1
|
Irvine A, Gaffney MI, Haughee EK, Horton MA, Morris HC, Harris KC, Corbin JE, Merrill C, Perlis ML, Been LE. Elevated estradiol during a hormone simulated pseudopregnancy decreases sleep and increases hypothalamic activation in female Syrian hamsters. J Neuroendocrinol 2023:e13278. [PMID: 37127859 DOI: 10.1111/jne.13278] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/27/2022] [Revised: 03/24/2023] [Accepted: 04/13/2023] [Indexed: 05/03/2023]
Abstract
Sleep disruptions are a common occurrence during the peripartum period. While physical and environmental factors associated with pregnancy and newborn care account for some sleep disruptions, there is evidence that peripartum fluctuations in estrogens may independently impact sleep. However, the impact of these large fluctuations in estrogens on peripartum sleep is unclear because it is difficult to tease apart the effects of estrogens on sleep from effects associated with the growth and development of the fetus or parental care. We therefore used a hormone-simulated pseudopregnancy (HSP) in female Syrian hamsters to test the hypothesis that pregnancy-like increases in estradiol decrease sleep in the absence of other factors. Adult female Syrian hamsters were ovariectomized and given daily hormone injections that simulate estradiol levels during early pregnancy, late pregnancy, and the postpartum period. Home cage video recordings were captured at seven timepoints and videos were analyzed for actigraphy. During "late pregnancy," total sleep time and sleep efficiency were decreased in hormone-treated animals during the white light period compared to pretest levels. Likewise, during "late pregnancy," locomotion was increased in the white light period for hormone-treated animals compared to pretest levels. These changes continued into the "postpartum period" for animals who continued to receive estradiol treatment, but not for animals who were withdrawn from estradiol. At the conclusion of the experiment, animals were euthanized and cFos expression was quantified in the ventral lateral preoptic area (VLPO) and lateral hypothalamus (LH). Animals who continued to receive high levels of estradiol during the "postpartum" period had significantly more cFos in the VLPO and LH than animals who were withdrawn from hormones or vehicle controls. Together, these data suggest that increased levels of estradiol during pregnancy are associated with sleep suppression, which may be mediated by increased activation of hypothalamic nuclei.
Collapse
Affiliation(s)
- Abiola Irvine
- Department of Psychology, Neuroscience Program, Haverford College, Haverford, Pennsylvania, USA
| | - Maeve I Gaffney
- Department of Psychology, Neuroscience Program, Haverford College, Haverford, Pennsylvania, USA
| | - Erin K Haughee
- Department of Psychology, Neuroscience Program, Haverford College, Haverford, Pennsylvania, USA
| | - Marité A Horton
- Department of Psychology, Neuroscience Program, Haverford College, Haverford, Pennsylvania, USA
| | - Hailey C Morris
- Department of Psychology, Neuroscience Program, Haverford College, Haverford, Pennsylvania, USA
| | - Kagan C Harris
- Department of Psychology, Neuroscience Program, Haverford College, Haverford, Pennsylvania, USA
| | - Jaclyn E Corbin
- Department of Psychology, Neuroscience Program, Haverford College, Haverford, Pennsylvania, USA
| | - Clara Merrill
- Department of Psychology, Neuroscience Program, Haverford College, Haverford, Pennsylvania, USA
| | - Michael L Perlis
- Department of Psychiatry, Behavioral Sleep Medicine Program, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Laura E Been
- Department of Psychology, Neuroscience Program, Haverford College, Haverford, Pennsylvania, USA
| |
Collapse
|
2
|
Zhou P, Wu S, Huang D, Wang K, Su X, Yang R, Shao C, Wu J. Oral exposure to DEHP may stimulate prostatic hyperplasia associated with upregulation of COX-2 and L-PGDS expressions in male adult rats. Reprod Toxicol 2022; 112:160-170. [PMID: 35905844 DOI: 10.1016/j.reprotox.2022.07.008] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2022] [Revised: 07/21/2022] [Accepted: 07/25/2022] [Indexed: 11/25/2022]
Abstract
Di-(2-ethylhexyl) phthalate (DEHP), a typical environmental endocrine disruptor (EED), can disrupt estrogen and androgen secretion and metabolism process, thus inducing dysfunctional reproduction such as impaired gonadal development and spermatogenesis disorder. Prostaglandin synthases (PGS) catalyze various prostaglandins biosynthesis, involved in inflammatory cascade and tumorigenesis. Yet, little is known about how PGS may impact prostatic hyperplasia development and progression. This study concentrates predominantly on the potential prostatic toxicity of DEHP exposure and the mediating role of PGS. In vivo study, adult male rats were administered via oral gavage 30 μg/kg/d, 90 μg/kg/d, 270 μg/kg/d, 810 μg/kg/d DEHP or vehicle for four weeks. The results elucidated that low-dose DEHP may cause the proliferation of the prostate with an increased PCNA/TUNEL ratio. Given the importance of estrogens and androgens in prostatic hyperplasia, our first objective was to evaluate the levels of sex hormones. DEHP improved the ratio of estradiol (E2)/testosterone (T) in a dose-dependent manner and upregulated estrogen receptor alpha (ERα) and androgen receptor (AR) expressions. Prostaglandin synthases, including cyclooxygenase-2 (COX-2) and lipocalin-type prostaglandin D synthase (L-PGDS), were significantly upregulated in the ventral prostate. COX-2 and L-PGDS might mediate the tendency of prostatic hyperplasia induced by low-dose DEHP through estradiol/androgen regulation and imbalance between proliferation and apoptosis in vivo. These findings provide the first evidence that prostaglandin synthases contribute to the tendency toward benign prostatic hyperplasia induced by DEHP. Further investigations will have to be performed to facilitate an improved understanding of the role of prostaglandin synthases in DEHP-induced prostatic lesions.
Collapse
Affiliation(s)
- Ping Zhou
- NHC Key Lab of Reproduction Regulation (Shanghai Institute for Biomedical and Pharmaceutical Technologies), School ️of Pharmacy, Fudan University, China
| | - Shuangshuang Wu
- NHC Key Lab of Reproduction Regulation (Shanghai Institute for Biomedical and Pharmaceutical Technologies), School ️of Pharmacy, Fudan University, China
| | - Dongyan Huang
- NHC Key Lab of Reproduction Regulation (Shanghai Institute for Biomedical and Pharmaceutical Technologies), School ️of Pharmacy, Fudan University, China
| | - Kaiyue Wang
- NHC Key Lab of Reproduction Regulation (Shanghai Institute for Biomedical and Pharmaceutical Technologies), School ️of Pharmacy, Fudan University, China
| | - Xin Su
- NHC Key Lab of Reproduction Regulation (Shanghai Institute for Biomedical and Pharmaceutical Technologies), School ️of Pharmacy, Fudan University, China
| | - Rongfu Yang
- NHC Key Lab of Reproduction Regulation (Shanghai Institute for Biomedical and Pharmaceutical Technologies), School ️of Pharmacy, Fudan University, China
| | - Congcong Shao
- NHC Key Lab of Reproduction Regulation (Shanghai Institute for Biomedical and Pharmaceutical Technologies), School ️of Pharmacy, Fudan University, China
| | - Jianhui Wu
- NHC Key Lab of Reproduction Regulation (Shanghai Institute for Biomedical and Pharmaceutical Technologies), School ️of Pharmacy, Fudan University, China.
| |
Collapse
|
3
|
Kong D, Yu Y. Prostaglandin D2 signaling and cardiovascular homeostasis. J Mol Cell Cardiol 2022; 167:97-105. [DOI: 10.1016/j.yjmcc.2022.03.011] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/28/2021] [Revised: 02/25/2022] [Accepted: 03/28/2022] [Indexed: 10/18/2022]
|
4
|
Cocchi M, Mondo E, Romeo M, Traina G. The Inflammatory Conspiracy in Multiple Sclerosis: A Crossroads of Clues and Insights through Mast Cells, Platelets, Inflammation, Gut Microbiota, Mood Disorders and Stem Cells. Int J Mol Sci 2022; 23:ijms23063253. [PMID: 35328673 PMCID: PMC8950240 DOI: 10.3390/ijms23063253] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2022] [Revised: 02/28/2022] [Accepted: 03/14/2022] [Indexed: 01/27/2023] Open
Abstract
Multiple Sclerosis is a chronic neurological disease characterized by demyelination and axonal loss. This pathology, still largely of unknown etiology, carries within it a complex series of etiopathogenetic components of which it is difficult to trace the origin. An inflammatory state is likely to be the basis of the pathology. Crucial elements of the inflammatory process are the interactions between platelets and mast cells as well as the bacterial component of the intestinal microbiota. In addition, the involvement of mast cells in autoimmune demyelinating diseases has been shown. The present work tries to hang up on that Ariadne’s thread which, in the molecular complexity of the interactions between mast cells, platelets, microbiota and inflammation, characterizes Multiple Sclerosis and attempts to bring the pathology back to the causal determinism of psychopathological phenomenology. Therefore, we consider the possibility that the original error of Multiple Sclerosis can be investigated in the genetic origin of the depressive pathology.
Collapse
Affiliation(s)
- Massimo Cocchi
- Department of Veterinary Medical Sciences, University of Bologna, Ozzano dell’Emilia, 40064 Bologna, Italy; (M.C.); (E.M.)
| | - Elisabetta Mondo
- Department of Veterinary Medical Sciences, University of Bologna, Ozzano dell’Emilia, 40064 Bologna, Italy; (M.C.); (E.M.)
| | - Marcello Romeo
- Department of Biology and Biotechnology, University of Pavia, 27100 Pavia, Italy;
| | - Giovanna Traina
- Department of Pharmaceutical Sciences, University of Perugia, 06126 Perugia, Italy
- Correspondence:
| |
Collapse
|
5
|
Urade Y. Biochemical and Structural Characteristics, Gene Regulation, Physiological, Pathological and Clinical Features of Lipocalin-Type Prostaglandin D 2 Synthase as a Multifunctional Lipocalin. Front Physiol 2021; 12:718002. [PMID: 34744762 PMCID: PMC8569824 DOI: 10.3389/fphys.2021.718002] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2021] [Accepted: 09/01/2021] [Indexed: 11/13/2022] Open
Abstract
Lipocalin-type prostaglandin (PG) D2 synthase (L-PGDS) catalyzes the isomerization of PGH2, a common precursor of the two series of PGs, to produce PGD2. PGD2 stimulates three distinct types of G protein-coupled receptors: (1) D type of prostanoid (DP) receptors involved in the regulation of sleep, pain, food intake, and others; (2) chemoattractant receptor-homologous molecule expressed on T helper type 2 cells (CRTH2) receptors, in myelination of peripheral nervous system, adipocyte differentiation, inhibition of hair follicle neogenesis, and others; and (3) F type of prostanoid (FP) receptors, in dexamethasone-induced cardioprotection. L-PGDS is the same protein as β-trace, a major protein in human cerebrospinal fluid (CSF). L-PGDS exists in the central nervous system and male genital organs of various mammals, and human heart; and is secreted into the CSF, seminal plasma, and plasma, respectively. L-PGDS binds retinoic acids and retinal with high affinities (Kd < 100 nM) and diverse small lipophilic substances, such as thyroids, gangliosides, bilirubin and biliverdin, heme, NAD(P)H, and PGD2, acting as an extracellular carrier of these substances. L-PGDS also binds amyloid β peptides, prevents their fibril formation, and disaggregates amyloid β fibrils, acting as a major amyloid β chaperone in human CSF. Here, I summarize the recent progress of the research on PGD2 and L-PGDS, in terms of its “molecular properties,” “cell culture studies,” “animal experiments,” and “clinical studies,” all of which should help to understand the pathophysiological role of L-PGDS and inspire the future research of this multifunctional lipocalin.
Collapse
Affiliation(s)
- Yoshihiro Urade
- Center for Supporting Pharmaceutical Education, Daiichi University of Pharmacy, Fukuoka, Japan.,Isotope Science Center, The University of Tokyo, Tokyo, Japan
| |
Collapse
|
6
|
Dorsey A, de Lecea L, Jennings KJ. Neurobiological and Hormonal Mechanisms Regulating Women's Sleep. Front Neurosci 2021; 14:625397. [PMID: 33519372 PMCID: PMC7840832 DOI: 10.3389/fnins.2020.625397] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2020] [Accepted: 12/22/2020] [Indexed: 01/22/2023] Open
Abstract
Sleep is crucial for optimal well-being, and sex differences in sleep quality have significant implications for women's health. We review the current literature on sex differences in sleep, such as differences in objective and subjective sleep measures and their relationship with aging. We then discuss the convincing evidence for the role of ovarian hormones in regulating female sleep, and survey how these hormones act on a multitude of brain regions and neurochemicals to impact sleep. Lastly, we identify several important areas in need of future research to narrow the knowledge gap and improve the health of women and other understudied populations.
Collapse
Affiliation(s)
| | | | - Kimberly J. Jennings
- Department of Psychiatry and Behavioral Sciences, School of Medicine, Stanford University, Stanford, CA, United States
| |
Collapse
|
7
|
Abstract
Sleep is a phenomenon in animal behavior as enigmatic as it is ubiquitous, and one deeply tied to endocrine function. Though there are still many unanswered questions about the neurochemical basis of sleep and its functions, extensive interactions have been identified between sleep and the endocrine system, in both the endocrine system's effect on sleep and sleep's effect on the endocrine system. Unfortunately, until recent years, much research on sleep behavior largely disregarded its connections with the endocrine system. Use of both clinical studies and rodent models to investigate interactions between neuroendocrine function, including biological sex, and sleep therefore presents a promising area of further exploration. Further investigation of the neurobiological and neuroendocrine basis of sleep could have wide impact on a number of clinical and basic science fields. In this review, we summarize the state of basic sleep biology and its connections to the field of neuroendocrine biology, as well as suggest key future directions for the neuroendocrine regulation of sleep that may significantly impact new therapies for sleep disorders in women and men.
Collapse
Affiliation(s)
- Philip C Smith
- Department of Pharmacology, University of Maryland School of Medicine, Baltimore, MD, USA.
| | - Jessica A Mong
- Department of Pharmacology, University of Maryland School of Medicine, Baltimore, MD, USA
| |
Collapse
|
8
|
Unno K, Konishi T, Nakagawa A, Narita Y, Takabayashi F, Okamura H, Hara A, Yamamoto H, Iguchi K, Hoshino M, Yasui K, Katayanagi Y, Fukutomi R, Imai S. Cognitive dysfunction and amyloid β accumulation are ameliorated by the ingestion of green soybean extract in aged mice. J Funct Foods 2015. [DOI: 10.1016/j.jff.2015.02.011] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
|
9
|
Lagarde F, Beausoleil C, Belcher SM, Belzunces LP, Emond C, Guerbet M, Rousselle C. Non-monotonic dose-response relationships and endocrine disruptors: a qualitative method of assessment. Environ Health 2015; 14:13. [PMID: 25971433 PMCID: PMC4429934 DOI: 10.1186/1476-069x-14-13] [Citation(s) in RCA: 255] [Impact Index Per Article: 25.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2014] [Accepted: 01/16/2015] [Indexed: 05/17/2023]
Abstract
Experimental studies investigating the effects of endocrine disruptors frequently identify potential unconventional dose-response relationships called non-monotonic dose-response (NMDR) relationships. Standardized approaches for investigating NMDR relationships in a risk assessment context are missing. The aim of this work was to develop criteria for assessing the strength of NMDR relationships. A literature search was conducted to identify published studies that report NMDR relationships with endocrine disruptors. Fifty-one experimental studies that investigated various effects associated with endocrine disruption elicited by many substances were selected. Scoring criteria were applied by adaptation of an approach previously used for identification of hormesis-type dose-response relationships. Out of the 148 NMDR relationships analyzed, 82 were categorized with this method as having a "moderate" to "high" level of plausibility for various effects. Numerous modes of action described in the literature can explain such phenomena. NMDR can arise from numerous molecular mechanisms such as opposing effects induced by multiple receptors differing by their affinity, receptor desensitization, negative feedback with increasing dose, or dose-dependent metabolism modulation. A stepwise decision tree was developed as a tool to standardize the analysis of NMDR relationships observed in the literature with the final aim to use these results in a Risk Assessment purpose. This decision tree was finally applied to studies focused on the effects of bisphenol A.
Collapse
Affiliation(s)
- Fabien Lagarde
- />Risk Assessment Department, French Agency for Food, Environmental and Occupational Health & Safety (ANSES), 14 rue Pierre et Marie Curie, 94701 Maisons-Alfort Cedex, France
| | - Claire Beausoleil
- />Risk Assessment Department, French Agency for Food, Environmental and Occupational Health & Safety (ANSES), 14 rue Pierre et Marie Curie, 94701 Maisons-Alfort Cedex, France
| | - Scott M Belcher
- />Department of Pharmacology and Cell Biophysics, University of Cincinnati, College of Medicine, Cincinnati, OH USA
| | - Luc P Belzunces
- />INRA, Laboratoire de Toxicologie Environnementale, UR 406 A&E, CS 40509, 84914 Avignon Cedex 9, France
| | | | - Michel Guerbet
- />Université de Rouen, UFR Médecine Pharmacie, Laboratoire de Toxicologie, UR 4651 ABTE, 76183 Rouen Cedex 1, France
| | - Christophe Rousselle
- />Risk Assessment Department, French Agency for Food, Environmental and Occupational Health & Safety (ANSES), 14 rue Pierre et Marie Curie, 94701 Maisons-Alfort Cedex, France
| |
Collapse
|
10
|
Lim W, Bae SM, Jo G, Bazer FW, Choi Y, Song G. Prostaglandin D₂ synthase related to estrogen in the female reproductive tract. Biochem Biophys Res Commun 2014; 456:355-60. [PMID: 25475724 DOI: 10.1016/j.bbrc.2014.11.086] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2014] [Accepted: 11/23/2014] [Indexed: 01/05/2023]
Abstract
Prostaglandin D2 synthase (PTGDS), also known as a glutathione-independent prostaglandin D synthase, catalyzes prostaglandin H2 to prostaglandin D2 that exhibits functions that include regulation of the central nervous system, contraction/relaxation of smooth muscle and inhibition of platelet aggregation. Gene profiling data based on our previous study indicated that PTGDS is significantly increased during development, differentiation and remodeling of the oviduct in chickens in response to estrogen. Therefore, the aims of the present study were to investigate expression of PTGDS in the oviduct and examine if the relationship between PTGDS and estrogen is conserved during development and remodeling of the oviduct. Results of our study indicate d that PTGDS expression is specifically localized to the luminal (LE) and glandular epithelial (GE) cells of the chicken oviduct in response to diethylstilbestrol, a synthetic estrogen. In addition, PTGDS expression increased during the regeneration phase of the oviduct in concert with increasing concentrations of estrogen in the circulation of laying hens during induced molting. Moreover, PTGDS mRNA and protein were expressed abundantly in GE of ovarian carcinoma, but not in normal ovaries. These results provide the first evidence that PTGDS is a novel estrogen-stimulated gene in oviductal epithelial cells, as well as a candidate biomarker for diagnosis of ovarian carcinoma.
Collapse
Affiliation(s)
- Whasun Lim
- Department of Biotechnology, College of Life Sciences and Biotechnology, Korea University, Seoul 136-713, Republic of Korea
| | - Seung-Min Bae
- Department of Biotechnology, College of Life Sciences and Biotechnology, Korea University, Seoul 136-713, Republic of Korea
| | - Gahee Jo
- Department of Biotechnology, College of Life Sciences and Biotechnology, Korea University, Seoul 136-713, Republic of Korea
| | - Fuller W Bazer
- Center for Animal Biotechnology and Genomics and Department of Animal Science, Texas A&M University, College Station, TX 77843-2471, USA
| | - Youngsok Choi
- Department of Biomedical Science, CHA University, 566 Nonhyeon-ro, Gangnam-gu, Seoul 135-913, Republic of Korea.
| | - Gwonhwa Song
- Department of Biotechnology, College of Life Sciences and Biotechnology, Korea University, Seoul 136-713, Republic of Korea.
| |
Collapse
|
11
|
Nickols NG, Szablowski JO, Hargrove AE, Li BC, Raskatov JA, Dervan PB. Activity of a Py-Im polyamide targeted to the estrogen response element. Mol Cancer Ther 2013; 12:675-84. [PMID: 23443804 DOI: 10.1158/1535-7163.mct-12-1040] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
Pyrrole-imidazole (Py-Im) polyamides are a class of programmable DNA minor groove binders capable of modulating the activity of DNA-binding proteins and affecting changes in gene expression. Estrogen receptor alpha (ERα) is a ligand-activated hormone receptor that binds as a homodimer to estrogen response elements (ERE) and is a driving oncogene in a majority of breast cancers. We tested a selection of structurally similar Py-Im polyamides with differing DNA sequence specificity for activity against 17β-estadiol (E2)-induced transcription and cytotoxicity in ERα positive, E2-stimulated T47DKBluc cells, which express luciferase under ERα control. The most active polyamide targeted the sequence 5'-WGGWCW-3' (W = A or T), which is the canonical ERE half site. Whole transcriptome analysis using RNA-Seq revealed that treatment of E2-stimulated breast cancer cells with this polyamide reduced the effects of E2 on the majority of those most strongly affected by E2 but had much less effect on the majority of E2-induced transcripts. In vivo, this polyamide circulated at detectable levels following subcutaneous injection and reduced levels of ER-driven luciferase expression in xenografted tumors in mice after subcutaneous compound administration without significant host toxicity.
Collapse
Affiliation(s)
- Nicholas G Nickols
- Division of Chemistry and Chemical Engineering, California Institute of Technology, Pasadena, CA 91125, USA
| | | | | | | | | | | |
Collapse
|
12
|
Vandenberg LN, Colborn T, Hayes TB, Heindel JJ, Jacobs DR, Lee DH, Shioda T, Soto AM, vom Saal FS, Welshons WV, Zoeller RT, Myers JP. Hormones and endocrine-disrupting chemicals: low-dose effects and nonmonotonic dose responses. Endocr Rev 2012; 33:378-455. [PMID: 22419778 PMCID: PMC3365860 DOI: 10.1210/er.2011-1050] [Citation(s) in RCA: 2099] [Impact Index Per Article: 161.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/27/2011] [Accepted: 02/07/2012] [Indexed: 02/08/2023]
Abstract
For decades, studies of endocrine-disrupting chemicals (EDCs) have challenged traditional concepts in toxicology, in particular the dogma of "the dose makes the poison," because EDCs can have effects at low doses that are not predicted by effects at higher doses. Here, we review two major concepts in EDC studies: low dose and nonmonotonicity. Low-dose effects were defined by the National Toxicology Program as those that occur in the range of human exposures or effects observed at doses below those used for traditional toxicological studies. We review the mechanistic data for low-dose effects and use a weight-of-evidence approach to analyze five examples from the EDC literature. Additionally, we explore nonmonotonic dose-response curves, defined as a nonlinear relationship between dose and effect where the slope of the curve changes sign somewhere within the range of doses examined. We provide a detailed discussion of the mechanisms responsible for generating these phenomena, plus hundreds of examples from the cell culture, animal, and epidemiology literature. We illustrate that nonmonotonic responses and low-dose effects are remarkably common in studies of natural hormones and EDCs. Whether low doses of EDCs influence certain human disorders is no longer conjecture, because epidemiological studies show that environmental exposures to EDCs are associated with human diseases and disabilities. We conclude that when nonmonotonic dose-response curves occur, the effects of low doses cannot be predicted by the effects observed at high doses. Thus, fundamental changes in chemical testing and safety determination are needed to protect human health.
Collapse
Affiliation(s)
- Laura N Vandenberg
- Tufts University, Center for Regenerative and Developmental Biology, Department of Biology, 200 Boston Avenue, Suite 4600, Medford, Massachusetts 02155, USA.
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
13
|
Bridges PJ, Jeoung M, Shim S, Park JY, Lee JE, Sapsford LA, Trudgen K, Ko C, Gye MC, Jo M. Hematopoetic prostaglandin D synthase: an ESR1-dependent oviductal epithelial cell synthase. Endocrinology 2012; 153:1925-35. [PMID: 22374975 PMCID: PMC3320253 DOI: 10.1210/en.2011-1900] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Oviductal disease is a primary cause of infertility, a problem that largely stems from excessive inflammation of this key reproductive organ. Our poor understanding of the mechanisms regulating oviductal inflammation restricts our ability to diagnose, treat, and/or prevent oviductal disease. Using mice, our objective was to determine the spatial localization, regulatory mechanism, and functional attributes of a hypothesized regulator of oviductal inflammation, the hematopoietic form of prostaglandin D synthase (HPGDS). Immunohistochemistry revealed specific localization of HPGDS to the oviduct's epithelium. In the isthmus, expression of HPGDS was consistent. In the ampulla, expression of HPGDS appeared dependent upon stage of the estrous cycle. HPGDS was expressed in the epithelium of immature and cycling mice but not in the oviducts of estrogen receptor α knockouts. Two receptor subtypes bind PGD₂: PGD₂ receptor and G protein-coupled receptor 44. Expression of mRNA for Ptgdr was higher in the epithelial cells (EPI) than in the stroma (P < 0.05), whereas mRNA for Gpr44 was higher in the stroma than epithelium (P < 0.05). Treatment of human oviductal EPI with HQL-79, an inhibitor of HPGDS, decreased cell viability (P < 0.05). Treatment of mice with HQL-79 increased mRNA for chemokine (C-C motif) ligands 3, 4, and 19; chemokine (C-X-C motif) ligands 11 and 12; IL-13 and IL-17B; and TNF receptor superfamily, member 1b (P < 0.02 for each mRNA). Overall, these results suggest that HPGDS may play a role in the regulation of inflammation and EPI health within the oviduct.
Collapse
Affiliation(s)
- Phillip J Bridges
- Department of Animal and Food Sciences, University of Kentucky, Lexington, Kentucky 40546, USA.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
14
|
Foster TC. Role of estrogen receptor alpha and beta expression and signaling on cognitive function during aging. Hippocampus 2012; 22:656-69. [PMID: 21538657 PMCID: PMC3704216 DOI: 10.1002/hipo.20935] [Citation(s) in RCA: 182] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/06/2011] [Indexed: 12/24/2022]
Abstract
This review presents evidence for the idea that the expression of estrogen receptor alpha and beta (ERα and ERβ) interacts with the level of estradiol (E2) to influence the etiology of age-related cognitive decline and responsiveness to E2 treatments. There is a nonmonotonic dose response curve for E2 influences on behavior and transcription. Evidence is mounting to indicate that the dose response curve is shifted according to the relative expression of ERα and ERβ. Recent work characterizing age-related changes in the expression of ERα and ERβ in the hippocampus, as well as studies using mutant mice, and viral mediated delivery of estrogen receptors indicate that an age-related shift in ERα/ERβ expression, combined with declining gonadal E2 can impact transcription, cell signaling, neuroprotection, and neuronal growth. Finally, the role of ERα/ERβ on rapid E2 signaling and synaptogenesis as it relates to hippocampal aging is discussed.
Collapse
Affiliation(s)
- Thomas C Foster
- Department of Neuroscience, McKnight Brain Institute, University of Florida, Gainesville, Florida 32610-0244, USA.
| |
Collapse
|
15
|
Sandra N, Ester P, Marie-Agnès P, Robert M, Olivier H. The DHEA metabolite 7β-hydroxy-epiandrosterone exerts anti-estrogenic effects on breast cancer cell lines. Steroids 2012; 77:542-51. [PMID: 22342541 DOI: 10.1016/j.steroids.2012.01.019] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/08/2011] [Revised: 01/28/2012] [Accepted: 01/30/2012] [Indexed: 12/23/2022]
Abstract
7β-Hydroxy-epiandrosterone (7β-OH-EpiA), an endogenous androgenic derivative of dehydroepiandrosterone, has previously been shown to exert anti-inflammatory action in vitro and in vivo via a shift from prostaglandin E2 (PGE2) to 15-deoxy-Δ(12,14)-PGJ2 production. This modulation in prostaglandin production was obtained with low concentrations of 7β-OH-EpiA (1-100nM) and suggested that it might act through a specific receptor. Inflammation and prostaglandin synthesis is important in the development and survival of estrogen-dependent mammary cancers. Estrogen induced PGE2 production and cell proliferation via its binding to estrogen receptors (ERs) in these tumors. Our objective was to test the effects of 7β-OH-EpiA on the proliferation (by counting with trypan blue exclusion), cell cycle and cell apoptosis (by flow cytometry) of breast cancer cell lines MCF-7 (ERα+, ERβ+, G-protein coupled receptor 30: GPR30+) and MDA-MB-231 (ERα-, ERβ+, GPR30+) and to identify a potential target of this steroid in these cell lineages (by transactivations) and in the nuclear ER-negative SKBr3 cells (GPR30+) (by proliferation assays). 7β-OH-EpiA exerted anti-estrogenic effects in MCF-7 and MDA-MB-231 cells associated with cell proliferation inhibition and cell cycle arrest. Moreover, transactivation and proliferation with ER agonists assays indicated that 7β-OH-EpiA interacted with ERβ. Data from proliferation assays on the MCF-7, MDA-MB-231 and SKBr3 cell lines suggested that 7β-OH-EpiA may also act through the membrane GPR30 receptor. These results support that this androgenic steroid acts as an anti-estrogenic compound. Moreover, this is the first evidence that low doses of androgenic steroid exert antiproliferative effects in these mammary cancer cells. Further investigations are needed to improve understanding of the observed actions of endogenous 7β-OH-EpiA.
Collapse
Affiliation(s)
- Niro Sandra
- Laboratoire de Biologie, EA3199, Conservatoire national des arts et métiers, 75003 Paris, France
| | | | | | | | | |
Collapse
|
16
|
Abstract
While much is known about the mechanisms that underlie sleep and circadian rhythms, the investigation into sex differences and gonadal steroid modulation of sleep and biological rhythms is in its infancy. There is a growing recognition of sex disparities in sleep and rhythm disorders. Understanding how neuroendocrine mediators and sex differences influence sleep and biological rhythms is central to advancing our understanding of sleep-related disorders. While it is known that ovarian steroids affect circadian rhythms in rodents, the role of androgen is less understood. Surprising findings that androgens, acting via androgen receptors in the master "circadian clock" within the suprachiasmatic nucleus, modulate photic effects on activity in males point to novel mechanisms of circadian control. Work in aromatase-deficient mice suggests that some sex differences in photic responsiveness are independent of gonadal hormone effects during development. In parallel, aspects of sex differences in sleep are also reported to be independent of gonadal steroids and may involve sex chromosome complement. This a summary of recent work illustrating how sex differences and gonadal hormones influence sleep and circadian rhythms that was presented at a Mini-Symposium at the 2011 annual meeting of the Society for Neuroscience.
Collapse
|
17
|
Wibowo E, Deurveilher S, Wassersug RJ, Semba K. Estradiol treatment modulates spontaneous sleep and recovery after sleep deprivation in castrated male rats. Behav Brain Res 2012; 226:456-64. [DOI: 10.1016/j.bbr.2011.09.045] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2011] [Revised: 09/29/2011] [Accepted: 09/30/2011] [Indexed: 12/28/2022]
|
18
|
Schober J, Weil Z, Pfaff D. How generalized CNS arousal strengthens sexual arousal (and vice versa). Horm Behav 2011; 59:689-95. [PMID: 20950622 DOI: 10.1016/j.yhbeh.2010.10.005] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/23/2010] [Revised: 09/23/2010] [Accepted: 10/02/2010] [Indexed: 12/22/2022]
Abstract
Heightened states of generalized CNS arousal are proposed here to facilitate sexual arousal in both males and females. Genetic, pharmacologic and biophysical mechanisms by which this happens are reviewed. Moreover, stimulation of the genital epithelia, as triggers of sex behavior, is hypothesized to lead to a greater generalized arousal in a manner that intensifies sexual motivation. Finally, launched from histochemical studies intended to characterize cells in the genital epithelium, a surprising idea is proposed that links density of innervation with the efficiency of wound healing and with the capacity of that epithelium to stimulate generalized CNS arousal. Thus, bidirectional arousal-related mechanisms that foster sexual behaviors are envisioned as follows: from specific to generalized (as with genital stimulation) and from generalized to specific.
Collapse
Affiliation(s)
- Justine Schober
- Laboratory of Neurobiology and Behavior, The Rockefeller University, NY, USA
| | | | | |
Collapse
|