1
|
Malone K, LaCasse E, Beug ST. Cell death in glioblastoma and the central nervous system. Cell Oncol (Dordr) 2025; 48:313-349. [PMID: 39503973 PMCID: PMC11997006 DOI: 10.1007/s13402-024-01007-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/20/2024] [Indexed: 04/15/2025] Open
Abstract
Glioblastoma is the commonest and deadliest primary brain tumor. Glioblastoma is characterized by significant intra- and inter-tumoral heterogeneity, resistance to treatment and dismal prognoses despite decades of research in understanding its biological underpinnings. Encompassed within this heterogeneity and therapy resistance are severely dysregulated programmed cell death pathways. Glioblastomas recapitulate many neurodevelopmental and neural injury responses; in addition, glioblastoma cells are composed of multiple different transformed versions of CNS cell types. To obtain a greater understanding of the features underlying cell death regulation in glioblastoma, it is important to understand the control of cell death within the healthy CNS during homeostatic and neurodegenerative conditions. Herein, we review apoptotic control within neural stem cells, astrocytes, oligodendrocytes and neurons and compare them to glioblastoma apoptotic control. Specific focus is paid to the Inhibitor of Apoptosis proteins, which play key roles in neuroinflammation, CNS cell survival and gliomagenesis. This review will help in understanding glioblastoma as a transformed version of a heterogeneous organ composed of multiple varied cell types performing different functions and possessing different means of apoptotic control. Further, this review will help in developing more glioblastoma-specific treatment approaches and will better inform treatments looking at more direct brain delivery of therapeutic agents.
Collapse
Affiliation(s)
- Kyle Malone
- Apoptosis Research Centre, Children's Hospital of Eastern Ontario Research Institute, 401 Smyth Road, Ottawa, ON, K1H 8L1, Canada
- Department of Biochemistry, Microbiology and Immunology, University of Ottawa, 451 Smyth Road, Ottawa, ON, K1H 8M5, Canada
- Centre for Infection, Immunity and Inflammation, University of Ottawa, 451 Smyth Road, Ottawa, ON, K1H 8M5, Canada
- Ottawa Institute of Systems Biology, University of Ottawa, 451 Smyth Road, Ottawa, ON, K1H 8M5, Canada
| | - Eric LaCasse
- Apoptosis Research Centre, Children's Hospital of Eastern Ontario Research Institute, 401 Smyth Road, Ottawa, ON, K1H 8L1, Canada
- Centre for Infection, Immunity and Inflammation, University of Ottawa, 451 Smyth Road, Ottawa, ON, K1H 8M5, Canada
| | - Shawn T Beug
- Apoptosis Research Centre, Children's Hospital of Eastern Ontario Research Institute, 401 Smyth Road, Ottawa, ON, K1H 8L1, Canada.
- Department of Biochemistry, Microbiology and Immunology, University of Ottawa, 451 Smyth Road, Ottawa, ON, K1H 8M5, Canada.
- Centre for Infection, Immunity and Inflammation, University of Ottawa, 451 Smyth Road, Ottawa, ON, K1H 8M5, Canada.
- Ottawa Institute of Systems Biology, University of Ottawa, 451 Smyth Road, Ottawa, ON, K1H 8M5, Canada.
| |
Collapse
|
2
|
Herting JR, Berg AM, Hadova K, Heinick A, König S, Kuhlmann M, Müller FU, Kirchhefer U. Myocardial overexpression of protein phosphatase 2A-B56α improves resistance against ischemia-reperfusion injury. JOURNAL OF MOLECULAR AND CELLULAR CARDIOLOGY PLUS 2023; 3:100030. [PMID: 39803363 PMCID: PMC11708487 DOI: 10.1016/j.jmccpl.2022.100030] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/15/2022] [Accepted: 12/20/2022] [Indexed: 01/16/2025]
Abstract
Protein phosphatase 2A (PP2A) plays a central role in myocardial ischemia-reperfusion (I/R) injury. Several studies showed a detrimental function of PP2A by using either overexpression models of the catalytic subunit (PP2Ac) or exogenous inhibitors of PP2Ac. However, all of these approaches underestimate the contribution of regulatory B subunits in modulating the PP2A holoenzyme. To better understand the influence of B subunits on a "controlled" regulation of PP2A, we tested a mouse model overexpressing PP2A-B56α (TG) in the heart under the conditions of I/R in comparison to wild-type littermates (WT). Contractility was increased after reperfusion in isolated TG hearts that were initially subjected to a 20-min no-flow ischemia. This was associated with lower phosphorylation levels of myosin-binding protein C and the ryanodine receptor 2 in TG compared to WT. The application of okadaic acid abolished the contractile and biochemical effects in TG hearts. Moreover, reperfusion resulted in the detection of higher PP2A-B56α levels in mitochondrial preparations of TG hearts. The phosphorylation of ERK1 was increased in the early reperfusion phase in TG compared to WT hearts corresponding to a transient attenuation of PP2A activity. Ischemia led to a prolonged contracture time in TG hearts and a lower acidification in isolated TG cardiomyocytes. The formation of interstitial fibrosis by transient ligation of the left anterior descending (LAD) artery was reduced in TG compared to WT hearts. Taken together, these findings indicate that overexpression of PP2A-B56α is protective against I/R injury and that B56α merits further investigation as a potential therapeutic target.
Collapse
Affiliation(s)
- Julius R. Herting
- Institut für Pharmakologie und Toxikologie, Westfälische Wilhelms-Universität Münster, Domagkstr. 12, 48149 Münster, Germany
| | - Anna M. Berg
- Interdisziplinäres Zentrum für Klinische Forschung, Integrierte Funktionelle Genomik, Westfälische Wilhelms-Universität Münster, Röntgenstraße 21, 48149 Münster, Germany
| | - Katarina Hadova
- Institut für Pharmakologie und Toxikologie, Westfälische Wilhelms-Universität Münster, Domagkstr. 12, 48149 Münster, Germany
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Comenius University, Bratislava, Slovakia
| | - Alexander Heinick
- Institut für Pharmakologie und Toxikologie, Westfälische Wilhelms-Universität Münster, Domagkstr. 12, 48149 Münster, Germany
| | - Simone König
- Interdisziplinäres Zentrum für Klinische Forschung, Integrierte Funktionelle Genomik, Westfälische Wilhelms-Universität Münster, Röntgenstraße 21, 48149 Münster, Germany
| | - Michael Kuhlmann
- European Institute for Molecular Imaging, Universitätsklinikum Münster, Waldeyerstr. 15, 48149 Münster, Germany
| | - Frank U. Müller
- Institut für Pharmakologie und Toxikologie, Westfälische Wilhelms-Universität Münster, Domagkstr. 12, 48149 Münster, Germany
| | - Uwe Kirchhefer
- Institut für Pharmakologie und Toxikologie, Westfälische Wilhelms-Universität Münster, Domagkstr. 12, 48149 Münster, Germany
| |
Collapse
|
3
|
Abstract
Stroke remains a leading cause of death and disability, with limited therapeutic options and suboptimal tools for diagnosis and prognosis. High throughput technologies such as proteomics generate large volumes of experimental data at once, thus providing an advanced opportunity to improve the status quo by facilitating identification of novel therapeutic targets and molecular biomarkers. Proteomics studies in animals are largely designed to decipher molecular pathways and targets altered in brain tissue after stroke, whereas studies in human patients primarily focus on biomarker discovery in biofluids and, more recently, in thrombi and extracellular vesicles. Here, we offer a comprehensive review of stroke proteomics studies conducted in both animal and human specimen and present our view on limitations, challenges, and future perspectives in the field. In addition, as a unique resource for the scientific community, we provide extensive lists of all proteins identified in proteomic studies as altered by stroke and perform postanalysis of animal data to reveal stroke-related cellular processes and pathways.
Collapse
Affiliation(s)
- Karin Hochrainer
- Feil Family Brain and Mind Research Institute, Weill Cornell Medicine, New York, NY (K.H.)
| | - Wei Yang
- Center for Perioperative Organ Protection, Department of Anesthesiology, Duke University School of Medicine, Durham, NC (W.Y.)
| |
Collapse
|
4
|
Beikoghli Kalkhoran S, Kararigas G. Oestrogenic Regulation of Mitochondrial Dynamics. Int J Mol Sci 2022; 23:ijms23031118. [PMID: 35163044 PMCID: PMC8834780 DOI: 10.3390/ijms23031118] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2021] [Revised: 01/15/2022] [Accepted: 01/16/2022] [Indexed: 02/04/2023] Open
Abstract
Biological sex influences disease development and progression. The steroid hormone 17β-oestradiol (E2), along with its receptors, is expected to play a major role in the manifestation of sex differences. E2 exerts pleiotropic effects in a system-specific manner. Mitochondria are one of the central targets of E2, and their biogenesis and respiration are known to be modulated by E2. More recently, it has become apparent that E2 also regulates mitochondrial fusion–fission dynamics, thereby affecting cellular metabolism. The aim of this article is to discuss the regulatory pathways by which E2 orchestrates the activity of several components of mitochondrial dynamics in the cardiovascular and nervous systems in health and disease. We conclude that E2 regulates mitochondrial dynamics to maintain the mitochondrial network promoting mitochondrial fusion and attenuating mitochondrial fission in both the cardiovascular and nervous systems.
Collapse
|
5
|
Li H, You W, Li X, Shen H, Chen G. Proteomic-Based Approaches for the Study of Ischemic Stroke. Transl Stroke Res 2019; 10:601-606. [PMID: 31278685 DOI: 10.1007/s12975-019-00716-9] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2019] [Revised: 06/25/2019] [Accepted: 06/27/2019] [Indexed: 12/16/2022]
Affiliation(s)
- Haiying Li
- Department of Neurosurgery & Brain and Nerve Research Laboratory, The First Affiliated Hospital of Soochow University, 188 Shizi Street, Suzhou, 215006, Jiangsu Province, China
| | - Wanchun You
- Department of Neurosurgery & Brain and Nerve Research Laboratory, The First Affiliated Hospital of Soochow University, 188 Shizi Street, Suzhou, 215006, Jiangsu Province, China
| | - Xiang Li
- Department of Neurosurgery & Brain and Nerve Research Laboratory, The First Affiliated Hospital of Soochow University, 188 Shizi Street, Suzhou, 215006, Jiangsu Province, China
| | - Haitao Shen
- Department of Neurosurgery & Brain and Nerve Research Laboratory, The First Affiliated Hospital of Soochow University, 188 Shizi Street, Suzhou, 215006, Jiangsu Province, China
| | - Gang Chen
- Department of Neurosurgery & Brain and Nerve Research Laboratory, The First Affiliated Hospital of Soochow University, 188 Shizi Street, Suzhou, 215006, Jiangsu Province, China.
| |
Collapse
|
6
|
Elgenaidi IS, Spiers JP. Regulation of the phosphoprotein phosphatase 2A system and its modulation during oxidative stress: A potential therapeutic target? Pharmacol Ther 2019; 198:68-89. [PMID: 30797822 DOI: 10.1016/j.pharmthera.2019.02.011] [Citation(s) in RCA: 40] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2018] [Accepted: 02/15/2019] [Indexed: 02/06/2023]
Abstract
Phosphoprotein phosphatases are of growing interest in the pathophysiology of many diseases and are often the neglected partner of protein kinases. One family member, PP2A, accounts for dephosphorylation of ~55-70% of all serine/threonine phosphosites. Interestingly, dysregulation of kinase signalling is a hallmark of many diseases in which an increase in oxidative stress is also noted. With this in mind, we assess the evidence to support oxidative stress-mediated regulation of the PP2A system In this article, we first present an overview of the PP2A system before providing an analysis of the regulation of PP2A by endogenous inhibitors, post translational modification, and miRNA. Next, a detailed critique of data implicating reactive oxygen species, ischaemia, ischaemia-reperfusion, and hypoxia in regulating the PP2A holoenzyme and associated regulators is presented. Finally, the pharmacological targeting of PP2A, its endogenous inhibitors, and enzymes responsible for its post-translational modification are covered. There is extensive evidence that oxidative stress modulates multiple components of the PP2A system, however, most of the data pertains to the catalytic subunit of PP2A. Irrespective of the underlying aetiology, free radical-mediated attenuation of PP2A activity is an emerging theme. However, in many instances, a dichotomy exists, which requires clarification and mechanistic insight. Nevertheless, this raises the possibility that pharmacological activation of PP2A, either through small molecule activators of PP2A or CIP2A/SET antagonists may be beneficial in modulating the cellular response to oxidative stress. A better understanding of which, will have wide ranging implications for cancer, heart disease and inflammatory conditions.
Collapse
Affiliation(s)
- I S Elgenaidi
- Department of Pharmacology and Therapeutics, Trinity College Dublin, Ireland
| | - J P Spiers
- Department of Pharmacology and Therapeutics, Trinity College Dublin, Ireland.
| |
Collapse
|
7
|
Park JY, Kang TC. The differential roles of PEA15 phosphorylations in reactive astrogliosis and astroglial apoptosis following status epilepticus. Neurosci Res 2018; 137:11-22. [PMID: 29438777 DOI: 10.1016/j.neures.2018.02.003] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2017] [Revised: 01/27/2018] [Accepted: 02/09/2018] [Indexed: 11/17/2022]
Abstract
Up to this day, the roles of PEA15 expression and its phosphorylation in seizure-related events have not been still unclear. In the present study, we found that PEA15 was distinctly phosphorylated in reactive astrocytes and apoptotic astrocytes in the rat hippocampus following LiCl-pilocarpine-induced status epilepticus (SE, a prolonged seizure activity). PEA15-serine (S) 104 phosphorylation was up-regulated in reactive astrocytes following SE, although PEA15 expression and its S116 phosphorylation were unaltered. Bisindolylmaleimide (BIM), a protein kinase C (PKC) inhibitor, attenuated SE-induced reactive astrogliosis, but phorbol 12-myristate 13-acetate (PMA, a PKC activator) aggravated it. Unlike reactive astrocytes, PEA15-S116 phosphorylation was reduced in apoptotic astrocytes. However, PEA15 expression and its S104 phosphorylation were unchanged in apoptotic astrocyte. Neither BIM nor PMA affected SE-induced astroglial apoptosis. PEA15 expression and its phosphorylations were not relevant to SE-induced CA1 neuronal death. These findings indicate that PEA15-S104 and S116 phosphorylations may play a role in reactive astrogliosis and prevention of astroglial apoptosis, respectively. Therefore, we suggest that the selective manipulation of PEA15 phosphorylations may regulate apoptotic and/or proliferative signals in astrocytes.
Collapse
Affiliation(s)
- Jin-Young Park
- Department of Anatomy and Neurobiology, Institute of Epilepsy Research, College of Medicine, Hallym University, Chuncheon 24252, South Korea
| | - Tae-Cheon Kang
- Department of Anatomy and Neurobiology, Institute of Epilepsy Research, College of Medicine, Hallym University, Chuncheon 24252, South Korea.
| |
Collapse
|
8
|
Ischemic brain injury decreases dynamin-like protein 1 expression in a middle cerebral artery occlusion animal model and glutamate-exposed HT22 cells. Lab Anim Res 2016; 32:194-199. [PMID: 28053612 PMCID: PMC5206225 DOI: 10.5625/lar.2016.32.4.194] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2016] [Revised: 11/22/2016] [Accepted: 11/24/2016] [Indexed: 01/05/2023] Open
Abstract
Dynamin-like protein I (DLP-1) is an important mitochondrial fission and fusion protein that is associated with apoptotic cell death in neurodegenerative diseases. In this study, we investigated DLP-1 expression in a focal cerebral ischemia animal model and glutamate-exposed hippocampal-derived cell line. Middle cerebral artery occlusion (MCAO) was surgically induced in adult male rats to induce focal cerebral ischemic injury. Brain tissues were collected 24 hours after the onset of MCAO. MCAO induces an increase in infarct volume and histopathological changes in the cerebral cortex. We identified a decrease in DLP-1 in the cerebral cortices of MCAO-injured animals using a proteomic approach and Western blot analysis. Moreover, glutamate treatment significantly decreased DLP-1 expression in a hippocampal-derived cell line. The decrease in DLP-1 indicates mitochondrial dysfunction. Thus, these results suggest that neuronal cell injury induces a decrease in DLP-1 levels and consequently leads to neuronal cell death.
Collapse
|
9
|
The protein phosphatase 4 - PEA15 axis regulates the survival of breast cancer cells. Cell Signal 2016; 28:1389-1400. [PMID: 27317964 DOI: 10.1016/j.cellsig.2016.06.011] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2016] [Revised: 06/10/2016] [Accepted: 06/10/2016] [Indexed: 12/23/2022]
Abstract
BACKGROUND The control of breast cell survival is of critical importance for preventing breast cancer initiation and progression. The activity of many proteins which regulate cell survival is controlled by reversible phosphorylation, so that the relevant kinases and phosphatases play crucial roles in determining cell fate. Several protein kinases act as oncoproteins in breast cancer and changes in their activities contribute to the process of transformation. Through counteracting the activity of oncogenic kinases, the protein phosphatases are also likely to be important players in breast cancer development, but this class of molecules is relatively poorly understood. Here we have investigated the role of the serine/threonine protein phosphatase 4 in the control of cell survival of breast cancer cells. METHODS The breast cancer cell lines, MCF7 and MDA-MB-231, were transfected with expression vectors encoding the catalytic subunit of protein phosphatase 4 (PP4c) or with PP4c siRNAs. Culture viability, apoptosis, cell migration and cell cycle were assessed. The involvement of phosphoprotein enriched in astrocytes 15kDa (PEA15) in PP4c action was investigated by immunoblotting approaches and by siRNA-mediated silencing of PEA15. RESULTS In this study we showed that PP4c over-expression inhibited cell proliferation, enhanced spontaneous apoptosis and decreased the migratory and colony forming abilities of breast cancer cells. Moreover, PP4c down-regulation produced complementary effects. PP4c is demonstrated to regulate the phosphorylation of PEA15, and PEA15 itself regulates the apoptosis of breast cancer cells. The inhibitory effects of PP4c on breast cancer cell survival and growth were lost in PEA15 knockdown cells, confirming that PP4c action is mediated, at least in part, through the de-phosphorylation of apoptosis regulator PEA15. CONCLUSION Our work shows that PP4 regulates breast cancer cell survival and identifies a novel PP4c-PEA15 signalling axis in the control of breast cancer cell survival. The dysfunction of this axis may be important in the development and progression of breast cancer.
Collapse
|
10
|
On the Quest of Cellular Functions of PEA-15 and the Therapeutic Opportunities. Pharmaceuticals (Basel) 2015; 8:455-73. [PMID: 26263999 PMCID: PMC4588177 DOI: 10.3390/ph8030455] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2015] [Revised: 07/18/2015] [Accepted: 07/24/2015] [Indexed: 02/03/2023] Open
Abstract
Phosphoprotein enriched in astrocytes, 15 KDa (PEA-15), a ubiquitously expressed small protein in all mammals, is known for decades for its potent interactions with various protein partners along distinct biological pathways. Most notable interacting partners of PEA-15 include extracellular signal-regulated kinase 1 and 2 (ERK1/2) in the mitogen activated protein kinase (MAPK) pathway, the Fas-associated death domain (FADD) protein involving in the formation of the death-inducing signaling complex (DISC), and the phospholipase D1 (PLD1) affecting the insulin sensitivity. However, the actual cellular functions of PEA-15 are still mysterious, and the question why this protein is expressed in almost all cell and tissue types remains unanswered. Here we synthesize the most recent structural, biological, and clinical studies on PEA-15 with emphases on its anti-apoptotic, anti-proliferative, and anti-inflammative properties, and propose a converged protective role of PEA-15 that maintains the balance of death and survival in different cell types. Under conditions that this delicate balance is unsustainable, PEA-15 may become pathological and lead to various diseases, including cancers and diabetes. Targeting PEA-15 interactions, or the use of PEA-15 protein as therapeutics, may provide a wider window of opportunities to treat these diseases.
Collapse
|
11
|
Estradiol attenuates down-regulation of PEA-15 and its two phosphorylated forms in ischemic brain injury. Lab Anim Res 2015; 31:40-5. [PMID: 25806082 PMCID: PMC4371476 DOI: 10.5625/lar.2015.31.1.40] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2014] [Revised: 12/21/2014] [Accepted: 01/07/2015] [Indexed: 12/29/2022] Open
Abstract
Estradiol exerts a neuroprotective effect against focal cerebral ischemic injury through the inhibition of apoptotic signals. Phosphoprotein enriched in astrocytes 15 (PEA-15) is mainly expressed in brain that perform anti-apoptotic functions. This study investigated whether estradiol modulates the expression of PEA-15 and two phosphorylated forms of PEA-15 (Ser 104 and Ser 116) in middle cerebral artery occlusion (MCAO)-induced injury and glutamate exposure-induced neuronal cell death. Adult female rats were ovariectomized to remove endogenous estradiol and treated with vehicle or estradiol prior to MCAO. Focal cerebral ischemia was induced by MCAO and cerebral cortices were collected 24 h after MCAO. Western blot analysis indicated that estradiol prevents the MCAO-induced decrease in PEA-15, phospho-PEA-15 (Ser 104), phospho-PEA-15 (Ser 116). Glutamate exposure induced a reduction in PEA-15, phospho-PEA-15 (Ser 104), phospho-PEA-15 (Ser 116) in cultured neurons, whereas estradiol treatment attenuated the glutamate toxicity-induced decrease in the expression of these proteins. It has been known that phosphorylation of PEA-15 is an important step in carrying out its anti-apoptotic function. Thus, these findings suggest that the regulation of PEA-15 phosphorylation by estradiol contributes to the neuroprotective function of estradiol in ischemic brain injury.
Collapse
|
12
|
Estradiol alleviates the ischemic brain injury-induced decrease of neuronal calcium sensor protein hippocalcin. Neurosci Lett 2014; 582:32-7. [DOI: 10.1016/j.neulet.2014.08.045] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2014] [Revised: 08/25/2014] [Accepted: 08/25/2014] [Indexed: 01/17/2023]
|
13
|
Petrone A, Simpkins JW, Barr TL. 17β-estradiol and inflammation: implications for ischemic stroke. Aging Dis 2014; 5:340-5. [PMID: 25276492 DOI: 10.14336/ad.2014.0500340] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2014] [Revised: 06/26/2014] [Accepted: 07/08/2014] [Indexed: 01/17/2023] Open
Abstract
Although typically associated with maintenance of female reproductive function, estrogens mediate physiological processes in nearly every body tissue, including the central nervous system. Numerous pre-clinical studies have shown that estrogen, specifically 17-beta-estradiol (17β-E2), protects the brain from ischemic injury following stroke. There are multiple mechanisms of 17β-E2's neuroprotection, including activation of several neuroprotective pathways in the brain, but 17β-E2 also mediates the local and systemic immune response to ischemic stroke. This review summarizes the immune response to stroke, sex differences in stroke pathophysiology, and the role of estrogen as an immunomodulator. This review will focus almost entirely on the role of 17β-E2; however, there will be a brief review and comparison to other forms of estrogen. Understanding the immunomodulatory action of estrogens may provide an opportunity for the use of estrogens in treatment of stroke and other inflammatory disease.
Collapse
Affiliation(s)
| | - James W Simpkins
- Center for Neuroscience, West Virginia University School of Medicine, WV 26506, USA ; Center for Basic and Translational Stroke Research, West Virginia University School of Medicine, WV 26506, USA ; Department of Physiology and Pharmacology, West Virginia University School of Medicine, WV 26506, USA
| | - Taura L Barr
- Center for Neuroscience, West Virginia University School of Medicine, WV 26506, USA ; Center for Basic and Translational Stroke Research, West Virginia University School of Medicine, WV 26506, USA ; West Virginia University School of Nursing, Morgantown, WV 26506, USA
| |
Collapse
|
14
|
Greig FH, Nixon GF. Phosphoprotein enriched in astrocytes (PEA)-15: a potential therapeutic target in multiple disease states. Pharmacol Ther 2014; 143:265-74. [PMID: 24657708 PMCID: PMC4127788 DOI: 10.1016/j.pharmthera.2014.03.006] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Phosphoprotein enriched in astrocytes-15 (PEA-15) is a cytoplasmic protein that sits at an important junction in intracellular signalling and can regulate diverse cellular processes, such as proliferation and apoptosis, dependent upon stimulation. Regulation of these processes occurs by virtue of the unique interaction of PEA-15 with other signalling proteins. PEA-15 acts as a cytoplasmic tether for the mitogen-activated protein kinases, extracellular signal-regulated kinase 1/2 (ERK1/2) preventing nuclear localisation. In order to release ERK1/2, PEA-15 requires to be phosphorylated via several potential pathways. PEA-15 (and its phosphorylation state) therefore regulates many ERK1/2-dependent processes, including proliferation, via regulating ERK1/2 nuclear translocation. In addition, PEA-15 contains a death effector domain (DED) which allows interaction with other DED-containing proteins. PEA-15 can bind the DED-containing apoptotic adaptor molecule, Fas-associated death domain protein (FADD) which is also dependent on the phosphorylation status of PEA-15. PEA-15 binding of FADD can inhibit apoptosis as bound FADD cannot participate in the assembly of apoptotic signalling complexes. Through these protein–protein interactions, PEA-15-regulated cellular effects have now been investigated in a number of disease-related studies. Changes in PEA-15 expression and regulation have been observed in diabetes mellitus, cancer, neurological disorders and the cardiovascular system. These changes have been suggested to contribute to the pathology related to each of these disease states. As such, new therapeutic targets based around PEA-15 and its associated interactions are now being uncovered and could provide novel avenues for treatment strategies in multiple diseases.
Collapse
Affiliation(s)
- Fiona H Greig
- School of Medical Sciences, University of Aberdeen, Foresterhill, Aberdeen AB25 2ZD, UK
| | - Graeme F Nixon
- School of Medical Sciences, University of Aberdeen, Foresterhill, Aberdeen AB25 2ZD, UK.
| |
Collapse
|
15
|
Zgavc T, Hu TT, Van de Plas B, Vinken M, Ceulemans AG, Hachimi-Idrissi S, Sarre S, Michotte Y, Arckens L. Proteomic analysis of global protein expression changes in the endothelin-1 rat model for cerebral ischemia: Rescue effect of mild hypothermia. Neurochem Int 2013; 63:379-88. [DOI: 10.1016/j.neuint.2013.07.011] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2013] [Revised: 07/22/2013] [Accepted: 07/25/2013] [Indexed: 11/27/2022]
|
16
|
Seo JW, Kim Y, Hur J, Park KS, Cho YW. Proteomic Analysis of Primary Cultured Rat Cortical Neurons in Chemical Ischemia. Neurochem Res 2013; 38:1648-60. [DOI: 10.1007/s11064-013-1067-3] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2013] [Revised: 04/29/2013] [Accepted: 05/03/2013] [Indexed: 01/15/2023]
|
17
|
Ning M, Lopez M, Cao J, Buonanno FS, Lo EH. Application of proteomics to cerebrovascular disease. Electrophoresis 2012; 33:3582-97. [PMID: 23161401 PMCID: PMC3712851 DOI: 10.1002/elps.201200481] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2012] [Revised: 10/04/2012] [Accepted: 10/05/2012] [Indexed: 12/12/2022]
Abstract
While neurovascular diseases such as ischemic and hemorrhagic stroke are the leading causes of disability in the world, the repertoire of therapeutic interventions has remained remarkably limited. There is a dire need to develop new diagnostic, prognostic, and therapeutic options. The study of proteomics is particularly enticing for cerebrovascular diseases such as stroke, which most likely involve multiple gene interactions resulting in a wide range of clinical phenotypes. Currently, rapidly progressing neuroproteomic techniques have been employed in clinical and translational research to help identify biologically relevant pathways, to understand cerebrovascular pathophysiology, and to develop novel therapeutics and diagnostics. Future integration of proteomic with genomic, transcriptomic, and metabolomic studies will add new perspectives to better understand the complexities of neurovascular injury. Here, we review cerebrovascular proteomics research in both preclinical (animal, cell culture) and clinical (blood, urine, cerebrospinal fluid, microdialyates, tissue) studies. We will also discuss the rewards, challenges, and future directions for the application of proteomics technology to the study of various disease phenotypes. To capture the dynamic range of cerebrovascular injury and repair with a translational targeted and discovery approach, we emphasize the importance of complementing innovative proteomic technology with existing molecular biology models in preclinical studies, and the need to advance pharmacoproteomics to directly probe clinical physiology and gauge therapeutic efficacy at the bedside.
Collapse
Affiliation(s)
- Mingming Ning
- Clinical Proteomics Research Center, Department of Neurology, Massachusetts General Hospital and Harvard Medical School, Boston, MA 02114, USA.
| | | | | | | | | |
Collapse
|
18
|
Di Domenico F, Casalena G, Jia J, Sultana R, Barone E, Cai J, Pierce WM, Cini C, Mancuso C, Perluigi M, Davis CM, Alkayed NJ, Butterfield DA, Butterfield AD. Sex differences in brain proteomes of neuron-specific STAT3-null mice after cerebral ischemia/reperfusion. J Neurochem 2012; 121:680-92. [PMID: 22394374 DOI: 10.1111/j.1471-4159.2012.07721.x] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Signal transduction and activator of transcription-3 (STAT3) plays an important role in neuronal survival, regeneration and repair after brain injury. We previously demonstrated that STAT3 is activated in brain after cerebral ischemia specifically in neurons. The effect was sex-specific and modulated by sex steroids, with higher activation in females than males. In the current study, we used a proteomics approach to identify downstream proteins affected by ischemia in male and female wild-type (WT) and neuron-specific STAT3 knockout (KO) mice. We established four comparison groups based on the transgenic condition and the hemisphere analyzed, respectively. Moreover, the sexual variable was taken into account and male and female animals were analyzed independently. Results support a role for STAT3 in metabolic, synaptic, structural and transcriptional responses to cerebral ischemia, indeed the adaptive response to ischemia/reperfusion injury is delayed in neuronal-specific STAT3 KO mice. The differences observed between males and females emphasize the importance of sex-specific neuronal survival and repair mechanisms, especially those involving antioxidant and energy-related activities, often caused by sex hormones.
Collapse
Affiliation(s)
- Fabio Di Domenico
- Department of Chemistry, Center of Membrane Sciences, and Sanders-Brown Center on Aging, University of Kentucky, Lexington, Kentucky, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
19
|
Tai SH, Hung YC, Lee EJ, Lee AC, Chen TY, Shen CC, Chen HY, Lee MY, Huang SY, Wu TS. Melatonin protects against transient focal cerebral ischemia in both reproductively active and estrogen-deficient female rats: the impact of circulating estrogen on its hormetic dose-response. J Pineal Res 2011; 50:292-303. [PMID: 21210839 DOI: 10.1111/j.1600-079x.2010.00839.x] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Melatonin (5-15 mg/kg) protects male animals against ischemic stroke. We explored the potential interactions and synergistic neuroprotection of melatonin and estrogen using a panel of lipid peroxidation and radical-scavenging assays, primary neuronal cultures subjected to oxygen-glucose deprivation (OGD), and lipopolysaccharide (LPS)-stimulated RAW 264.7 cells. Neuroprotective efficacy of melatonin was also evaluated in both reproductively active and ovariectomized female rats subjected to transient focal cerebral ischemia. Relative to melatonin or estradiol (E2) alone, a combination of the two agents exhibited robust, synergistic antioxidant and radical-scavenging actions (P<0.05, respectively). Additionally, the two agents, when combined at large doses, showed synergistic inhibition in the production of tumor necrosis factor alpha (TNF-α) and interleukin-6 (IL-6) in the LPS-stimulated RAW 264.7 cells (P<0.05, respectively). Alternatively, co-treatment with melatonin and E2 independently, but not combined, showed a U-shaped dose-responsive (hormetic) cytoprotection for neuronal cultures subjected to OGD. When combined at a dosage either positively or negatively skewed from each optimal dosage, however, co-treatment caused synergistic neuroprotection. Relative to vehicle-injected controls, melatonin given intravenously at 1-5 mg/kg, but not 0.1 or 15 mg/kg, significantly reduced brain infarction and improved neurobehavioral outcomes (P<0.05, respectively) in reproductively active female rats. In ovariectomized stroke rats, melatonin was only effective at a large dosage (15-50 mg/kg). These results demonstrate complex interactions and synergistic antioxidant, radical-scavenging, and anti-inflammatory actions between estradiol and melatonin, and highlight the potential need to rectify the melatonin's hormetic dose-response by the level of circulating estradiol in the treatment of female stroke patients.
Collapse
Affiliation(s)
- Shih-Huang Tai
- Neurophysiology Laboratory, Neurosurgical Service, Department of Surgery, National Cheng Kung University Medical Center and Medical School, Tainan, Taiwan
| | | | | | | | | | | | | | | | | | | |
Collapse
|
20
|
Woodruff TM, Thundyil J, Tang SC, Sobey CG, Taylor SM, Arumugam TV. Pathophysiology, treatment, and animal and cellular models of human ischemic stroke. Mol Neurodegener 2011; 6:11. [PMID: 21266064 PMCID: PMC3037909 DOI: 10.1186/1750-1326-6-11] [Citation(s) in RCA: 395] [Impact Index Per Article: 28.2] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2010] [Accepted: 01/25/2011] [Indexed: 01/02/2023] Open
Abstract
Stroke is the world's second leading cause of mortality, with a high incidence of severe morbidity in surviving victims. There are currently relatively few treatment options available to minimize tissue death following a stroke. As such, there is a pressing need to explore, at a molecular, cellular, tissue, and whole body level, the mechanisms leading to damage and death of CNS tissue following an ischemic brain event. This review explores the etiology and pathogenesis of ischemic stroke, and provides a general model of such. The pathophysiology of cerebral ischemic injury is explained, and experimental animal models of global and focal ischemic stroke, and in vitro cellular stroke models, are described in detail along with experimental strategies to analyze the injuries. In particular, the technical aspects of these stroke models are assessed and critically evaluated, along with detailed descriptions of the current best-practice murine models of ischemic stroke. Finally, we review preclinical studies using different strategies in experimental models, followed by an evaluation of results of recent, and failed attempts of neuroprotection in human clinical trials. We also explore new and emerging approaches for the prevention and treatment of stroke. In this regard, we note that single-target drug therapies for stroke therapy, have thus far universally failed in clinical trials. The need to investigate new targets for stroke treatments, which have pleiotropic therapeutic effects in the brain, is explored as an alternate strategy, and some such possible targets are elaborated. Developing therapeutic treatments for ischemic stroke is an intrinsically difficult endeavour. The heterogeneity of the causes, the anatomical complexity of the brain, and the practicalities of the victim receiving both timely and effective treatment, conspire against developing effective drug therapies. This should in no way be a disincentive to research, but instead, a clarion call to intensify efforts to ameliorate suffering and death from this common health catastrophe. This review aims to summarize both the present experimental and clinical state-of-the art, and to guide future research directions.
Collapse
Affiliation(s)
- Trent M Woodruff
- School of Biomedical Sciences, University of Queensland, Brisbane, Queensland 4072, Australia.
| | | | | | | | | | | |
Collapse
|