1
|
Lange DJ, Shahbazi M, Silani V, Ludolph AC, Weishaupt JH, Ajroud-Driss S, Fields KG, Remanan R, Appel SH, Morelli C, Doretti A, Maderna L, Messina S, Weiland U, Marklund SL, Andersen PM. Pyrimethamine significantly lowers cerebrospinal fluid Cu/Zn superoxide dismutase in amyotrophic lateral sclerosis patients with SOD1 mutations. Ann Neurol 2017; 81:837-848. [PMID: 28480639 PMCID: PMC5518287 DOI: 10.1002/ana.24950] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2016] [Revised: 04/30/2017] [Accepted: 05/01/2017] [Indexed: 12/13/2022]
Abstract
Objective Cu/Zn superoxide dismutase (SOD1) reduction prolongs survival in SOD1‐transgenic animal models. Pyrimethamine produces dose‐dependent SOD1 reduction in cell culture systems. A previous phase 1 trial showed pyrimethamine lowers SOD1 levels in leukocytes in patients with SOD1 mutations. This study investigated whether pyrimethamine lowered SOD1 levels in the cerebrospinal fluid (CSF) in patients carrying SOD1 mutations linked to familial amyotrophic lateral sclerosis (fALS/SOD1). Methods A multicenter (5 sites), open‐label, 9‐month‐duration, dose‐ranging study was undertaken to determine the safety and efficacy of pyrimethamine to lower SOD1 levels in the CSF in fALS/SOD1. All participants underwent 3 lumbar punctures, blood draw, clinical assessment of strength, motor function, quality of life, and adverse effect assessments. SOD1 levels were measured in erythrocytes and CSF. Pyrimethamine was measured in plasma and CSF. Appel ALS score, ALS Functional Rating Scale–Revised, and McGill Quality of Life Single‐Item Scale were measured at screening, visit 6, and visit 9. Results We enrolled 32 patients; 24 completed 6 visits (18 weeks), and 21 completed all study visits. A linear mixed effects model showed a significant reduction in CSF SOD1 at visit 6 (p < 0.001) with a mean reduction of 13.5% (95% confidence interval [CI] = 8.4–18.5) and at visit 9 (p < 0.001) with a mean reduction of 10.5% (95% CI = 5.2–15.8). Interpretation Pyrimethamine is safe and well tolerated in ALS. Pyrimethamine is capable of producing a significant reduction in total CSF SOD1 protein content in patients with ALS caused by different SOD1 mutations. Further long‐term studies are warranted to assess clinical efficacy. Ann Neurol 2017;81:837–848
Collapse
Affiliation(s)
- Dale J Lange
- Department of Neurology, Hospital for Special Surgery/Weill Cornell Medicine, New York, NY
| | - Mona Shahbazi
- Department of Neurology, Hospital for Special Surgery/Weill Cornell Medicine, New York, NY
| | - Vincenzo Silani
- Department of Neurology and Laboratory Neuroscience, Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS) Italian Auxological Institute, Milan, Italy.,Department of Pathophysiology and Transplantation, Dino Ferrari Center, University of Milan, Milan, Italy
| | | | | | | | - Kara G Fields
- Hospital for Special Surgery Healthcare Research Institute, New York, NY
| | - Rahul Remanan
- Department of Neurology, Hospital for Special Surgery/Weill Cornell Medicine, New York, NY
| | | | - Claudia Morelli
- Department of Neurology and Laboratory Neuroscience, Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS) Italian Auxological Institute, Milan, Italy
| | - Alberto Doretti
- Department of Neurology and Laboratory Neuroscience, Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS) Italian Auxological Institute, Milan, Italy
| | - Luca Maderna
- Department of Neurology and Laboratory Neuroscience, Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS) Italian Auxological Institute, Milan, Italy
| | - Stefano Messina
- Department of Neurology and Laboratory Neuroscience, Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS) Italian Auxological Institute, Milan, Italy
| | | | | | - Peter M Andersen
- Department of Neurology, Ulm University, Ulm, Germany.,Pharmacology and Clinical Neuroscience, Umeå University, Umeå, Sweden
| |
Collapse
|
2
|
Lu H, Le WD, Xie YY, Wang XP. Current Therapy of Drugs in Amyotrophic Lateral Sclerosis. Curr Neuropharmacol 2016; 14:314-21. [PMID: 26786249 PMCID: PMC4876587 DOI: 10.2174/1570159x14666160120152423] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2015] [Revised: 07/16/2015] [Accepted: 10/09/2015] [Indexed: 12/12/2022] Open
Abstract
Amyotrophic lateral sclerosis (ALS), commonly termed as motor neuron disease (MND) in UK, is a chronically lethal disorder among the neurodegenerative diseases, meanwhile. ALS is basically irreversible and progressive deterioration of upper and lower motor neurons in the motor cortex, brain stem and medulla spinalis. Riluzole, used for the treatment of ALS, was demonstrated to slightly delay the initiation of respiratory dysfunction and extend the median survival of patients by a few months. In this study, the key biochemical defects were discussed, such as: mutant Cu/Zn superoxide dismutase, mitochondrial protectants, and anti-excitotoxic/ anti-oxidative / anti-inflammatory/ anti-apoptotic agents, so the related drug candidates that have been studied in ALS models would possibly be further used in ALS patients.
Collapse
Affiliation(s)
| | | | | | - Xiao-Ping Wang
- Department of Neurology, Shanghai First People's Hospital , Shanghai Jiao-Tong University, China, 200080.
| |
Collapse
|
3
|
Therapeutic progress in amyotrophic lateral sclerosis-beginning to learning. Eur J Med Chem 2016; 121:903-917. [DOI: 10.1016/j.ejmech.2016.06.017] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2015] [Revised: 04/29/2016] [Accepted: 06/10/2016] [Indexed: 12/11/2022]
|
4
|
Schulze S, Reinhardt S, Freese C, Schmitt U, Endres K. Identification of trichlormethiazide as a Mdr1a/b gene expression enhancer via a dual secretion-based promoter assay. Pharmacol Res Perspect 2015; 3:e00109. [PMID: 25692026 PMCID: PMC4317239 DOI: 10.1002/prp2.109] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2014] [Accepted: 10/07/2014] [Indexed: 11/29/2022] Open
Abstract
Transporters of the ATP-binding cassette (ABC) family such as MDR1 play a pivotal role in persistence of brain homeostasis by contributing to the strict permeability properties of the blood–brain barrier. This barrier on one hand compromises treatment of central nervous system diseases by restricting access of drugs; on the other hand, an impaired or altered function of barrier building cells has been described in neurological disorders. The latter might contribute to increased vulnerability of the brain under pathological conditions or even enforce pathogenesis. Here, we present a novel approach for a systematic examination of drug impact on Mdr1 gene expression by establishing a dual reporter gene assay for the murine upstream core promoters of Mdr1a and b. We validated the time-resolved assay in comparison with single reporter gene constructs and applied it to analyze effects of a Food and Drug Administration (FDA)-approved drug library consisting of 627 substances. The chemo-preventive synthetic dithiolethione oltipraz was reidentified with our assay as an already known inducer of Mdr1 gene expression. Together with two newly characterized modifiers – gemcitabine and trichlormethiazide – we prove our findings in a blood–brain barrier culture model as well as in wild-type and Mdr1 knockout mice. In sum, we could demonstrate that our dual reporter gene assay delivers results, which also persist in the living animal and consequently is applicable for further analysis and prediction of Mdr1 regulation in vivo.
Collapse
Affiliation(s)
- Sarina Schulze
- Clinic of Psychiatry and Psychotherapy, University Medical Center Johannes Gutenberg University Mainz, Germany
| | - Sven Reinhardt
- Clinic of Psychiatry and Psychotherapy, University Medical Center Johannes Gutenberg University Mainz, Germany
| | - Christian Freese
- REPAIR-lab, Institute of Pathology, University Medical Center of the Johannes Gutenberg University Mainz and European Institute of Excellence on Tissue Engineering and Regenerative Medicine Mainz, Germany
| | - Ulrich Schmitt
- Clinic of Psychiatry and Psychotherapy, University Medical Center Johannes Gutenberg University Mainz, Germany
| | - Kristina Endres
- Clinic of Psychiatry and Psychotherapy, University Medical Center Johannes Gutenberg University Mainz, Germany
| |
Collapse
|
5
|
Pandya RS, Zhu H, Li W, Bowser R, Friedlander RM, Wang X. Therapeutic neuroprotective agents for amyotrophic lateral sclerosis. Cell Mol Life Sci 2013; 70:4729-45. [PMID: 23864030 PMCID: PMC4172456 DOI: 10.1007/s00018-013-1415-0] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2012] [Revised: 06/06/2013] [Accepted: 06/24/2013] [Indexed: 02/06/2023]
Abstract
Amyotrophic lateral sclerosis (ALS) is a fatal chronic neurodegenerative disease whose hallmark is proteinaceous, ubiquitinated, cytoplasmic inclusions in motor neurons and surrounding cells. Multiple mechanisms proposed as responsible for ALS pathogenesis include dysfunction of protein degradation, glutamate excitotoxicity, mitochondrial dysfunction, apoptosis, oxidative stress, and inflammation. It is therefore essential to gain a better understanding of the underlying disease etiology and search for neuroprotective agents that might delay disease onset, slow progression, prolong survival, and ultimately reduce the burden of disease. Because riluzole, the only Food and Drug Administration (FDA)-approved treatment, prolongs the ALS patient's life by only 3 months, new therapeutic agents are urgently needed. In this review, we focus on studies of various small pharmacological compounds targeting the proposed pathogenic mechanisms of ALS and discuss their impact on disease progression.
Collapse
Affiliation(s)
- Rachna S. Pandya
- Department of Neurosurgery, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA 02115 USA
| | - Haining Zhu
- Department of Molecular and Cellular Biochemistry, College of Medicine, University of Kentucky, Lexington, KY 40536 USA
| | - Wei Li
- Department of Neurosurgery, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA 02115 USA
| | - Robert Bowser
- Division of Neurobiology, Barrow Neurological Institute, Phoenix, AZ 85013 USA
| | - Robert M. Friedlander
- Department of Neurosurgery, University of Pittsburgh School of Medicine, Pittsburgh, PA 15213 USA
| | - Xin Wang
- Department of Neurosurgery, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA 02115 USA
| |
Collapse
|
6
|
Limpert AS, Mattmann ME, Cosford NDP. Recent progress in the discovery of small molecules for the treatment of amyotrophic lateral sclerosis (ALS). Beilstein J Org Chem 2013; 9:717-32. [PMID: 23766784 PMCID: PMC3678841 DOI: 10.3762/bjoc.9.82] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2012] [Accepted: 03/07/2013] [Indexed: 12/13/2022] Open
Abstract
Amyotrophic lateral sclerosis (ALS) is a fatal neurodegenerative disorder with few therapeutic options. While several gene mutations have been implicated in ALS, the exact cause of neuronal dysfunction is unknown and motor neurons of affected individuals display numerous cellular abnormalities. Ongoing efforts to develop novel ALS treatments involve the identification of small molecules targeting specific mechanisms of neuronal pathology, including glutamate excitotoxicity, mutant protein aggregation, endoplasmic reticulum (ER) stress, loss of trophic factors, oxidative stress, or neuroinflammation. Herein, we review recent advances in the discovery and preclinical characterization of lead compounds that may ultimately provide novel drugs to treat patients suffering from ALS.
Collapse
Affiliation(s)
- Allison S Limpert
- Apoptosis and Cell Death Research Program, Sanford-Burnham Medical Research Institute, 10901 N. Torrey Pines Road, La Jolla, California 92037, United States
| | | | | |
Collapse
|
7
|
Lange DJ, Andersen PM, Remanan R, Marklund S, Benjamin D. Pyrimethamine decreases levels of SOD1 in leukocytes and cerebrospinal fluid of ALS patients: a phase I pilot study. Amyotroph Lateral Scler Frontotemporal Degener 2012; 14:199-204. [PMID: 22985433 DOI: 10.3109/17482968.2012.724074] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
The mutated SOD1 protein appears to have a gene dose-dependent effect on the severity and progression of ALS. Lowering of SOD1 protein levels might reduce severity and progression of the disease. The antimalarial drug pyrimethamine (PYR) was identified to cause a dose-dependent reduction in SOD1 protein levels in human cells in vitro. To determine if there was a similar effect in humans, we performed a phase I pilot study in 16 ALS patients with SOD1 mutations, 18 weeks in duration. Blood samples were obtained during all visits. The actin normalized leukocyte SOD1 levels were analyzed using Western blot. SOD1 content in the cerebrospinal fluid (CSF) was determined by ELISA and the SOD1 enzymic activity by spectrophotometric analysis using KO2. Clinical assessment of disease severity was assessed using Appel ALS scale and ALSFRS-R. The leukocyte SOD1 levels showed a significant reduction (p > 0.0001) by the third study visit and this reduction was sustained throughout the remainder of the study. CSF also showed a decrease in SOD1 protein content and enzymic activity in the two patients so tested. Thus, PYR use may be associated with a reduction in SOD1 in ALS patients. The significance is uncertain and further detailed study is required.
Collapse
Affiliation(s)
- Dale J Lange
- Department of Neurology, Hospital for Special Surgery, New York, NY 10021, USA.
| | | | | | | | | |
Collapse
|
8
|
Wright PD, Wightman N, Huang M, Weiss A, Sapp PC, Cuny GD, Ivinson AJ, Glicksman MA, Ferrante RJ, Matson W, Matson S, Brown RH. A high-throughput screen to identify inhibitors of SOD1 transcription. Front Biosci (Elite Ed) 2012; 4:2701-8. [PMID: 22652679 PMCID: PMC4083181 DOI: 10.2741/e584] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/25/2023]
Abstract
Amyotrophic lateral sclerosis (ALS) is a fatal degenerative motor neuron disease. Approximately 20 percent of familial ALS cases are caused by mutations in the Cu/Zn superoxide dismutase (SOD1) gene. Rodents expressing mutant SOD1 transgenes develop progressive, fatal motor neuron disease and disease onset and progression is dependent on the level of SOD1. We investigated the possibility that a reduction in SOD1 protein may be of therapeutic benefit in ALS and screened 30,000 compounds for inhibition of SOD1 transcription. The most effective inhibitor identified was N-{4-[4-(4-methylbenzoyl)-1-piperazinyl]phenyl}-2-thiophenecarboxamide (Compound ID 7687685), which in PC12 cells showed an EC50 of 10.6 microM for inhibition of SOD1 expression and an LD50 more than 30 microM. This compound was subsequently shown to reduce endogenous SOD1 levels in HeLa cells and to exhibit a modest reduction of SOD1 protein levels in mouse spinal cord tissue. These data suggest that the efficacy of compound 7687685 as an inhibitor of SOD1 gene expression is not likely to be clinically useful, although the strategy reported could be applied broadly to screening for small molecule inhibitors of gene expression.
Collapse
Affiliation(s)
- Paul D Wright
- Department of Neurology, University of Massachusetts Medical School, Worcester, MA 01655, USA.
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
9
|
Morren JA, Galvez-Jimenez N. Current and prospective disease-modifying therapies for amyotrophic lateral sclerosis. Expert Opin Investig Drugs 2012; 21:297-320. [PMID: 22303913 DOI: 10.1517/13543784.2012.657303] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
INTRODUCTION Amyotrophic lateral sclerosis (ALS) is a devastating illness of unclear etiology affecting motor neurons. It causes unremitting muscle paralysis, atrophy and death usually within 3 - 5 years from diagnosis. The human and economic costs for those affected are sobering. To date, tremendous efforts have failed to find a cure. AREAS COVERED An extensive literature search was undertaken using Medline and the Cochrane Systematic Review and Clinical Trial databases. Riluzole and investigational ALS drugs are discussed. Riluzole is the only approved disease-modifying therapy despite its modest effect on survival. Recent research has produced promising agents aimed at better disease control if not a cure. This review discusses agents targeting neuronal glutamate excitotoxicity, protein misfolding and accumulation, autophagy, apoptosis, mitochondrial dysfunction, free radical oxidative injury, immunomodulation, mutant mRNA counteraction, muscle physiology, neurotrophic factors and stem cell applications. The challenges in ALS drug development are highlighted. EXPERT OPINION Riluzole should be used for patients with definite, probable, suspected or possible ALS by World Federation of Neurology diagnostic criteria. Systematic monitoring for hepatic dysfunction, neutropenia and other serious adverse effects should be done routinely as outlined. All ALS patients should consider genetic screening and enrollment in ALS trials guided by the data reviewed.
Collapse
Affiliation(s)
- John A Morren
- Department of Neurology, Cleveland Clinic Florida, 2950 Cleveland Clinic Blvd., Weston, FL 33331, USA
| | | |
Collapse
|