1
|
Wang FX, Xu CL, Su C, Li J, Lin JY. β-Hydroxybutyrate Attenuates Painful Diabetic Neuropathy via Restoration of the Aquaporin-4 Polarity in the Spinal Glymphatic System. Front Neurosci 2022; 16:926128. [PMID: 35898407 PMCID: PMC9309893 DOI: 10.3389/fnins.2022.926128] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2022] [Accepted: 06/10/2022] [Indexed: 11/13/2022] Open
Abstract
Waste removal is essential for maintaining homeostasis and the normal function of the central nervous system (CNS). The glymphatic system based on aquaporin-4 (AQP4) water channels on the endfeet of astrocytes is recently discovered as the excretion pathway for metabolic waste products of CNS. In the CNS, α-syntrophin (SNTA1) directly or indirectly anchors AQP4 in astrocyte membranes facing blood vessels. Studies have indicated that β-hydroxybutyrate (BHB) can raise the expression of SNTA1 and thus restoring AQP4 polarity in mice models with Alzheimer’s disease. The study aims to evaluate the neuroprotective mechanism of BHB in rats with painful diabetic neuropathy (PDN). PDN rats were modeled under a high-fat and high-glucose diet with a low dose of streptozotocin. Magnetic resonance imaging (MRI) was applied to observe the clearance of contrast to indicate the functional variability of the spinal glymphatic system. Mechanical allodynia was assessed by paw withdrawal threshold. The expressions of SNTA1 and AQP4 were tested, and the polarity reversal of AQP4 protein was measured. As demonstrated, PDN rats were manifested with deceased contrast clearance of the spinal glymphatic system, enhanced mechanical allodynia, lower expression of SNTA1, higher expression of AQP4, and reversed polarity of AQP4 protein. An opposite change in the above characteristics was observed in rats being treated with BHB. This is the first study that demonstrated the neuroprotective mechanism of BHB to attenuate PDN via restoration of the AQP4 polarity in the spinal glymphatic system and provides a promising therapeutic strategy for PDN.
Collapse
Affiliation(s)
- Fei-xiang Wang
- Department of Anesthesiology, The Affiliated Hospital of North Sichuan Medical College, Nanchong, China
| | - Chi-liang Xu
- Department of Anesthesiology, The Affiliated Hospital of North Sichuan Medical College, Nanchong, China
| | - Can Su
- Department of Medical Imaging, The Affiliated Hospital of North Sichuan Medical College, Nanchong, China
| | - Jiang Li
- Department of Anesthesiology, The Affiliated Hospital of North Sichuan Medical College, Nanchong, China
| | - Jing-yan Lin
- Department of Anesthesiology, The Affiliated Hospital of North Sichuan Medical College, Nanchong, China
- *Correspondence: Jing-yan Lin,
| |
Collapse
|
2
|
Wang GQ, Wang FX, He YN, Lin JY. Plasticity of the spinal glymphatic system in male SD rats with painful diabetic neuropathy induced by type 2 diabetes mellitus. J Neurosci Res 2022; 100:1908-1920. [PMID: 35796387 PMCID: PMC9541551 DOI: 10.1002/jnr.25104] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2022] [Revised: 06/06/2022] [Accepted: 06/22/2022] [Indexed: 11/08/2022]
Abstract
The glymphatic system is a recently discovered glial‐dependent macroscopic interstitial waste clearance system that promotes the efficient elimination of soluble proteins and metabolites from the central nervous system. Its anatomic foundation is the astrocytes and aquaporin‐4 (AQP4) water channels on the endfeet of astrocytes. The aim of this study is to evaluate the plasticity of the spinal glymphatic system in male SD rats with painful diabetic neuropathy (PDN) induced by type 2 diabetes mellitus. PDN rats were modeled under a high‐fat and high‐glucose diet with a low dose of streptozotocin. MRI was applied to observe the infiltration and clearance of contrast to indicate the functional variability of the glymphatic system at the spinal cord level. The paw withdrawal threshold was used to represent mechanical allodynia. The numerical change of glial fibrillary acidic protein (GFAP) positive astrocytes was assessed and the polarity reversal of AQP4 protein was measured by immunofluorescence. As a result, deceased contrast infiltration and clearance, enhanced mechanical allodynia, increased number of GFAP positive astrocytes, and reversed polarity of AQP4 protein were found in the PDN rats. The above molecular level changes may contribute to the impairment of the spinal glymphatic system in PDN rats. This study revealed the molecular and functional variations of the spinal glymphatic system in PDN rats and for the first time indicated that there might be a correlation between the impaired spinal glymphatic system and PDN rats.
Collapse
Affiliation(s)
- Guo-Qiang Wang
- Department of Anesthesiology, the Affiliated Hospital of North Sichuan Medical College, Nanchong, China.,Department of Pain Treatment, Physical and Mental Hospital of Nanchong City, Nanchong, China
| | - Fei-Xiang Wang
- Department of Anesthesiology, the Affiliated Hospital of North Sichuan Medical College, Nanchong, China
| | - Yi-Na He
- Department of Anesthesiology, Nanchong Central Hospital, Nanchong, China
| | - Jing-Yan Lin
- Department of Anesthesiology, the Affiliated Hospital of North Sichuan Medical College, Nanchong, China
| |
Collapse
|
3
|
A Stereological Study of Mouse Ovary Tissues for 3D Bioprinting Application. Cell Mol Bioeng 2021; 14:259-265. [PMID: 34109004 DOI: 10.1007/s12195-021-00668-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2021] [Accepted: 03/03/2021] [Indexed: 01/27/2023] Open
Abstract
Introduction The use of 3D-bioprinted ovaries has been proven to be a promising technique for preserving fertility. Stereology is an accurate method to obtain quantitative 3D information and the stereological data is the basis for 3D bioprinting ovaries. Methods In this study, six female mice were used to acquire the ovarian tissues. One of the two paraffin-embedded ovaries of each mouse was cut into 5 µm sections, and the other was cut into 15 µm sections and then subjected to haematoxylin and eosin staining and anti-follicle stimulating hormone receptor antibody immunohistochemistry. The volume and volume fractions of ovaries were measured by the Cavalieri method. Then, the numerical densities and total numbers of ovarian granulosa cells (OGCs) and primordial, preantral and antral follicles in serial sections were estimated using design-based stereology. Results The ovarian volume was 2.50 ± 0.32 mm3. The volume fractions of the cortex, medulla, follicles and OGCs were 86.80% ± 2.82, 13.20% ± 2.82%, 5.60% ± 0.25% and 81.19% ± 2.57%, respectively. The numerical densities of OGCs, the primordial, preantral and antral follicles were 2.11 (± 0.28) × 106/mm3, 719.57 ± 18.04/mm3, 71.84 ± 3.93/mm3 and 17.29 ± 3.54/mm3, respectively. The total number of OGCs and follicles per paraffin-embedded ovary were 5.26 (± 0.09) × 106 and 2013.66 ± 8.16. Conclusions The study had obtained the stereological data of the mice ovaries, which contribute to a deeper understanding of the structure of the ovaries. Meanwhile, the data will supply information for 3D bioprinting ovaries.
Collapse
|
4
|
Wang R, Qiu Z, Wang G, Hu Q, Shi N, Zhang Z, Wu Y, Zhou C. Quercetin attenuates diabetic neuropathic pain by inhibiting mTOR/p70S6K pathway-mediated changes of synaptic morphology and synaptic protein levels in spinal dorsal horn of db/db mice. Eur J Pharmacol 2020; 882:173266. [PMID: 32553736 DOI: 10.1016/j.ejphar.2020.173266] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2019] [Revised: 06/04/2020] [Accepted: 06/08/2020] [Indexed: 01/27/2023]
Abstract
Numerous studies indicate that the changes of synaptic morphology and synaptic protein levels in spinal dorsal horn neurons contributes to the development and maintenance of neuropathic pain. Quercetin, a bioflavonoid compound, has been shown to have analgesic effect in several pain models. However, the underlying mechanism for quercetin to allieviate pain is unclear. Therefore, in this study, we observed the effect of quercetin on diabetic neuropathic pain in db/db mice and explored the underlying mechanisms. Our results showed that chronic quercetin treatment alleviated thermal hyperalgesia in db/db mice. Moreover, quercetin administration significantly reduced the total dendritic length, the number of dendritic branches, and the dendritic spine density in the spinal dorsal horn neurons of db/db mice. Meanwhile, the up-regulated expressions of synaptic plasticity-associated proteins postsynaptic density protein 95 (PSD-95) and synaptophysin in spinal dorsal horn of db/db mice were decreased by quercetin treatment. In addition, quercetin treatment reduced the phosphorylated levels of mammalian target of rapamycin (mTOR) and p70 ribosomal S6 kinase (p70S6K) in spinal dorsal horn of db/db mice. These results demonstrate that quercetin may alleviate diabetic neuropathic pain by inhibiting mTOR/p70S6K pathway-mediated changes of synaptic morphology and synaptic protein levels in spinal dorsal horn neurons of db/db mice. These findings suggest that quercetin may be a promising therapeutic drug in neuropathic pain.
Collapse
Affiliation(s)
- Ruiyao Wang
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Xuzhou Medical University, Xuzhou, China
| | - Zhuang Qiu
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Xuzhou Medical University, Xuzhou, China
| | - Guizhi Wang
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Xuzhou Medical University, Xuzhou, China
| | - Qian Hu
- Jiangsu Province Key Laboratory of Anesthesiology, Xuzhou Medical University, Xuzhou, China
| | - Naihao Shi
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Xuzhou Medical University, Xuzhou, China
| | - Zongqin Zhang
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Xuzhou Medical University, Xuzhou, China
| | - Yuqing Wu
- Jiangsu Province Key Laboratory of Anesthesiology, Xuzhou Medical University, Xuzhou, China.
| | - Chenghua Zhou
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Xuzhou Medical University, Xuzhou, China.
| |
Collapse
|
5
|
Xu W, Guo Y, Xiang Y, Yang ZW. Is there section deformation resulting in differential change of nuclear numerical densities along the z axis of thick methacrylate or paraffin sections? Microsc Res Tech 2019; 82:1575-1583. [PMID: 31218785 DOI: 10.1002/jemt.23323] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2019] [Revised: 05/26/2019] [Accepted: 06/05/2019] [Indexed: 11/10/2022]
Abstract
The optical disector, a three-dimensional counting frame or probe in stereology, is often positioned in the middle (depth) of a thick section for unbiased nuclear counting. Using 30-40 μm thick methacrylate or paraffin sections for nuclear counting of neurons with the optical disector, however, some studies showed markedly higher nuclear densities at 10% of the section thickness near the top or bottom surface of the section, suggestive of deformation of section along its z axis and thus affecting the number estimation. To verify the findings, this study obtained two sets of 12-14 methacrylate sections (average thicknesses 21.7 and 29.4 μm) and two sets of 12 paraffin sections (average thicknesses 13.8 and 29.2 μm) from mature rat testes. Each section was used to count round spermatid nuclei in the seminiferous epithelium densely packed with the cells, using 3-4 consecutive disectors placed vertically (along the z axis of the section) from the top surface of the section, through the whole section thickness (two sets of methacrylate and paraffin sections) or in 80-83% of the thickness (other sections). The results demonstrated that, overall, there were no considerable nonuniform changes of the nuclear densities along the z axis of the sections.
Collapse
Affiliation(s)
- Wei Xu
- Experimental Teaching Center of Functional Science, North Sichuan Medical College, Nanchong, Sichuan, China
| | - Yang Guo
- Morphometric Research Laboratory, North Sichuan Medical College, Nanchong, Sichuan, China
| | - Yu Xiang
- Morphometric Research Laboratory, North Sichuan Medical College, Nanchong, Sichuan, China
| | - Zheng-Wei Yang
- Morphometric Research Laboratory, North Sichuan Medical College, Nanchong, Sichuan, China
| |
Collapse
|
6
|
Yurt KK, Kivrak EG, Altun G, Mohamed H, Ali F, Gasmalla HE, Kaplan S. A brief update on physical and optical disector applications and sectioning-staining methods in neuroscience. J Chem Neuroanat 2018; 93:16-29. [DOI: 10.1016/j.jchemneu.2018.02.009] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2017] [Revised: 02/25/2018] [Accepted: 02/25/2018] [Indexed: 02/06/2023]
|
7
|
Metformin attenuates increase of synaptic number in the rat spinal dorsal horn with painful diabetic neuropathy induced by type 2 diabetes: a stereological study. Neurochem Res 2018; 43:2232-2239. [PMID: 30306321 DOI: 10.1007/s11064-018-2642-4] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2018] [Revised: 09/13/2018] [Accepted: 09/19/2018] [Indexed: 12/22/2022]
Abstract
In our previous study, we have shown that number of synapses in the L5 segment of spinal dorsal horn increased significantly in a rat model of painful diabetic neuropathy (PDN) induced by high-dose of streptozotocin (an animal model of type 1 diabetes). The aims of this study were: (1) to determine whether high fat diet/low dose streptozotocin-diabetes, a rat model for type 2 diabetes, related PDN was also associated with this synaptic plasticity, (2) to reveal the range of this synaptic plasticity change occurred (in the whole length of spinal dorsal horn or only in the L5 lumbar segment of spinal dorsal horn) and (3) to discover whether treatment with metformin had effect on this synaptic plasticity. Male adult Sprague-Dawley rats were randomly allocated into the control group (n = 7), the PDN group (n = 6) and the PDN treated with metformin (PDN + M) group (n = 7), respectively. 28 days after medication, synaptic and neuronal numbers in the whole length of spinal dorsal horn or in 1 mm length of the L5 segment of spinal dorsal horn were estimated by the optical disector (a stereological technique). Compared to the control group and the PDN + M group, number of synapses in the L5 segment of spinal dorsal horn increased significantly in the PDN group (P < 0.05). There was no significant change between the control group and the PDN + M group in terms of the parameters in the L5 segment of the spinal dorsal horn (P > 0.05). Parameters of the whole length of spinal dorsal horn showed no significant changes (P > 0.05). Our results suggest that high fat diet/low dose streptozotocin diabetes related PDN is also associated with a numerical increase of synapses in the L5 segment of spinal dorsal horn but not in the whole length of spinal dorsal horn. Furthermore, the analgesic effect of metformin against PDN is related to its inhibition of numerical increase of synaptic number in the rat spinal dorsal horn.
Collapse
|
8
|
Painful Cervical Facet Joint Injury Is Accompanied by Changes in the Number of Excitatory and Inhibitory Synapses in the Superficial Dorsal Horn That Differentially Relate to Local Tissue Injury Severity. Spine (Phila Pa 1976) 2017; 42:E695-E701. [PMID: 27755498 PMCID: PMC5393960 DOI: 10.1097/brs.0000000000001934] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
STUDY DESIGN Immunohistochemistry labeled pre- and postsynaptic structural markers to quantify excitatory and inhibitory synapses in the spinal superficial dorsal horn at 14 days after painful facet joint injury in the rat. OBJECTIVE The objective of this study was to investigate the relationship between pain and synapse density in the spinal cord after facet injury. SUMMARY OF BACKGROUND DATA Neck pain is a major contributor to disability and often becomes chronic. The cervical facet joints are susceptible to loading-induced painful injury, initiating spinal central sensitization responses. Although excitatory synapse plasticity has been reported in the superficial dorsal horn early after painful facet injury, whether excitatory and/or inhibitory synapse density is altered at a time when pain is maintained is unknown. METHODS Rats underwent either a painful C6/C7 facet joint distraction or sham surgery. Mechanical hyperalgesia was measured and immunohistochemistry techniques for synapse quantification were used to quantify excitatory and inhibitory synapse densities in the superficial dorsal horn at day 14. Logarithmic correlation analyses evaluated whether the severity of facet injury correlated with either behavioral or synaptic outcomes. RESULTS Facet joint injury induces pain that is sustained until day 14 (P <0.001) and both significantly greater excitatory synapse density (P = 0.042) and lower inhibitory synapse density (P = 0.0029) in the superficial dorsal horn at day 14. Injury severity is significantly correlated with pain at days 1 (P = 0.0011) and 14 (P = 0.0002), but only with inhibitory, not excitatory, synapse density (P = 0.0025) at day 14. CONCLUSION This study demonstrates a role for structural plasticity in both excitatory and inhibitory synapses in the maintenance of facet-mediated joint pain, and that altered inhibitory, but not excitatory, synapse density correlates to the severity of painful joint injury. Understanding the functional consequences of this spinal structural plasticity is critical to elucidate mechanisms of chronic joint pain. LEVEL OF EVIDENCE N /A.
Collapse
|
9
|
Stereological study on the number of synapses in the rat spinal dorsal horn with painful diabetic neuropathy induced by streptozotocin. Neuroreport 2017; 28:319-324. [DOI: 10.1097/wnr.0000000000000762] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
|
10
|
Moriarty O, Gorman CL, McGowan F, Ford GK, Roche M, Thompson K, Dockery P, McGuire BE, Finn DP. Impaired recognition memory and cognitive flexibility in the rat L5-L6 spinal nerve ligation model of neuropathic pain. Scand J Pain 2016; 10:61-73. [PMID: 28361775 DOI: 10.1016/j.sjpain.2015.09.008] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2015] [Accepted: 09/29/2015] [Indexed: 11/17/2022]
Abstract
BACKGROUND AND AIMS Although neuropathic pain is known to negatively affect cognition, the neural mechanisms involved are poorly understood. Chronic pain is associated with changes in synaptic plasticity in the brain which may impact on cognitive functioning. The aim of this study was to model neuropathic pain in mid-aged rats using spinal nerve ligation (SNL). Following establishment of allodynia and hyperalgesia, behaviour was assessed in a battery of cognitive tests. Expression of the presynaptic protein, synaptophysin, and its colocalisation with the vesicular GABA and glutamate transporters (vGAT and vGLUT, respectively), was investigated in the medial prefrontal cortex (mPFC) and hippocampus. METHODS Nine month old male Sprague Dawley rats underwent L5-L6 spinal nerve ligation or a sham procedure. Mechanical and cold allodynia and thermal hyperalgesia were assessed using von Frey, acetone and Hargreaves tests, respectively. Cognition was assessed in the novel-object recognition, air-puff passive avoidance and Morris water maze behavioural tasks. Immunohistochemistry was used to examine the expression of synaptophysin in the mPFC and CA1 region of the hippocampus and double labelling of synaptophysin and the vesicular transporters vGAT and vGlut was used to investigate the distribution of synaptophysin on GABAergic and glutamatergic neurons. RESULTS SNL rats displayed impaired performance in the novel-object recognition task. Passive-avoidance responding, and spatial learning and memory in the Morris water maze, were unaffected by SNL surgery. However, in the water maze reversal task, pain-related impairments were evident during training and probe trials. SNL surgery was not associated with any differences in the expression of synaptophysin or its colocalisation with vGAT or vGLUT in the mPFC or the hippocampal CA1 region. CONCLUSIONS These results suggest that the SNL model of neuropathic pain is associated with deficits in recognition memory and cognitive flexibility, but these deficits are not associated with altered synaptophysin expression or distribution in the mPFC and CA1. IMPLICATIONS Cognitive complaints are common amongst chronic pain patients. Here we modelled cognitive impairment in a well-established animal model of neuropathic pain and investigated the neural mechanisms involved. A better understanding of this phenomenon is an important prerequisite for the development of improved treatment of patients affected.
Collapse
Affiliation(s)
- Orla Moriarty
- Pharmacology and Therapeutics, School of Medicine, National University of Ireland, Galway, Ireland
- NCBES Neuroscience Centre, National University of Ireland, Galway, Ireland
- Centre for Pain Research, National University of Ireland, Galway, Ireland
| | - Claire L Gorman
- Pharmacology and Therapeutics, School of Medicine, National University of Ireland, Galway, Ireland
| | - Fiona McGowan
- Pharmacology and Therapeutics, School of Medicine, National University of Ireland, Galway, Ireland
- NCBES Neuroscience Centre, National University of Ireland, Galway, Ireland
- Centre for Pain Research, National University of Ireland, Galway, Ireland
| | - Gemma K Ford
- Pharmacology and Therapeutics, School of Medicine, National University of Ireland, Galway, Ireland
- NCBES Neuroscience Centre, National University of Ireland, Galway, Ireland
- Centre for Pain Research, National University of Ireland, Galway, Ireland
| | - Michelle Roche
- Physiology, School of Medicine, National University of Ireland, Galway, Ireland
- NCBES Neuroscience Centre, National University of Ireland, Galway, Ireland
- Centre for Pain Research, National University of Ireland, Galway, Ireland
| | - Kerry Thompson
- Anatomy, School of Medicine, National University of Ireland, Galway, Ireland
- Centre for Microscopy and Imaging, National University of Ireland, Galway, Ireland
| | - Peter Dockery
- Anatomy, School of Medicine, National University of Ireland, Galway, Ireland
- NCBES Neuroscience Centre, National University of Ireland, Galway, Ireland
- Centre for Microscopy and Imaging, National University of Ireland, Galway, Ireland
| | - Brian E McGuire
- School of Psychology, National University of Ireland, Galway, Ireland
- NCBES Neuroscience Centre, National University of Ireland, Galway, Ireland
- Centre for Pain Research, National University of Ireland, Galway, Ireland
| | - David P Finn
- Pharmacology and Therapeutics, School of Medicine, National University of Ireland, Galway, Ireland
- NCBES Neuroscience Centre, National University of Ireland, Galway, Ireland
- Centre for Pain Research, National University of Ireland, Galway, Ireland
| |
Collapse
|
11
|
Bonetti LV, Ilha J, Schneider APK, Barbosa S, Faccioni-Heuser MC. Balance and coordination training, but not endurance training, enhances synaptophysin and neurotrophin-3 immunoreactivity in the lumbar spinal cord after sciatic nerve crush. Muscle Nerve 2015; 53:617-25. [PMID: 26316168 DOI: 10.1002/mus.24889] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2014] [Revised: 08/19/2015] [Accepted: 08/25/2015] [Indexed: 11/08/2022]
Abstract
INTRODUCTION Numerous rehabilitation treatments have been shown to be useful for peripheral and central restoration after (PNI). METHODS After sciatic nerve crush, we investigated 4 weeks of endurance training (ET) and balance and coordination training (BCT) with sciatic function index, hind-paw stride length, and spinal cord dorsal horn synaptophysin and neurotrophin-3 immunoreactivity. RESULTS Our results demonstrated no significant differences between the non-trained (NT), ET, and BCT groups in sciatic functional index, and in stride-length analysis, but the ET showed higher values compared with the NT group. Synaptophysin immunoreactivity was higher in the BCT group compared with the NT group, and neurotrophin-3 immunoreactivity in the BCT group was greater compared with the other groups. CONCLUSION BCT can positively affect spinal cord plasticity after a (PNI), and these modifications are important in the rehabilitation process.
Collapse
Affiliation(s)
- Leandro Viçosa Bonetti
- Programa de Pós-Graduação em Neurociências, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, Porto Alegre, Rio Grande do Sul, Brazil.,Laboratório de Histofisiologia Comparada, Departamento de Ciências Morfológicas, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, Sarmento Leite 500, CEP 90050-170, Porto Alegre, Rio Grande do Sul, Brazil
| | - Jocemar Ilha
- Laboratório de Pesquisa Experimental, Departamento de Fisioterapia, Universidade do Estado de Santa Catarina, Santa Catarina, Brazil
| | - Ana Paula Krauthein Schneider
- Laboratório de Histofisiologia Comparada, Departamento de Ciências Morfológicas, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, Sarmento Leite 500, CEP 90050-170, Porto Alegre, Rio Grande do Sul, Brazil
| | - Silvia Barbosa
- Laboratório de Histofisiologia Comparada, Departamento de Ciências Morfológicas, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, Sarmento Leite 500, CEP 90050-170, Porto Alegre, Rio Grande do Sul, Brazil
| | - Maria Cristina Faccioni-Heuser
- Programa de Pós-Graduação em Neurociências, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, Porto Alegre, Rio Grande do Sul, Brazil.,Laboratório de Histofisiologia Comparada, Departamento de Ciências Morfológicas, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, Sarmento Leite 500, CEP 90050-170, Porto Alegre, Rio Grande do Sul, Brazil
| |
Collapse
|
12
|
Wei X, Wan X, Zhao B, Hou J, Liu M, Cheng B. Propofol inhibits inflammation and lipid peroxidation following cerebral ischemia/reperfusion in rabbits. Neural Regen Res 2015; 7:837-41. [PMID: 25737711 PMCID: PMC4342711 DOI: 10.3969/j.issn.1673-5374.2012.11.007] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2012] [Accepted: 03/24/2012] [Indexed: 11/18/2022] Open
Abstract
The present study established a rabbit model of global cerebral ischemia using the ‘six-vessel’ method, which was reperfused after 30 minutes of ischemia. Rabbits received intravenous injection of propofol at 5 mg/kg prior to ischemia and 20 mg/kg per hour after ischemia until samples were prepared. Results revealed that propofol inhibited serum interleukin-8, endothelin-1 and malondialdehyde increases and promoted plasma superoxide dismutase activity after cerebral ischemia/reperfusion. In addition, cerebral cortex edema was attenuated with little neuronal nuclear degeneration and pyknosis with propofol treatment. The cross-sectional area of neuronal nuclei was, however, increased following propofol treatment. These findings suggested that propofol could improve anti-oxidant activity and inhibit synthesis of inflammatory factors to exert a protective effect on cerebral ischemia/reperfusion injury.
Collapse
Affiliation(s)
- Xiaodong Wei
- Department of Anesthesiology, Renmin Hospital of Wuhan University, Wuhan 430060, Hubei Province, China
| | - Xing Wan
- Department of Anesthesiology, Renmin Hospital of Wuhan University, Wuhan 430060, Hubei Province, China
| | - Bo Zhao
- Department of Anesthesiology, Renmin Hospital of Wuhan University, Wuhan 430060, Hubei Province, China
| | - Jiabao Hou
- Department of Anesthesiology, Renmin Hospital of Wuhan University, Wuhan 430060, Hubei Province, China
| | - Min Liu
- Department of Anesthesiology, Renmin Hospital of Wuhan University, Wuhan 430060, Hubei Province, China
| | - Bangchang Cheng
- Department of Cardiovascular Surgery, Renmin Hospital of Wuhan University, Wuhan 430060, Hubei Province, China
| |
Collapse
|
13
|
Crosby ND, Zaucke F, Kras JV, Dong L, Luo ZD, Winkelstein BA. Thrombospondin-4 and excitatory synaptogenesis promote spinal sensitization after painful mechanical joint injury. Exp Neurol 2014; 264:111-20. [PMID: 25483397 DOI: 10.1016/j.expneurol.2014.11.015] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2014] [Revised: 11/24/2014] [Accepted: 11/26/2014] [Indexed: 02/08/2023]
Abstract
Facet joint injury induces persistent pain that may be maintained by structural plasticity in the spinal cord. Astrocyte-derived thrombospondins, especially thrombospondin-4 (TSP4), have been implicated in synaptogenesis and spinal sensitization in neuropathic pain, but the TSP4 response and its relationship to synaptic changes in the spinal cord have not been investigated for painful joint injury. This study investigates the role of TSP4 in the development and maintenance of persistent pain following injurious facet joint distraction in rats and tests the hypothesis that excitatory synaptogenesis contributes to such pain. Painful facet joint loading induces dorsal horn excitatory synaptogenesis along with decreased TSP4 in the DRG and increased astrocytic release of TSP4 in the spinal cord, all of which parallel the time course of sustained tactile allodynia. Blocking injury-induced spinal TSP4 expression with antisense oligonucleotides or reducing TSP4 activity at its neuronal receptor in the spinal cord with gabapentin treatment both attenuate the allodynia and dorsal horn synaptogenesis that develop after painful facet joint loading. Increased spinal TSP4 also facilitates the development of allodynia and spinal hyperexcitability, even after non-painful physiological loading of the facet joint. These results suggest that spinal TSP4 plays an important role in the development and maintenance of persistent joint-mediated pain by inducing excitatory synaptogenesis and facilitating the transduction of mechanical loading of the facet joint that leads to spinal hyperexcitability.
Collapse
Affiliation(s)
- Nathan D Crosby
- Department of Bioengineering, University of Pennsylvania, Philadelphia, PA 19104, United States
| | - Frank Zaucke
- Center for Biochemistry, Medical Faculty, University of Cologne, D-50931 Cologne, Germany
| | - Jeffrey V Kras
- Department of Bioengineering, University of Pennsylvania, Philadelphia, PA 19104, United States
| | - Ling Dong
- Department of Bioengineering, University of Pennsylvania, Philadelphia, PA 19104, United States
| | - Z David Luo
- Department of Anesthesiology and Perioperative Care, University of California Irvine Medical Center, Irvine, CA 92868, United States; Department of Pharmacology, University of California Irvine Medical Center, Irvine, CA 92868, United States
| | - Beth A Winkelstein
- Department of Bioengineering, University of Pennsylvania, Philadelphia, PA 19104, United States; Department of Neurosurgery, University of Pennsylvania, Philadelphia, PA 19104, United States.
| |
Collapse
|
14
|
Hung KL, Wang SJ, Wang YC, Chiang TR, Wang CC. Upregulation of presynaptic proteins and protein kinases associated with enhanced glutamate release from axonal terminals (synaptosomes) of the medial prefrontal cortex in rats with neuropathic pain. Pain 2014; 155:377-387. [DOI: 10.1016/j.pain.2013.10.026] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2013] [Revised: 10/04/2013] [Accepted: 10/29/2013] [Indexed: 11/25/2022]
|
15
|
Xu S, Wu H, Wang X, Shen X, Guo X, Shen R, Wang F. Tumor suppressor menin mediates peripheral nerve injury-induced neuropathic pain through potentiating synaptic plasticity. Neuroscience 2012; 223:473-85. [PMID: 22858595 DOI: 10.1016/j.neuroscience.2012.07.036] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2012] [Revised: 07/21/2012] [Accepted: 07/24/2012] [Indexed: 11/16/2022]
Abstract
Synaptic plasticity is a crucial step in the development of central sensitization in the pathogenesis of neuropathic hyperalgesia. Menin, the product of the multiple endocrine neoplasia type 1 (MEN1) gene, possesses the property of synaptogenesis which plays an essential role in neuronal activity. We tested the contributing role of spinal menin in peripheral nerve injury-induced neuropathic hypersensitivity through modulating neuronal synaptic plasticity. After approval by the Institutional Animal Care and Use Committee, nociceptive responses were detected with von Frey filaments and thermal plate after spared nerve injury in C57BL/6 mice who were treated with either intrathecal antisense oligonucleotide of MEN1 (ASO) or vehicle. Extracellular spontaneous discharge frequency, field excitatory postsynaptic potential (fEPSP), and monosynaptic excitatory postsynaptic currents (EPSCs) were measured electrophysiologically. Intrathecal ASO alleviated nerve injury-induced mechanical and thermal hypersensitivity. Upregulated spinal menin after nerve injury colocalized with NeuN in the superficial laminae; genetic knockdown of spinal menin reduced nerve injury induced in vivo spontaneous activity and instantaneous frequency and in vitro field potentials; ASO decreased the frequency and amplitude of monosynaptic EPSCs, and reduced synaptic strength and total charge. Collectively, these findings highlight the role of upregulated neuronal menin in the spinal cord in potentiating spinal synaptic plasticity in peripheral nerve injury-induced neuropathic hypersensitivity.
Collapse
Affiliation(s)
- S Xu
- State Key Laboratory of Reproductive Medicine, Department of Anesthesiology and Critical Care Medicine, Nanjing Maternity and Child Health Care Hospital, Nanjing Medical University, Nanjing 210004, China
| | | | | | | | | | | | | |
Collapse
|
16
|
Lin JY, Peng B, Yang ZW, Min S. Number of synapses increased in the rat spinal dorsal horn after sciatic nerve transection: a stereological study. Brain Res Bull 2011; 84:430-3. [PMID: 21272619 DOI: 10.1016/j.brainresbull.2011.01.007] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2010] [Revised: 01/07/2011] [Accepted: 01/14/2011] [Indexed: 10/18/2022]
Abstract
We recently found that the number of synapses in the spinal dorsal horn, as estimated by stereological techniques, increased by 86% after chronic constriction injury of sciatic nerve in rats. In this study, we aimed to reveal whether transection of sciatic nerve was also associated with a plasticity change in the number of synapses. 18 adult SD rats were randomly divided into 3 groups undergoing (i) unilateral sham operation, (ii) unilateral sciatic nerve transection, and (iii) unilateral sciatic nerve transection with postoperative medication (parecoxib) for 3 days, respectively. 28 days postoperation, the L4-6 segment of the spinal cord was removed; paraffin-embedded sections were prepared and stained with Nissl's method and synaptophysin immunohistochemistry. The optical disector (a contemporary stereological technique) was used to estimate the numbers of neurons and synapses in the spinal dorsal horn. Compared to the non-operated side, the axotomy induced a 74.3% increase in the number of synapses per unit length of spinal cord or a 67.4% increase in the ratio between the numbers of synapses and neurons in the middle tissue block from the L4-6 segment on the operated side but not in either the rostral or caudal tissue block. Parecoxib had no effect on the parameters. In conclusion, peripheral nerve injury, model for neuropathic pain, is associated with a synaptic plasticity (numerical increase) in the spinal dorsal horn.
Collapse
Affiliation(s)
- Jing-Yan Lin
- Department of Anesthesiology, The First Affiliated Hospital, Chongqing Medical University, 1 Youyi Road, Yuan Jia Gang, Chongqing, China
| | | | | | | |
Collapse
|