1
|
Prieto-Fernández L, Menéndez ST, Otero-Rosales M, Montoro-Jiménez I, Hermida-Prado F, García-Pedrero JM, Álvarez-Teijeiro S. Pathobiological functions and clinical implications of annexin dysregulation in human cancers. Front Cell Dev Biol 2022; 10:1009908. [PMID: 36247003 PMCID: PMC9554710 DOI: 10.3389/fcell.2022.1009908] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2022] [Accepted: 08/29/2022] [Indexed: 11/13/2022] Open
Abstract
Annexins are an extensive superfamily of structurally related calcium- and phospholipid-binding proteins, largely conserved and widely distributed among species. Twelve human annexins have been identified, referred to as Annexin A1-13 (A12 remains as of yet unassigned), whose genes are spread throughout the genome on eight different chromosomes. According to their distinct tissue distribution and subcellular localization, annexins have been functionally implicated in a variety of biological processes relevant to both physiological and pathological conditions. Dysregulation of annexin expression patterns and functions has been revealed as a common feature in multiple cancers, thereby emerging as potential biomarkers and molecular targets for clinical application. Nevertheless, translation of this knowledge to the clinic requires in-depth functional and mechanistic characterization of dysregulated annexins for each individual cancer type, since each protein exhibits varying expression levels and phenotypic specificity depending on the tumor types. This review specifically and thoroughly examines the current knowledge on annexin dysfunctions in carcinogenesis. Hence, available data on expression levels, mechanism of action and pathophysiological effects of Annexin A1-13 among different cancers will be dissected, also further discussing future perspectives for potential applications as biomarkers for early diagnosis, prognosis and molecular-targeted therapies. Special attention is devoted to head and neck cancers (HNC), a complex and heterogeneous group of aggressive malignancies, often lately diagnosed, with high mortality, and scarce therapeutic options.
Collapse
Affiliation(s)
- Llara Prieto-Fernández
- Department of Otolaryngology, Hospital Universitario Central de Asturias and Instituto de Investigación Sanitaria Del Principado de Asturias (ISPA), Instituto Universitario de Oncología Del Principado de Asturias (IUOPA), University of Oviedo, Oviedo, Spain
- CIBERONC, Instituto de Salud Carlos III, Madrid, Spain
| | - Sofía T. Menéndez
- Department of Otolaryngology, Hospital Universitario Central de Asturias and Instituto de Investigación Sanitaria Del Principado de Asturias (ISPA), Instituto Universitario de Oncología Del Principado de Asturias (IUOPA), University of Oviedo, Oviedo, Spain
- CIBERONC, Instituto de Salud Carlos III, Madrid, Spain
| | - María Otero-Rosales
- Department of Otolaryngology, Hospital Universitario Central de Asturias and Instituto de Investigación Sanitaria Del Principado de Asturias (ISPA), Instituto Universitario de Oncología Del Principado de Asturias (IUOPA), University of Oviedo, Oviedo, Spain
| | - Irene Montoro-Jiménez
- Department of Otolaryngology, Hospital Universitario Central de Asturias and Instituto de Investigación Sanitaria Del Principado de Asturias (ISPA), Instituto Universitario de Oncología Del Principado de Asturias (IUOPA), University of Oviedo, Oviedo, Spain
- CIBERONC, Instituto de Salud Carlos III, Madrid, Spain
| | - Francisco Hermida-Prado
- Department of Otolaryngology, Hospital Universitario Central de Asturias and Instituto de Investigación Sanitaria Del Principado de Asturias (ISPA), Instituto Universitario de Oncología Del Principado de Asturias (IUOPA), University of Oviedo, Oviedo, Spain
- CIBERONC, Instituto de Salud Carlos III, Madrid, Spain
| | - Juana M. García-Pedrero
- Department of Otolaryngology, Hospital Universitario Central de Asturias and Instituto de Investigación Sanitaria Del Principado de Asturias (ISPA), Instituto Universitario de Oncología Del Principado de Asturias (IUOPA), University of Oviedo, Oviedo, Spain
- CIBERONC, Instituto de Salud Carlos III, Madrid, Spain
| | - Saúl Álvarez-Teijeiro
- Department of Otolaryngology, Hospital Universitario Central de Asturias and Instituto de Investigación Sanitaria Del Principado de Asturias (ISPA), Instituto Universitario de Oncología Del Principado de Asturias (IUOPA), University of Oviedo, Oviedo, Spain
- CIBERONC, Instituto de Salud Carlos III, Madrid, Spain
| |
Collapse
|
2
|
Guo B, Jiang T, Wu F, Ni H, Ye J, Wu X, Ni C, Jiang M, Ye L, Li Z, Zheng X, Li S, Yang Q, Wang Z, Huang X, Zhao C. LncRNA RP5-998N21.4 promotes immune defense through upregulation of IFIT2 and IFIT3 in schizophrenia. SCHIZOPHRENIA (HEIDELBERG, GERMANY) 2022; 8:11. [PMID: 35232977 PMCID: PMC8888552 DOI: 10.1038/s41537-021-00195-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/26/2021] [Accepted: 11/26/2021] [Indexed: 12/31/2022]
Abstract
Schizophrenia is a complex polygenic disease that is affected by genetic, developmental, and environmental factors. Accumulating evidence indicates that environmental factors such as maternal infection and excessive prenatal neuroinflammation may contribute to the onset of schizophrenia by affecting epigenetic modification. We recently identified a schizophrenia-associated upregulated long noncoding RNA (lncRNA) RP5-998N21.4 by transcriptomic analysis of monozygotic twins discordant for schizophrenia. Importantly, we found that genes coexpressed with RP5-998N21.4 were enriched in immune defense-related biological processes in twin subjects and in RP5-998N21.4-overexpressing (OE) SK-N-SH cell lines. We then identified two genes encoding an interferon-induced protein with tetratricopeptide repeat (IFIT) 2 and 3, which play an important role in immune defense, as potential targets of RP5-998N21.4 by integrative analysis of RP5-998N21.4OE-induced differentially expressed genes (DEGs) in SK-N-SH cells and RP5-998N21.4-coexpressed schizophrenia-associated DEGs from twin subjects. We further demonstrated that RP5-998N21.4 positively regulates the transcription of IFIT2 and IFIT3 by binding to their promoter regions and affecting their histone modifications. In addition, as a general nuclear coactivator, RMB14 (encoding RNA binding motif protein 14) was identified to facilitate the regulatory role of RP5-998N21.4 in IFIT2 and IFIT3 transcription. Finally, we observed that RP5-998N21.4OE can enhance IFIT2- and IFIT3-mediated immune defense responses through activation of signal transducer and activator of transcription 1 (STAT1) signaling pathway in U251 astrocytoma cells under treatment with the viral mimetic polyinosinic: polycytidylic acid (poly I:C). Taken together, our findings suggest that lncRNA RP5-998N21.4 is a critical regulator of immune defense, providing etiological and therapeutic implications for schizophrenia.
Collapse
Affiliation(s)
- Bo Guo
- Department of Medical Genetics, School of Basic Medical Sciences, and Guangdong Technology and Engineering Research Center for Molecular Diagnostics of Human Genetic Diseases, Southern Medical University, Guangzhou, Guangdong, China.,Key Laboratory of Mental Health of the Ministry of Education, Guangdong-Hong Kong-Macao Greater Bay Area Center for Brain Science and Brain-Inspired Intelligence, and Guangdong Province Key Laboratory of Psychiatric Disorders, Southern Medical University, Guangzhou, Guangdong, China
| | - Tingyun Jiang
- The Third People's Hospital of Zhongshan, Zhongshan, Guangdong, China
| | - Fengchun Wu
- Department of Psychiatry, the Affiliated Brain Hospital of Guangzhou Medical University (Guangzhou Huiai Hospital), Guangzhou, Guangdong, China
| | - Hongyu Ni
- Department of Medical Genetics, School of Basic Medical Sciences, and Guangdong Technology and Engineering Research Center for Molecular Diagnostics of Human Genetic Diseases, Southern Medical University, Guangzhou, Guangdong, China
| | - Junping Ye
- Department of Medical Genetics, School of Basic Medical Sciences, and Guangdong Technology and Engineering Research Center for Molecular Diagnostics of Human Genetic Diseases, Southern Medical University, Guangzhou, Guangdong, China
| | - Xiaohui Wu
- Department of Medical Genetics, School of Basic Medical Sciences, and Guangdong Technology and Engineering Research Center for Molecular Diagnostics of Human Genetic Diseases, Southern Medical University, Guangzhou, Guangdong, China
| | - Chaoying Ni
- Department of Medical Genetics, School of Basic Medical Sciences, and Guangdong Technology and Engineering Research Center for Molecular Diagnostics of Human Genetic Diseases, Southern Medical University, Guangzhou, Guangdong, China
| | - Meijun Jiang
- Guangdong Mental Health Center, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, China
| | - Linyan Ye
- Department of Medical Genetics, School of Basic Medical Sciences, and Guangdong Technology and Engineering Research Center for Molecular Diagnostics of Human Genetic Diseases, Southern Medical University, Guangzhou, Guangdong, China
| | - Zhongwei Li
- Department of Medical Genetics, School of Basic Medical Sciences, and Guangdong Technology and Engineering Research Center for Molecular Diagnostics of Human Genetic Diseases, Southern Medical University, Guangzhou, Guangdong, China
| | - Xianzhen Zheng
- Guangdong Mental Health Center, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, China
| | - Shufen Li
- Department of Medical Genetics, School of Basic Medical Sciences, and Guangdong Technology and Engineering Research Center for Molecular Diagnostics of Human Genetic Diseases, Southern Medical University, Guangzhou, Guangdong, China
| | - Qiong Yang
- Department of Psychiatry, the Affiliated Brain Hospital of Guangzhou Medical University (Guangzhou Huiai Hospital), Guangzhou, Guangdong, China
| | - Zhongju Wang
- Department of Medical Genetics, School of Basic Medical Sciences, and Guangdong Technology and Engineering Research Center for Molecular Diagnostics of Human Genetic Diseases, Southern Medical University, Guangzhou, Guangdong, China
| | - Xingbing Huang
- Department of Psychiatry, the Affiliated Brain Hospital of Guangzhou Medical University (Guangzhou Huiai Hospital), Guangzhou, Guangdong, China.
| | - Cunyou Zhao
- Department of Medical Genetics, School of Basic Medical Sciences, and Guangdong Technology and Engineering Research Center for Molecular Diagnostics of Human Genetic Diseases, Southern Medical University, Guangzhou, Guangdong, China. .,Key Laboratory of Mental Health of the Ministry of Education, Guangdong-Hong Kong-Macao Greater Bay Area Center for Brain Science and Brain-Inspired Intelligence, and Guangdong Province Key Laboratory of Psychiatric Disorders, Southern Medical University, Guangzhou, Guangdong, China. .,Experimental Education/Administration Center, School of Basic Medical Science, Southern Medical University, Guangzhou, China. .,Department of Rehabilitation, Zhujiang Hospital of Southern Medical University, Guangzhou, China.
| |
Collapse
|
3
|
Zhang Z, Deng M, Huang J, Wu J, Li Z, Xing M, Wang J, Guo Q, Zou W. Microglial annexin A3 downregulation alleviates bone cancer-induced pain through inhibiting the Hif-1α/vascular endothelial growth factor signaling pathway. Pain 2021; 161:2750-2762. [PMID: 32569086 DOI: 10.1097/j.pain.0000000000001962] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Bone cancer-induced pain (BCP) is a challenging clinical problem because traditional therapies are often only partially effective. Annexin A3 (ANXA3) is highly expressed in microglia in the spinal cord, and its expression is upregulated during BCP. However, the roles of microglial ANXA3 in the development and maintenance of BCP and the underlying molecular mechanisms remain unclear. This study was performed on male mice using a metastatic lung BCP model. Adeno-associated virus shANXA3 (AAV-shANXA3) was injected intrathecally 14 days before and 7 days after bone cancer induction, and relevant pain behaviors were assessed by measuring the paw withdrawal mechanical threshold, paw withdrawal thermal latency, and spontaneous hind limb lifting. ANXA3 protein expression was downregulated in microglial N9 cells by lentiviral transfection (LV-shANXA3). ANXA3, hypoxia-inducible factor-1α (Hif-1α), vascular endothelial growth factor (VEGF) expression levels, and Hif-1α transactivation activity regulated by ANXA3 were measured. As a result, ANXA3 was expressed in microglia, and its expression significantly increased during BCP. ANXA3 knockdown reversed pain behaviors but did not prevent pain development. Moreover, ANXA3 knockdown significantly reduced Hif-1α and VEGF expression levels in vitro and in vivo. And overexpression of Hif-1α or VEGF blocked the effects of AAV-shANXA3 on BCP. ANXA3 knockdown in N9 cells significantly decreased the p-PKC protein expression in the cocultured neurons. Finally, ANXA3 overexpression significantly increased Hif-1α transactivation activity in 293T cells. Therefore, microglial ANXA3 downregulation alleviates BCP by inhibiting the Hif-1α/VEGF signaling pathway, which indicates that ANXA3 may be a potential target for the treatment of BCP.
Collapse
Affiliation(s)
- Zengli Zhang
- Department of Anesthesiology, Xiangya Hospital, Central South University, Changsha, China
| | - Meiling Deng
- Department of Anesthesiology, Xiangya Hospital, Central South University, Changsha, China
| | - Jiangju Huang
- Department of Anesthesiology, Xiangya Hospital, Central South University, Changsha, China
| | - Jing Wu
- Department of Anesthesiology, Xiangya Hospital, Central South University, Changsha, China
| | - Zhengyiqi Li
- Department of Anesthesiology, Xiangya Hospital, Central South University, Changsha, China
| | - Manyu Xing
- Department of Anesthesiology, Xiangya Hospital, Central South University, Changsha, China
| | - Jian Wang
- Department of Anesthesiology, Xiangya Hospital, Central South University, Changsha, China
| | - Qulian Guo
- Department of Anesthesiology, Xiangya Hospital, Central South University, Changsha, China
| | - Wangyuan Zou
- Department of Anesthesiology, Xiangya Hospital, Central South University, Changsha, China.,National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China
| |
Collapse
|
4
|
Otani N, Kurata Y, Maharani N, Kuwabara M, Ikeda N, Notsu T, Li P, Miake J, Yoshida A, Sakaguchi H, Higaki K, Nakasone N, Tsuneto M, Shirayoshi Y, Ouchi M, Ninomiya H, Yamamoto K, Anzai N, Hisatome I. Evidence for Urate Uptake Through Monocarboxylate Transporter 9 Expressed in Mammalian Cells and Its Enhancement by Heat Shock. Circ Rep 2020; 2:425-432. [PMID: 33693264 PMCID: PMC7819574 DOI: 10.1253/circrep.cr-20-0016] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023] Open
Abstract
Background: Monocarboxylate transporter 9 (MCT9), an orphan transporter member of the solute carrier family 16 (SLC16), possibly reabsorbs uric acid in the renal tubule and has been suggested by genome-wide association studies to be involved in the development of hyperuricemia and gout. In this study we investigated the mechanisms regulating the expression of human (h) MCT9, its degradation, and physiological functions. Methods and Results: hMCT9-FLAG was stably expressed in HEK293 cells and its degradation, intracellular localization, and urate uptake activities were assessed by pulse-chase analysis, immunofluorescence, and [14C]-urate uptake experiments, respectively. hMCT9-FLAG was localized on the plasma membrane as well as in the endoplasmic reticulum and Golgi apparatus. The proteasome inhibitors MG132 and lactacystine increased levels of hMCT9-FLAG protein expression with enhanced ubiquitination, prolonged their half-life, and decreased [14C]-urate uptake. [14C]-urate uptake was increased by both heat shock (HS) and the HS protein inducer geranylgeranylacetone (GGA). Both HS and GGA restored the [14C]-urate uptake impaired by MG132. Conclusions: hMCT9 does transport urate and is degraded by a proteasome, inhibition of which reduces hMCT9 expression on the cell membrane and urate uptake. HS enhanced urate uptake through hMCT9.
Collapse
Affiliation(s)
- Naoyuki Otani
- Department of Clinical Pharmacology and Therapeutics, Oita University Faculty of Medicine Oita Japan
| | - Yasutaka Kurata
- Department of Physiology II, Kanazawa Medical University Ishikawa Japan
| | - Nani Maharani
- Department of Pharmacology and Therapy, Faculty of Medicine Diponegoro University Semarang Indonesia
| | - Masanari Kuwabara
- Intensive Care Unit and Department of Cardiology, Toranomon Hospital Tokyo Japan
| | - Nobuhito Ikeda
- Department of Genetic Medicine and Regenerative Therapeutics, Tottori University Graduate School of Medical Science Tottori Japan
| | - Tomomi Notsu
- Department of Genetic Medicine and Regenerative Therapeutics, Tottori University Graduate School of Medical Science Tottori Japan
| | - Peili Li
- Department of Genetic Medicine and Regenerative Therapeutics, Tottori University Graduate School of Medical Science Tottori Japan
| | - Junichiro Miake
- Department of Pharmacology, Tottori University Faculty of Medicine Tottori Japan
| | - Akio Yoshida
- Department of Genetic Medicine and Regenerative Therapeutics, Tottori University Graduate School of Medical Science Tottori Japan
| | - Hiromi Sakaguchi
- Department of Radiology, Tottori University Faculty of Medicine Tottori Japan
| | - Katsumi Higaki
- Division of Functional Genomics, Tottori University Research Center for Bioscience and Technology Tottori Japan
| | - Naoe Nakasone
- Department of Biological Regulation, Tottori University Faculty of Medicine Tottori Japan
| | - Motokazu Tsuneto
- Department of Genetic Medicine and Regenerative Therapeutics, Tottori University Graduate School of Medical Science Tottori Japan
| | - Yasuaki Shirayoshi
- Department of Genetic Medicine and Regenerative Therapeutics, Tottori University Graduate School of Medical Science Tottori Japan
| | - Motoshi Ouchi
- Department of Pharmacology and Toxicology, Dokkyo Medical University School of Medicine Tochigi Japan
| | - Haruaki Ninomiya
- Department of Biological Regulation, Tottori University Faculty of Medicine Tottori Japan
| | - Kazuhiro Yamamoto
- Division of Cardiovascular Medicine, Department of Molecular Medicine and Therapeutics, Tottori University Faculty of Medicine Tottori Japan
| | - Naohiko Anzai
- Department of Pharmacology, Chiba University Graduate School of Medicine Chiba Japan
| | - Ichiro Hisatome
- Department of Genetic Medicine and Regenerative Therapeutics, Tottori University Graduate School of Medical Science Tottori Japan
| |
Collapse
|
5
|
Wasilewska I, Gupta RK, Wojtaś B, Palchevska O, Kuźnicki J. stim2b Knockout Induces Hyperactivity and Susceptibility to Seizures in Zebrafish Larvae. Cells 2020; 9:cells9051285. [PMID: 32455839 PMCID: PMC7291033 DOI: 10.3390/cells9051285] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2020] [Revised: 05/19/2020] [Accepted: 05/20/2020] [Indexed: 12/13/2022] Open
Abstract
In neurons, stromal interaction molecule (STIM) proteins regulate store-operated Ca2+ entry (SOCE) and are involved in calcium signaling pathways. However, STIM activity in neurological diseases is unclear and should be clarified by studies that are performed in vivo rather than in cultured cells in vitro. The present study investigated the role of neuronal Stim2b protein in zebrafish. We generated stim2b knockout zebrafish, which were fertile and had a regular lifespan. Using various behavioral tests, we found that stim2b−/− zebrafish larvae were hyperactive compared with wild-type fish. The mutants exhibited increases in mobility and thigmotaxis and disruptions of phototaxis. They were also more sensitive to pentylenetetrazol and glutamate treatments. Using lightsheet microscopy, a higher average oscillation frequency and higher average amplitude of neuronal Ca2+ oscillations were observed in stim2b−/− larvae. RNA sequencing detected upregulation of the annexin 3a and gpr39 genes and downregulation of the rrm2, neuroguidin, and homer2 genes. The latter gene encodes a protein that is involved in several processes that are involved in Ca2+ homeostasis in neurons, including metabotropic glutamate receptors. We propose that Stim2b deficiency in neurons dysregulates SOCE and triggers changes in gene expression, thereby causing abnormal behavior, such as hyperactivity and susceptibility to seizures.
Collapse
Affiliation(s)
- Iga Wasilewska
- International Institute of Molecular and Cell Biology, 4 Ks. Trojdena Street, 02-109 Warsaw, Poland; (I.W.); (R.K.G.); (O.P.)
| | - Rishikesh Kumar Gupta
- International Institute of Molecular and Cell Biology, 4 Ks. Trojdena Street, 02-109 Warsaw, Poland; (I.W.); (R.K.G.); (O.P.)
| | - Bartosz Wojtaś
- Nencki Institute of Experimental Biology, Polish Academy of Sciences, 3 Pasteur Street, 02-093 Warsaw, Poland;
| | - Oksana Palchevska
- International Institute of Molecular and Cell Biology, 4 Ks. Trojdena Street, 02-109 Warsaw, Poland; (I.W.); (R.K.G.); (O.P.)
| | - Jacek Kuźnicki
- International Institute of Molecular and Cell Biology, 4 Ks. Trojdena Street, 02-109 Warsaw, Poland; (I.W.); (R.K.G.); (O.P.)
- Correspondence:
| |
Collapse
|
6
|
Cheng Y, Pereira M, Raukar NP, Reagan JL, Quesenberry M, Goldberg L, Borgovan T, LaFrance Jr WC, Dooner M, Deregibus M, Camussi G, Ramratnam B, Quesenberry P. Inflammation-related gene expression profiles of salivary extracellular vesicles in patients with head trauma. Neural Regen Res 2020; 15:676-681. [PMID: 31638091 PMCID: PMC6975135 DOI: 10.4103/1673-5374.266924] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2019] [Revised: 04/29/2019] [Accepted: 08/08/2019] [Indexed: 01/06/2023] Open
Abstract
At present, there is no reliable biomarker for the diagnosis of traumatic brain injury (TBI). Studies have shown that extracellular vesicles released by damaged cells into biological fluids can be used as potential biomarkers for diagnosis of TBI and evaluation of TBI severity. We hypothesize that the genetic profile of salivary extracellular vesicles in patients with head trauma differs from that in uninjured subjects. Findings from this hypothesis would help investigate the severity of TBI. This study included 19 subjects, consisting of seven healthy controls who denied history of head trauma, six patients diagnosed with concussion injury from an outpatient concussion clinic, and six patients with TBI who received treatment in the emergency department within 24 hours after injury. Real-time PCR analysis of salivary extracellular vesicles in participants was performed using TaqMan Human Inflammation array. Gene expression analysis revealed nine upregulated genes in emergency department patients (LOX5, ANXA3, CASP1, IL2RG, ITGAM, ITGB2, LTA4H, MAPK14, and TNFRSF1A) and 13 upregulated genes in concussion clinic patients compared with healthy participants (ADRB1, ADRB2, BDKRB1, HRH1, HRH2, LTB4R2, LTB4R, PTAFR, CYSLTR1, CES1, KLK1, MC2R, and PTGER3). Each patient group had a unique profile. Comparison between groups showed that 15 inflammation-related genes had significant expression change. Our results indicate that inflammation biomarkers can be used for diagnosis of TBI and evaluation of disease severity. This study was approved by the Institutional Review Board on December 18, 2015 (approval No. 0078-12) and on June 9, 2016 (approval No. 4093-16).
Collapse
Affiliation(s)
- Yan Cheng
- Department of Medicine, Division of Hematology/Oncology, Rhode Island Hospital, Providence, RI, USA
| | - Mandy Pereira
- Department of Medicine, Division of Hematology/Oncology, Rhode Island Hospital, Providence, RI, USA
| | - Neha P. Raukar
- Department of Emergency Medicine, Mayo Clinic, Rochester, MN, USA
| | - John L. Reagan
- Department of Medicine, Division of Hematology/Oncology, Rhode Island Hospital, Providence, RI, USA
| | - Mathew Quesenberry
- Department of Medicine, Division of Hematology/Oncology, Rhode Island Hospital, Providence, RI, USA
| | - Laura Goldberg
- Department of Medicine, Division of Hematology/Oncology, Rhode Island Hospital, Providence, RI, USA
| | - Theodor Borgovan
- Department of Medicine, Division of Hematology/Oncology, Rhode Island Hospital, Providence, RI, USA
| | - W Curt LaFrance Jr
- Department of Psychiatry and Neurology, Rhode Island Hospital, Providence, RI, USA
| | - Mark Dooner
- Department of Medicine, Division of Hematology/Oncology, Rhode Island Hospital, Providence, RI, USA
| | - Maria Deregibus
- Department of Medical Sciences, University of Turin, Torino TO, Italy
| | - Giovanni Camussi
- Department of Medical Sciences, University of Turin, Torino TO, Italy
| | - Bharat Ramratnam
- Department of Medicine, Division of Infectious Diseases, Rhode Island Hospital, Providence, RI, USA
| | - Peter Quesenberry
- Department of Medicine, Division of Hematology/Oncology, Rhode Island Hospital, Providence, RI, USA
| |
Collapse
|
7
|
Kulohoma BW, Marriage F, Vasieva O, Mankhambo L, Nguyen K, Molyneux ME, Molyneux EM, Day PJR, Carrol ED. Peripheral blood RNA gene expression in children with pneumococcal meningitis: a prospective case-control study. BMJ Paediatr Open 2017; 1:e000092. [PMID: 29637127 PMCID: PMC5862186 DOI: 10.1136/bmjpo-2017-000092] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/23/2017] [Revised: 07/20/2017] [Accepted: 07/24/2017] [Indexed: 02/07/2023] Open
Abstract
INTRODUCTION Invasive pneumococcal disease (IPD), caused by Streptococcus pneumoniae, is a leading cause of pneumonia, meningitis and septicaemia worldwide, with increased morbidity and mortality in HIV-infected children. OBJECTIVES We aimed to compare peripheral blood expression profiles between HIV-infected and uninfected children with pneumococcal meningitis and controls, and between survivors and non-survivors, in order to provide insight into the host inflammatory response leading to poorer outcomes. DESIGN AND SETTING Prospective case-control observational study in a tertiary hospital in Malawi. PARTICIPANTS Children aged 2 months to 16 years with pneumococcal meningitis or pneumonia. METHODS We used the human genome HGU133A Affymetrix array to explore differences in gene expression between cases with pneumococcal meningitis (n=12) and controls, and between HIV-infected and uninfected cases, and validated gene expression profiles for 34 genes using real-time quantitative PCR (RT-qPCR) in an independent set of cases with IPD (n=229) and controls (n=13). Pathway analysis was used to explore genes differentially expressed. RESULTS Irrespective of underlying HIV infection, cases showed significant upregulation compared with controls of the following: S100 calcium-binding protein A12 (S100A12); vanin-1 (VNN1); arginase, liver (ARG1); matrix metallopeptidase 9 (MMP9); annexin A3 (ANXA3); interleukin 1 receptor, type II (IL1R2); CD177 molecule (CD177); endocytic adaptor protein (NUMB) and S100 calcium-binding protein A9 (S100A9), cytoskeleton-associated protein 4 (CKAP4); and glycogenin 1 (GYG1). RT-qPCR confirmed differential expression in keeping with microarray results. There was no differential gene expression in HIV-infected compared with HIV-uninfected cases, but there was significant upregulation of folate receptor 3 (FOLR3), S100A12 in survivors compared with non-survivors. CONCLUSION Children with IPD demonstrated increased expression in genes regulating immune activation, oxidative stress, leucocyte adhesion and migration, arginine metabolism, and glucocorticoid receptor signalling.
Collapse
Affiliation(s)
- Benard W Kulohoma
- Centre for Biotechnology and Bioinformatics, University of Nairobi, Nairobi, Kenya
| | - Fiona Marriage
- Centre for Integrated Genomic Research, University of Manchester, Manchester, UK
| | - Olga Vasieva
- Institute of Integrative Biology, University of Liverpool, Liverpool, UK
| | - Limangeni Mankhambo
- Malawi-Liverpool-Wellcome Trust Clinical Research Programme, College of Medicine, Blantyre, Malawi
| | - Kha Nguyen
- Institute of Infection and Global Health, University of Liverpool, Liverpool, UK
| | - Malcolm E Molyneux
- Malawi-Liverpool-Wellcome Trust Clinical Research Programme, College of Medicine, Blantyre, Malawi
| | - Elizabeth M Molyneux
- Department of Paediatrics, University of Malawi, College of Medicine, Blantyre, Malawi
| | - Philip J R Day
- Centre for Integrated Genomic Research, University of Manchester, Manchester, UK
| | - Enitan D Carrol
- Malawi-Liverpool-Wellcome Trust Clinical Research Programme, College of Medicine, Blantyre, Malawi.,Institute of Infection and Global Health, University of Liverpool, Liverpool, UK.,Department of Paediatrics, University of Malawi, College of Medicine, Blantyre, Malawi
| |
Collapse
|
8
|
Apigenin Reduces Proteasome Inhibition-Induced Neuronal Apoptosis by Suppressing the Cell Death Process. Neurochem Res 2016; 41:2969-2980. [DOI: 10.1007/s11064-016-2017-7] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2016] [Revised: 07/11/2016] [Accepted: 07/26/2016] [Indexed: 11/26/2022]
|
9
|
Nam YJ, Kim A, Lee MS, Shin YK, Sohn DS, Lee CS. Lamotrigine Attenuates Proteasome Inhibition-Induced Apoptosis by Suppressing the Activation of the Mitochondrial Pathway and the Caspase-8- and Bid-Dependent Pathways. Neurochem Res 2016; 41:2503-2516. [DOI: 10.1007/s11064-016-1962-5] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2016] [Revised: 04/23/2016] [Accepted: 05/20/2016] [Indexed: 11/29/2022]
|
10
|
Galán-Cobo A, Ramírez-Lorca R, Echevarría M. Role of aquaporins in cell proliferation: What else beyond water permeability? Channels (Austin) 2016; 10:185-201. [PMID: 26752515 PMCID: PMC4954585 DOI: 10.1080/19336950.2016.1139250] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2015] [Revised: 12/30/2015] [Accepted: 12/31/2015] [Indexed: 02/07/2023] Open
Abstract
In addition to the extensive data demonstrating the importance of mammalian AQPs for the movement of water and some small solutes across the cell membrane, there is now a growing body of evidence indicating the involvement of these proteins in numerous cellular processes seemingly unrelated, at least some of them in a direct way, to their canonical function of water permeation. Here, we have presented a broad range of evidence demonstrating that these proteins have a role in cell proliferation by various different mechanisms, namely, by allowing fast cell volume regulation during cell division; by affecting progression of cell cycle and helping maintain the balance between proliferation and apoptosis, and by crosstalk with other cell membrane proteins or transcription factors that, in turn, modulate progression of the cell cycle or regulate biosynthesis pathways of cell structural components. In the end, however, after discussing all these data that strongly support a role for AQPs in the cell proliferation process, it remains impossible to conclude that all these other functions attributed to AQPs occur completely independently of their water permeability, and there is a need for new experiments designed specifically to address this interesting issue.
Collapse
Affiliation(s)
- Ana Galán-Cobo
- Instituto de Biomedicina de Sevilla (IBiS), Hospital Universitario Virgen del Rocío/CSIC/Universidad de Sevilla (Departamento de Fisiología Médica y Biofísica), Seville, Spain
| | - Reposo Ramírez-Lorca
- Instituto de Biomedicina de Sevilla (IBiS), Hospital Universitario Virgen del Rocío/CSIC/Universidad de Sevilla (Departamento de Fisiología Médica y Biofísica), Seville, Spain
| | - Miriam Echevarría
- Instituto de Biomedicina de Sevilla (IBiS), Hospital Universitario Virgen del Rocío/CSIC/Universidad de Sevilla (Departamento de Fisiología Médica y Biofísica), Seville, Spain
| |
Collapse
|
11
|
Nam YJ, Lee DH, Lee MS, Lee CS. KATP channel block prevents proteasome inhibitor-induced apoptosis in differentiated PC12 cells. Eur J Pharmacol 2015; 764:582-591. [DOI: 10.1016/j.ejphar.2015.06.049] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2015] [Revised: 06/25/2015] [Accepted: 06/25/2015] [Indexed: 01/11/2023]
|
12
|
A functional proteomics approach to the comprehension of sarcoidosis. J Proteomics 2015; 128:375-87. [PMID: 26342673 DOI: 10.1016/j.jprot.2015.08.012] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2015] [Revised: 07/30/2015] [Accepted: 08/19/2015] [Indexed: 12/22/2022]
Abstract
Pulmonary sarcoidosis (Sar) is an idiopathic disease histologically typified by non-caseating epitheliod cell sarcoid granulomas. A cohort of 37 Sar patients with chronic persistent pulmonary disease was described in this study. BAL protein profiles from 9 of these Sar patients were compared with those from 8 smoker (SC) and 10 no-smoker controls (NSC) by proteomic approach. Principal Component Analysis was performed to clusterize the samples in the corresponding conditions highlighting a differential pattern profiles primarily in Sar than SC. Spot identification reveals thirty-four unique proteins involved in lipid, mineral, and vitamin Dmetabolism, and immuneregulation of macrophage function. Enrichment analysis has been elaborated by MetaCore, revealing 14-3-3ε, α1-antitrypsin, GSTP1, and ApoA1 as "central hubs". Process Network as well as Pathway Maps underline proteins involved in immune response and inflammation induced by complement system, innate inflammatory response and IL-6signalling. Disease Biomarker Network highlights Tuberculosis and COPD as pathologies that share biomarkers with sarcoidosis. In conclusion, Sar protein expression profile seems more similar to that of NSC than SC, conversely to other ILDs. Moreover, Disease Biomarker Network revealed several common features between Sar and TB, exhorting to orientate the future proteomics investigations also in comparative BALF analysis of Sar and TB.
Collapse
|
13
|
Huntington's disease biomarker progression profile identified by transcriptome sequencing in peripheral blood. Eur J Hum Genet 2015; 23:1349-56. [PMID: 25626709 PMCID: PMC4592077 DOI: 10.1038/ejhg.2014.281] [Citation(s) in RCA: 67] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2014] [Revised: 11/04/2014] [Accepted: 11/26/2014] [Indexed: 12/28/2022] Open
Abstract
With several therapeutic approaches in development for Huntington's disease, there is a need for easily accessible biomarkers to monitor disease progression and therapy response. We performed next-generation sequencing-based transcriptome analysis of total RNA from peripheral blood of 91 mutation carriers (27 presymptomatic and, 64 symptomatic) and 33 controls. Transcriptome analysis by DeepSAGE identified 167 genes significantly associated with clinical total motor score in Huntington's disease patients. Relative to previous studies, this yielded novel genes and confirmed previously identified genes, such as H2AFY, an overlap in results that has proven difficult in the past. Pathway analysis showed enrichment of genes of the immune system and target genes of miRNAs, which are downregulated in Huntington's disease models. Using a highly parallelized microfluidics array chip (Fluidigm), we validated 12 of the top 20 significant genes in our discovery cohort and 7 in a second independent cohort. The five genes (PROK2, ZNF238, AQP9, CYSTM1 and ANXA3) that were validated independently in both cohorts present a candidate biomarker panel for stage determination and therapeutic readout in Huntington's disease. Finally we suggest a first empiric formula predicting total motor score from the expression levels of our biomarker panel. Our data support the view that peripheral blood is a useful source to identify biomarkers for Huntington's disease and monitor disease progression in future clinical trials.
Collapse
|
14
|
Nam YJ, Lee DH, Shin YK, Sohn DS, Lee CS. Flavanonol Taxifolin Attenuates Proteasome Inhibition-Induced Apoptosis in Differentiated PC12 Cells by Suppressing Cell Death Process. Neurochem Res 2014; 40:480-91. [DOI: 10.1007/s11064-014-1493-x] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2014] [Revised: 11/05/2014] [Accepted: 11/29/2014] [Indexed: 12/22/2022]
|
15
|
Nam YJ, Lee DH, Kim YJ, Shin YK, Sohn DS, Lee MS, Lee CS. 3,4,5-tricaffeoylquinic acid attenuates proteasome inhibition-mediated programmed cell death in differentiated PC12 cells. Neurochem Res 2014; 39:1416-25. [PMID: 24825618 DOI: 10.1007/s11064-014-1327-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2014] [Revised: 04/17/2014] [Accepted: 05/05/2014] [Indexed: 10/25/2022]
Abstract
The dysfunction of the proteasome system is suggested to be implicated in neuronal degeneration. Caffeoylquinic acid derivatives have demonstrated anti-oxidant and anti-inflammatory effects. However, the effect of 3,4,5-tricaffeoylquinic acid on the neuronal cell death induced by proteasome inhibition has not been studied. Therefore, in the respect of cell death process, we assessed the effect of 3,4,5-tricaffeoylquinic acid on the proteasome inhibition-induced programmed cell death using differentiated PC12 cells. The proteasome inhibitors MG132 and MG115 induced a decrease in Bid, Bcl-2, and survivin protein levels, an increase in Bax, loss of the mitochondrial transmembrane potential, cytochrome c release, activation of caspases (-8, -9 and -3), and an increase in the tumor suppressor p53 levels. Treatment with 3,4,5-tricaffeoylquinic acid attenuated the proteasome inhibitor-induced changes in the programmed cell death-related protein levels, formation of reactive oxygen species, GSH depletion and cell death. The results show that 3,4,5-tricaffeoylquinic acid may attenuate the proteasome inhibitor-induced programmed cell death in PC12 cells by suppressing the activation of the mitochondrial pathway and the caspase-8- and Bid-dependent pathways. The preventive effect of 3,4,5-tricaffeoylquinic acid appears to be attributed to its inhibitory effect on the formation of reactive oxygen species and depletion of GSH.
Collapse
Affiliation(s)
- Yoon Jeong Nam
- Department of Pharmacology, College of Medicine, and the BK21(plus) Skin Barrier Network Human Resources Development Team, Chung-Ang University, Seoul, 156-756, South Korea
| | | | | | | | | | | | | |
Collapse
|
16
|
Jung EB, Lee CS. Baicalein attenuates proteasome inhibition-induced apoptosis by suppressing the activation of the mitochondrial pathway and the caspase-8- and Bid-dependent pathways. Eur J Pharmacol 2014; 730:116-24. [DOI: 10.1016/j.ejphar.2014.02.039] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2013] [Revised: 01/23/2014] [Accepted: 02/12/2014] [Indexed: 10/25/2022]
|
17
|
Gene expression profiling of rotenone-mediated cortical neuronal death: Evidence for inhibition of ubiquitin–proteasome system and autophagy-lysosomal pathway, and dysfunction of mitochondrial and calcium signaling. Neurochem Int 2013. [DOI: 10.1016/j.neuint.2012.11.011] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
18
|
Dual functions of the C5a receptor as a connector for the K562 erythroblast-like cell-THP-1 macrophage-like cell island and as a sensor for the differentiation of the K562 erythroblast-like cell during haemin-induced erythropoiesis. Clin Dev Immunol 2012; 2012:187080. [PMID: 23346183 PMCID: PMC3546471 DOI: 10.1155/2012/187080] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2012] [Revised: 10/18/2012] [Accepted: 11/11/2012] [Indexed: 12/22/2022]
Abstract
The transcriptional nuclear factor binding to the Y box of human leukocyte antigen genes (NF-Y) for the C5a receptor (C5aR) gene is active in erythroblasts. However, the roles of the C5aR in erythropoiesis are unclear. We have previously demonstrated that apoptotic cell-derived ribosomal protein S19 (RP S19) oligomers exhibit extraribosomal functions in promoting monocyte chemotaxis and proapoptosis via the C5aR without receptor internalisation. In contrast to the extraribosomal functions of the RP S19, a proapoptotic signal in pro-EBs, which is caused by mutations in the RP S19 gene, is associated with the inherited erythroblastopenia, Diamond-Blackfan anaemia. In this study, we detected C5aR expression and RP S19 oligomer generation in human erythroleukemia K562 cells during haemin-induced erythropoiesis. Under monocell culture conditions, the differentiation into K562 erythrocyte-like cells was enhanced following the overexpression of Wild-type RP S19. Conversely, the differentiation was repressed following the overexpression of mutant RP S19. An RP S19 oligomer inhibitor and a C5aR inhibitor blocked the association of the K562 basophilic EB-like cells and the THP-1 macrophage-like cells under coculture conditions. When bound to RP S19 oligomers, the C5aR may exhibit dual functions as a connector for the EB-macrophage island and as a sensor for EB differentiation in the bone marrow.
Collapse
|
19
|
Jantas D, Lorenc-Koci E, Kubera M, Lason W. Neuroprotective effects of MAPK/ERK1/2 and calpain inhibitors on lactacystin-induced cell damage in primary cortical neurons. Neurotoxicology 2011; 32:845-56. [PMID: 21683092 DOI: 10.1016/j.neuro.2011.05.013] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2011] [Revised: 05/17/2011] [Accepted: 05/25/2011] [Indexed: 10/25/2022]
Abstract
The dysfunction of the proteasome system is implicated in the pathomechanism of several chronic neurodegenerative diseases. Lactacystin (LC), an irreversible proteasome inhibitor, induces cell death in primary cortical neurons, however, the molecular mechanisms of its neurotoxic action has been only partially unraveled. In this study we aimed to elucidate an involvement of the key enzymatic pathways responsible for LC-induced neuronal cell death. Incubation of primary cortical neurons with LC (0.25-50 μg/ml) evoked neuronal cell death in concentration- and time-dependent manner. Lactacystin (2.5 μg/ml; 6.6μM) enhanced caspase-3 activity, but caspase-3 inhibitor, Ac-DEVD-CHO did not attenuate the LC-evoked cell damage. Western blot analysis showed a time-dependent, prolonged activation of MAPK/ERK1/2 pathway after LC exposure. Moreover, inhibitors of MAPK/ERK1/2 signaling, U0126 and PD98052 attenuated the LC-evoked cell death. We also found that LC-treatment resulted in the induction of calpains and calpain inhibitors (MDL28170 and calpeptin) protected neurons against the LC-induced cell damage. Neuroprotective action of MAPK/ERK1/2 and calpain inhibitors were connected with attenuation of LC-induced DNA fragmentation measured by Hoechst 33342 staining and TUNEL assay. However, only MAPK/ERK1/2 but not calpain inhibitors, attenuated the LC-induced AIF (apoptosis inducing factor) release. Further studies showed no synergy between neuroprotective effects of MAPK/ERK1/2 and calpain inhibitors given in combination when compared to their effects alone. The obtained data provided evidence for neuroprotective potency of MAPK/ERK1/2 and calpain, but not caspase-3 inhibition against the neurotoxic effects of LC in primary cortical neurons and give rationale for using these inhibitors in the treatment of neurodegenerative diseases connected with proteasome dysfunction.
Collapse
Affiliation(s)
- D Jantas
- Department of Experimental Neuroendocrinology, Institute of Pharmacology, Polish Academy of Sciences, Smetna 12, PL 31-343 Krakow, Poland.
| | | | | | | |
Collapse
|