistry, Biological Research Center, Hungarian Academy of Sciences, Temesvári krt 62 Street, Szeged 6726, Hungary
| | - Anna Piotrowska
- Department of Pain Pharmacology, Institute of Pharmacology, Polish Academy of Sciences, 12 Smetna Street, 31-343 Cracow, Poland
| | - Barbara Przewlocka
- Department of Pain Pharmacology, Institute of Pharmacology, Polish Academy of Sciences, 12 Smetna Street, 31-343 Cracow, Poland
| | - Joanna Mika
- Department of Pain Pharmacology, Institute of Pharmacology, Polish Academy of Sciences, 12 Smetna Street, 31-343 Cracow, Poland
| |
Collapse
|
6
|
Mallimo EM, Kusnecov AW. The role of orphanin FQ/nociceptin in neuroplasticity: relationship to stress, anxiety and neuroinflammation. Front Cell Neurosci 2013; 7:173. [PMID: 24155687 PMCID: PMC3792366 DOI: 10.3389/fncel.2013.00173] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2013] [Accepted: 09/14/2013] [Indexed: 01/23/2023] Open
Abstract
The neuropeptide, orphanin FQ/nociceptin (OFQ/N or simply, nociceptin), is expressed in both neuronal and non-neuronal tissue, including the immune system. In the brain, OFQ/N has been investigated in relation to stress, anxiety, learning and memory, and addiction. More recently, it has also been found that OFQ/N influences glial cell functions, including oligodendrocytes, astrocytes, and microglial cells. However, this latter research is relatively small, but potentially important, when observations regarding the relationship of OFQ/N to stress and emotional functions is taken into consideration and integrated with the growing evidence for its involvement in cells that mediate inflammatory events. This review will first provide an overview and understanding of how OFQ/N has been implicated in the HPA axis response to stress, followed by an understanding of its influence on natural and learned anxiety-like behavior. What emerges from an examination of the literature is a neuropeptide that appears to counteract anxiogenic influences, but paradoxically, without attenuating HPA axis responses generated in response to stress. Studies utilized both central administration of OFQ/N, which was shown to activate the HPA axis, as well as antagonism of NOP-R, the OFQ/N receptor. In contrast, antagonist or transgenic OFQ/N or NOP-R knockout studies, showed augmentation of HPA axis responses to stress, suggesting that OFQ/N may be needed to control the magnitude of the HPA axis response to stress. Investigations of behavior in standard exploratory tests of anxiogenic behavior (eg., elevated plus maze) or learned fear responses have suggested that OFQ/N is needed to attenuate fear or anxiety-like behavior. However, some discrepant observations, in particular, those that involve appetitive behaviors, suggest a failure of NOP-R deletion to increase anxiety. However, it is also suggested that OFQ/N may operate in an anxiolytic manner when initial anxiogenic triggers (eg., the neuropeptide CRH) are initiated. Finally, the regulatory functions of OFQ/N in relation to emotion-related behaviors may serve to counteract potential neuroinflammatory events in the brain. This appears to be evident within the glial cell environment of the brain, since OFQ/N has been shown to reduce the production of proinflammatory cellular and cytokine events. Given that both OFQ/N and glial cells are activated in response to stress, it is possible that there is a possible convergence of these two systems that has important repercussions for behavior and neuroplasticity.
Collapse
Affiliation(s)
- Elyse M Mallimo
- Behavioral and Systems Neuroscience Program, Department of Psychology, Rutgers University New Brunswick, NJ, USA
| | | |
Collapse
|
7
|
Abstract
Methamphetamine (meth) is a potent psychostimulant known to cause neurotoxicity. Clinical reports suggest meth abuse is a risk factor for Parkinson's disease. We investigated changes in the blood-brain barrier and cerebral vasculature as a mechanism underlying this risk in rats treated acutely and trained to self-administer meth. We observed blood-brain barrier leakage in rats treated acutely with meth. Hypoperfusion in the striatum was detected with acute and chronic meth treatment and was associated with hypoxia. This was correlated with reductions in striatal tyrosine hydroxylase in rats trained to self-administer meth. These findings suggest a new mechanism of meth-induced neurotoxicity involving striatal vasoconstriction resulting in hypoxia and dopamine reductions leading to an increased risk for Parkinson's disease for meth abusers.
Collapse
|
8
|
Coller JK, Hutchinson MR. Implications of central immune signaling caused by drugs of abuse: mechanisms, mediators and new therapeutic approaches for prediction and treatment of drug dependence. Pharmacol Ther 2012; 134:219-45. [PMID: 22316499 DOI: 10.1016/j.pharmthera.2012.01.008] [Citation(s) in RCA: 137] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2012] [Accepted: 01/17/2012] [Indexed: 01/12/2023]
Abstract
In the past two decades a trickle of manuscripts examining the non-neuronal central nervous system immune consequences of the drugs of abuse has now swollen to a significant body of work. Initially, these studies reported associative evidence of central nervous system proinflammation resulting from exposure to the drugs of abuse demonstrating key implications for neurotoxicity and disease progression associated with, for example, HIV infection. However, more recently this drug-induced activation of central immune signaling is now understood to contribute substantially to the pharmacodynamic actions of the drugs of abuse, by enhancing the engagement of classical mesolimbic dopamine reward pathways and withdrawal centers. This review will highlight the key in vivo animal, human, biological and molecular evidence of these central immune signaling actions of opioids, alcohol, cocaine, methamphetamine, and 3,4-methylenedioxymethamphetamine (MDMA). Excitingly, this new appreciation of central immune signaling activity of drugs of abuse provides novel therapeutic interventions and opportunities to identify 'at risk' individuals through the use of immunogenetics. Discussion will also cover the evidence of modulation of this signaling by existing clinical and pre-clinical drug candidates, and novel pharmacological targets. Finally, following examination of the breadth of central immune signaling actions of the drugs of abuse highlighted here, the current known common immune signaling components will be outlined and their impact on established addiction neurocircuitry discussed, thereby synthesizing a common neuroimmune hypothesis of addiction.
Collapse
Affiliation(s)
- Janet K Coller
- Discipline of Pharmacology, School of Medical Sciences, University of Adelaide, South Australia 5005, Australia.
| | | |
Collapse
|
9
|
Abstract
This paper is the thirty-third consecutive installment of the annual review of research concerning the endogenous opioid system. It summarizes papers published during 2010 that studied the behavioral effects of molecular, pharmacological and genetic manipulation of opioid peptides, opioid receptors, opioid agonists and opioid antagonists. The particular topics that continue to be covered include the molecular-biochemical effects and neurochemical localization studies of endogenous opioids and their receptors related to behavior (Section 2), and the roles of these opioid peptides and receptors in pain and analgesia (Section 3); stress and social status (Section 4); tolerance and dependence (Section 5); learning and memory (Section 6); eating and drinking (Section 7); alcohol and drugs of abuse (Section 8); sexual activity and hormones, pregnancy, development and endocrinology (Section 9); mental illness and mood (Section 10); seizures and neurologic disorders (Section 11); electrical-related activity and neurophysiology (Section 12); general activity and locomotion (Section 13); gastrointestinal, renal and hepatic functions (Section 14); cardiovascular responses (Section 15); respiration (Section 16); and immunological responses (Section 17).
Collapse
Affiliation(s)
- Richard J Bodnar
- Department of Psychology and Neuropsychology Doctoral Sub-Program, Queens College, City University of New York, Flushing, NY 11367, USA.
| |
Collapse
|