1
|
G N S HS, Marise VLP, Satish KS, Yergolkar AV, Krishnamurthy M, Ganesan Rajalekshmi S, Radhika K, Burri RR. Untangling huge literature to disinter genetic underpinnings of Alzheimer's Disease: A systematic review and meta-analysis. Ageing Res Rev 2021; 71:101421. [PMID: 34371203 DOI: 10.1016/j.arr.2021.101421] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2021] [Revised: 06/25/2021] [Accepted: 08/02/2021] [Indexed: 10/20/2022]
Abstract
Drug discovery for Alzheimer's Disease (AD) is channeled towards unravelling key disease specific drug targets/genes to predict promising therapeutic candidates. Though enormous literature on AD genetics is available, there exists dearth in data pertinent to drug targets and crucial pathological pathways intertwined in disease progression. Further, the research findings revealing genetic associations failed to demonstrate consistency across different studies. This scenario prompted us to initiate a systematic review and meta-analysis with an aim of unearthing significant genetic hallmarks of AD. Initially, a Boolean search strategy was developed to retrieve case-control studies from PubMed, Cochrane, ProQuest, Europe PMC, grey literature and HuGE navigator. Subsequently, certain inclusion and exclusion criteria were framed to shortlist the relevant studies. These studies were later critically appraised using New Castle Ottawa Scale and Q-Genie followed by data extraction. Later, meta-analysis was performed only for those Single Nucleotide Polymorphisms (SNPs) which were evaluated in at least two different ethnicities from two different reports. Among, 204,351 studies retrieved, 820 met our eligibility criteria and 117 were processed for systematic review after critical appraisal. Ultimately, meta-analysis was performed for 23 SNPs associated with 15 genes which revealed significant associations of rs3865444 (CD33), rs7561528 (BIN1) and rs1801133 (MTHFR) with AD risk.
Collapse
|
2
|
Toll-like receptors in Alzheimer's disease. J Neuroimmunol 2020; 348:577362. [DOI: 10.1016/j.jneuroim.2020.577362] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2020] [Revised: 08/04/2020] [Accepted: 08/15/2020] [Indexed: 02/07/2023]
|
3
|
Cell Type Specific Expression of Toll-Like Receptors in Human Brains and Implications in Alzheimer's Disease. BIOMED RESEARCH INTERNATIONAL 2019; 2019:7420189. [PMID: 31396533 PMCID: PMC6668540 DOI: 10.1155/2019/7420189] [Citation(s) in RCA: 50] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/18/2019] [Accepted: 07/07/2019] [Indexed: 12/20/2022]
Abstract
Toll-like receptors mediate important cellular immune responses upon activation via various pathogenic stimuli such as bacterial or viral components. The activation and subsequent secretion of cytokines and proinflammatory factors occurs in the whole body including the brain. The subsequent inflammatory response is crucial for the immune system to clear the pathogen(s) from the body via the innate and adaptive immune response. Within the brain, astrocytes, neurons, microglia, and oligodendrocytes all bear unique compositions of Toll-like receptors. Besides pathogens, cellular damage and abnormally folded protein aggregates, such as tau and Amyloid beta peptides, have been shown to activate Toll-like receptors in neurodegenerative diseases such as Alzheimer's disease. This review provides an overview of the different cell type-specific Toll-like receptors of the human brain, their activation mode, and subsequent cellular response, as well as their activation in Alzheimer's disease. Finally, we critically evaluate the therapeutic potential of targeting Toll-like receptors for treatment of Alzheimer's disease as well as discussing the limitation of mouse models in understanding Toll-like receptor function in general and in Alzheimer's disease.
Collapse
|
4
|
Fiebich BL, Batista CRA, Saliba SW, Yousif NM, de Oliveira ACP. Role of Microglia TLRs in Neurodegeneration. Front Cell Neurosci 2018; 12:329. [PMID: 30333729 PMCID: PMC6176466 DOI: 10.3389/fncel.2018.00329] [Citation(s) in RCA: 199] [Impact Index Per Article: 28.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2018] [Accepted: 09/10/2018] [Indexed: 12/13/2022] Open
Abstract
Toll-like receptors (TLRs) are a group of receptors widely distributed in the organism. In the central nervous system, they are expressed in neurons, astrocytes and microglia. Although their involvement in immunity is notorious, different articles have demonstrated their roles in physiological and pathological conditions, including neurodegeneration. There is increasing evidence of an involvement of TLRs, especially TLR2, 4 and 9 in neurodegenerative diseases such as Alzheimer’s disease (AD), Parkinson’s disease (PD), and amyotrophic lateral sclerosis (ALS). In this sense, their expression in microglia might modulate the activity of these cells, which in turn, lead to protective or deleterious effects over neurons and other cells. Therefore, TLRs might mediate the link between inflammation and neurodegenerative diseases. However, further studies have to be performed to elucidate the role of the other TLRs in these diseases and to further prove and confirm the pathophysiological role of all TLRs in neurodegeneration. In this article, we revise and summarize the current knowledge regarding the role of TLRs in neurodegeneration with the focus on the possible functions of these receptors in microglia.
Collapse
Affiliation(s)
- Bernd L Fiebich
- Neuroimmunology and Neurochemistry Research Group, Department of Psychiatry and Psychotherapy, Medical Center-University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | | | - Soraya Wilke Saliba
- Neuroimmunology and Neurochemistry Research Group, Department of Psychiatry and Psychotherapy, Medical Center-University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany.,Faculty of Biology, University of Freiburg, Freiburg, Germany
| | - Nizar M Yousif
- Neuroimmunology and Neurochemistry Research Group, Department of Psychiatry and Psychotherapy, Medical Center-University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany.,Faculty of Biology, University of Freiburg, Freiburg, Germany
| | | |
Collapse
|
5
|
Jiang YT, Li HY, Cao XP, Tan L. Meta-analysis of the association between CD33 and Alzheimer's disease. ANNALS OF TRANSLATIONAL MEDICINE 2018; 6:169. [PMID: 29951491 DOI: 10.21037/atm.2018.04.21] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Background The cluster of differentiation 33 (CD33) gene is compelling among the susceptibility genes of Alzheimer's disease (AD) in Genome-wide association study (GWAS). Researches of the relationship between AD and polymorphism in CD33 have showed conflicting results. In order to more precisely evaluate whether CD33 variants are associated with AD, we performed the meta-analysis presented in this manuscript. Methods We searched from three databases including PubMed, Cochrane library and EMbase for related case-control researches based on criteria of determination. A total of 18 case-control studies, containing 50,030 cases and 77,405 controls were involved in CD33 rs3865444 polymorphism. And a total of 4 case-control studies, containing 826 cases and 984 controls were involved in CD33 rs3826656 polymorphism. Results This study demonstrated that different variants in CD33 were associated with AD (rs3865444: OR =0.94; 95% CI, 0.90-0.98, P<0.01; rs3826656: OR =0.94; 95% CI, 0.62-1.41, P<0.01). We made subgroup analysis which was stratified by race. There were protective associations in Caucasians but not in Asians among CD33 rs3865444 polymorphism (Caucasians: OR =0.92; 95% CI, 0.90-0.94, P=0.05; Asians: OR =0.87; 95% CI, 0.65-1.17, P<0.01). Conclusions The CD33 rs3865444 polymorphism could be a protective factor in AD. Meanwhile, there was no association between the CD33 rs3826656 polymorphism and AD. Further confirmation is needed in larger and better-designed researches.
Collapse
Affiliation(s)
- Yu-Ting Jiang
- Department of Neurology, Qingdao Municipal Hospital, Qingdao University, Qingdao 266071, China
| | - Hai-Yan Li
- Department of Neurology, Weihai Wei People's Hospital, Weihai 264200, China
| | - Xi-Peng Cao
- Clinical Research Center, Qingdao Municipal Hospital, Qingdao University, Qingdao 266071, China
| | - Lan Tan
- Department of Neurology, Qingdao Municipal Hospital, Qingdao University, Qingdao 266071, China
| |
Collapse
|
6
|
Ravari A, Mirzaei T, Kennedy D, Kazemi Arababadi M. Chronoinflammaging in Alzheimer; A systematic review on the roles of toll like receptor 2. Life Sci 2017; 171:16-20. [PMID: 28087373 DOI: 10.1016/j.lfs.2017.01.003] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2016] [Revised: 12/24/2016] [Accepted: 01/06/2017] [Indexed: 12/23/2022]
Abstract
Aging is associated with a range of chronic low-grade inflammation (Chronoinflammaging) which may play a significant role in some chronic inflammatory based diseases, such as Alzheimer disease (AD). However, the events which lead to the induction of chronoinflammaging in AD are yet to be clarified. It has been proposed that the recognition of endogenous ligands by pathogen recognition receptors (PRRs) may be involved in the induction of chronoinflammaging. Toll like receptors (TLRs) are a family of PRRs which recognize endogenous damage associated molecular patterns (DAMPs) and subsequently induce inflammation. Therefore, TLRs are worthy of investigation to elucidate their roles in chronoinflammaging associated AD. This review article explores the main roles played by TLR2 in the pathogenesis of chronoinflammaging in patients suffering from AD.
Collapse
Affiliation(s)
- Ali Ravari
- Geriatric Care Research Center, Rafsanjan University of Medical Sciences, Rafsanjan, Iran; Dept. of Medical Surgical Nursing, Faculty of Nursing and Midwifery, Rafsanjan University of Medical Sciences, Rafsanjan, Iran
| | - Tayebeh Mirzaei
- Geriatric Care Research Center, Rafsanjan University of Medical Sciences, Rafsanjan, Iran; Dept. of Medical Surgical Nursing, Faculty of Nursing and Midwifery, Rafsanjan University of Medical Sciences, Rafsanjan, Iran.
| | - Derek Kennedy
- School of Natural Sciences, Eskitis Institute for Drug Discovery, Griffith University Nathan, Queensland, Australia
| | - Mohammad Kazemi Arababadi
- Immunology of Infectious Diseases Research Center, Rafsanjan University of Medical Sciences, Rafsanjan, Iran; Dept. of Laboratory Sciences, Faculty of Paramedicine, Rafsanjan University of Medical Sciences, Rafsanjan, Iran
| |
Collapse
|
7
|
Su F, Bai F, Zhou H, Zhang Z. Reprint of: Microglial toll-like receptors and Alzheimer's disease. Brain Behav Immun 2016; 55:166-178. [PMID: 27255539 DOI: 10.1016/j.bbi.2016.05.016] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/16/2015] [Revised: 10/09/2015] [Accepted: 10/15/2015] [Indexed: 01/04/2023] Open
Abstract
Microglial activation represents an important pathological hallmark of Alzheimer's disease (AD), and emerging data highlight the involvement of microglial toll-like receptors (TLRs) in the course of AD. TLRs have been observed to exert both beneficial and detrimental effects on AD-related pathologies, and transgenic animal models have provided direct and credible evidence for an association between TLRs and AD. Moreover, analyses of genetic polymorphisms have suggested interactions between genetic polymorphisms in TLRs and AD risk, further supporting the hypothesis that TLRs are involved in AD. In this review, we summarize the key evidence in this field. Future studies should focus on exploring the mechanisms underlying the potential roles of TLRs in AD.
Collapse
Affiliation(s)
- Fan Su
- Department of Neurology, Affiliated ZhongDa Hospital, School of Medicine, Southeast University, Nanjing, Jiangsu 210009, China
| | - Feng Bai
- Department of Neurology, Affiliated ZhongDa Hospital, School of Medicine, Southeast University, Nanjing, Jiangsu 210009, China.
| | - Hong Zhou
- Department of Neurology, Affiliated ZhongDa Hospital, School of Medicine, Southeast University, Nanjing, Jiangsu 210009, China
| | - Zhijun Zhang
- Department of Neurology, Affiliated ZhongDa Hospital, School of Medicine, Southeast University, Nanjing, Jiangsu 210009, China
| |
Collapse
|
8
|
Crowley T, Cryan JF, Downer EJ, O'Leary OF. Inhibiting neuroinflammation: The role and therapeutic potential of GABA in neuro-immune interactions. Brain Behav Immun 2016; 54:260-277. [PMID: 26851553 DOI: 10.1016/j.bbi.2016.02.001] [Citation(s) in RCA: 91] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/29/2015] [Revised: 01/22/2016] [Accepted: 02/02/2016] [Indexed: 12/25/2022] Open
Abstract
The central nervous system, once thought to be a site of immunological privilege, has since been found to harbour immunocompetent cells and to communicate with the peripheral nervous system. In the central nervous system (CNS), glial cells display immunological responses to pathological and physiological stimuli through pro- and anti-inflammatory cytokine and chemokine signalling, antigen presentation and the clearing of cellular debris through phagocytosis. While this neuroinflammatory signalling can act to reduce neuronal damage and comprises a key facet of CNS homeostasis, persistent inflammation or auto-antigen-mediated immunoreactivity can induce a positive feedback cycle of neuroinflammation that ultimately results in necrosis of glia and neurons. Persistent neuroinflammation has been recognised as a major pathological component of virtually all neurodegenerative diseases and has also been a focus of research into the pathology underlying psychiatric disorders. Thus, pharmacological strategies to curb the pathological effects of persistent neuroinflammation are of interest for many disorders of the CNS. Accumulating evidence suggests that GABAergic activities are closely bound to immune processes and signals, and thus the GABAergic neurotransmitter system might represent an important therapeutic target in modulating neuroinflammation. Here, we review evidence that inflammation induces changes in the GABA neurotransmitter system in the CNS and that GABAergic signalling exerts a reciprocal influence over neuroinflammatory processes. Together, the data support the hypothesis that the GABA system is a potential therapeutic target in the modulation of central inflammation.
Collapse
Affiliation(s)
- Tadhg Crowley
- Department of Anatomy and Neuroscience, University College Cork, Ireland
| | - John F Cryan
- Department of Anatomy and Neuroscience, University College Cork, Ireland; APC Microbiome Institute, University College Cork, Ireland
| | - Eric J Downer
- School of Medicine, Discipline of Physiology, Trinity Biomedical Sciences Institute, Trinity College, Dublin 2, Ireland.
| | - Olivia F O'Leary
- Department of Anatomy and Neuroscience, University College Cork, Ireland; APC Microbiome Institute, University College Cork, Ireland.
| |
Collapse
|
9
|
Su F, Bai F, Zhou H, Zhang Z. Microglial toll-like receptors and Alzheimer's disease. Brain Behav Immun 2016; 52:187-198. [PMID: 26526648 DOI: 10.1016/j.bbi.2015.10.010] [Citation(s) in RCA: 51] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/16/2015] [Revised: 10/09/2015] [Accepted: 10/15/2015] [Indexed: 02/08/2023] Open
Abstract
Microglial activation represents an important pathological hallmark of Alzheimer's disease (AD), and emerging data highlight the involvement of microglial toll-like receptors (TLRs) in the course of AD. TLRs have been observed to exert both beneficial and detrimental effects on AD-related pathologies, and transgenic animal models have provided direct and credible evidence for an association between TLRs and AD. Moreover, analyses of genetic polymorphisms have suggested interactions between genetic polymorphisms in TLRs and AD risk, further supporting the hypothesis that TLRs are involved in AD. In this review, we summarize the key evidence in this field. Future studies should focus on exploring the mechanisms underlying the potential roles of TLRs in AD.
Collapse
Affiliation(s)
- Fan Su
- Department of Neurology, Affiliated ZhongDa Hospital, School of Medicine, Southeast University, Nanjing, Jiangsu 210009, China.
| | - Feng Bai
- Department of Neurology, Affiliated ZhongDa Hospital, School of Medicine, Southeast University, Nanjing, Jiangsu 210009, China.
| | - Hong Zhou
- Department of Neurology, Affiliated ZhongDa Hospital, School of Medicine, Southeast University, Nanjing, Jiangsu 210009, China.
| | - Zhijun Zhang
- Department of Neurology, Affiliated ZhongDa Hospital, School of Medicine, Southeast University, Nanjing, Jiangsu 210009, China.
| |
Collapse
|
10
|
Rezazadeh M, Khorrami A, Yeghaneh T, Talebi M, Kiani SJ, Heshmati Y, Gharesouran J. Genetic Factors Affecting Late-Onset Alzheimer's Disease Susceptibility. Neuromolecular Med 2015; 18:37-49. [PMID: 26553058 DOI: 10.1007/s12017-015-8376-4] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2015] [Accepted: 10/19/2015] [Indexed: 11/29/2022]
Abstract
Alzheimer's disease is considered a progressive brain disease in the older population. Late-onset Alzheimer's disease (LOAD) as a multifactorial dementia has a polygenic inheritance. Age, environment, and lifestyle along with a growing number of genetic factors have been reported as risk factors for LOAD. Our aim was to present results of LOAD association studies that have been done in northwestern Iran, and we also explored possible interactions with apolipoprotein E (APOE) status. We re-evaluated the association of these markers in dominant, recessive, and additive models. In all, 160 LOAD and 163 healthy control subjects of Azeri Turkish ethnicity were studied. The Chi-square test with Yates' correction and Fisher's exact test were used for statistical analysis. A Bonferroni-corrected p value, based on the number of statistical tests, was considered significant. Our results confirmed that chemokine receptor type 2 (CCR2), estrogen receptor 1 (ESR1), toll-like receptor 2 (TLR2), tumor necrosis factor alpha (TNF α), APOE, bridging integrator 1 (BIN1), and phosphatidylinositol-binding clathrin assembly protein (PICALM) are LOAD susceptibility loci in Azeri Turk ancestry populations. Among them, variants of CCR2, ESR1, TNF α, and APOE revealed associations in three different genetic models. After adjusting for APOE, the association (both allelic and genotypic) with CCR2, BIN1, and ESRα (PvuII) was evident only among subjects without the APOE ε4, whereas the association with CCR5, without Bonferroni correction, was significant only among subjects carrying the APOE ε4 allele. This result is an evidence of a synergistic and antagonistic effect of APOE on variant associations with LOAD.
Collapse
Affiliation(s)
- Maryam Rezazadeh
- Department of Medical Genetics, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Aziz Khorrami
- Department of Medical Genetics, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Tarlan Yeghaneh
- Department of Medical Genetics, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Mahnaz Talebi
- Neuroscience Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Seyed Jalal Kiani
- Virology Department, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran
| | - Yaser Heshmati
- Department of Medicine, Huddinge, H7, Karolinska Institutet, Stockholm, Sweden
| | - Jalal Gharesouran
- Department of Medical Genetics, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran.
| |
Collapse
|
11
|
Solovyev ND. Importance of selenium and selenoprotein for brain function: From antioxidant protection to neuronal signalling. J Inorg Biochem 2015; 153:1-12. [PMID: 26398431 DOI: 10.1016/j.jinorgbio.2015.09.003] [Citation(s) in RCA: 172] [Impact Index Per Article: 17.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2015] [Revised: 09/03/2015] [Accepted: 09/09/2015] [Indexed: 12/21/2022]
Abstract
Multiple biological functions of selenium manifest themselves mainly via 25 selenoproteins that have selenocysteine at their active centre. Selenium is vital for the brain and seems to participate in the pathology of disorders such as Alzheimer's disease, Parkinson's disease, amyotrophic lateral sclerosis and epilepsy. Since selenium was shown to be involved in diverse functions of the central nervous system, such as motor performance, coordination, memory and cognition, a possible role of selenium and selenoproteins in brain signalling pathways may be assumed. The aim of the present review is to analyse possible relations between selenium and neurotransmission. Selenoproteins seem to be of special importance in the development and functioning of GABAergic (GABA, γ-aminobutyric acid) parvalbumin positive interneurons of the cerebral cortex and hippocampus. Dopamine pathway might be also selenium dependent as selenium shows neuroprotection in the nigrostriatal pathway and also exerts toxicity towards dopaminergic neurons under higher concentrations. Recent findings also point to acetylcholine neurotransmission involvement. The role of selenium and selenoproteins in neurotransmission might not only be limited to their antioxidant properties but also to inflammation, influencing protein phosphorylation and ion channels, alteration of calcium homeostasis and brain cholesterol metabolism. Moreover, a direct signalling function was proposed for selenoprotein P through interaction with post-synaptic apoliprotein E receptors 2 (ApoER2).
Collapse
Affiliation(s)
- Nikolay D Solovyev
- Institute of Chemistry, St. Petersburg State University, St. Petersburg 198504, Russian Federation.
| |
Collapse
|
12
|
Luo X, Zhu J, Cheng Z, Zhang F, Zhang G, Yuan J, Jin C. Lack of association of a genetic variant in the long intergenic noncoding RNA (linc01080) with Alzheimer's disease and amnestic mild cognitive impairment in Han Chinese. Int J Neurosci 2014; 125:419-23. [DOI: 10.3109/00207454.2014.944616] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
|
13
|
Jin C, Wu CZ, Liu X, Zhang F, Tian L, Yuan J, Wang G, Cheng Z. GAB2 polymorphism rs2373115 confers susceptibility to sporadic Alzheimer's disease. Neurosci Lett 2013; 556:216-20. [DOI: 10.1016/j.neulet.2013.10.036] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2013] [Revised: 09/30/2013] [Accepted: 10/12/2013] [Indexed: 11/15/2022]
|
14
|
Differential role of Dok1 and Dok2 in TLR2-induced inflammatory signaling in glia. Mol Cell Neurosci 2013; 56:148-58. [DOI: 10.1016/j.mcn.2013.04.007] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2013] [Revised: 04/08/2013] [Accepted: 04/26/2013] [Indexed: 02/07/2023] Open
|
15
|
Downer EJ, Jones RS, McDonald CL, Greco E, Brennan S, Connor TJ, Robertson IH, Lynch MA. Identifying early inflammatory changes in monocyte-derived macrophages from a population with IQ-discrepant episodic memory. PLoS One 2013; 8:e63194. [PMID: 23671673 PMCID: PMC3646027 DOI: 10.1371/journal.pone.0063194] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2012] [Accepted: 04/02/2013] [Indexed: 12/24/2022] Open
Abstract
Background Cells of the innate immune system including monocytes and macrophages are the first line of defence against infections and are critical regulators of the inflammatory response. These cells express toll-like receptors (TLRs), innate immune receptors which govern tailored inflammatory gene expression patterns. Monocytes, which produce pro-inflammatory mediators, are readily recruited to the central nervous system (CNS) in neurodegenerative diseases. Methods This study explored the expression of receptors (CD11b, TLR2 and TLR4) on circulating monocyte-derived macrophages (MDMs) and peripheral blood mononuclear cells (PBMCs) isolated from healthy elderly adults who we classified as either IQ memory-consistent (high-performing, HP) or IQ memory-discrepant (low-performing, LP). Results The expression of CD11b, TLR4 and TLR2 was increased in MDMs from the LP group when compared to HP cohort. MDMs from both groups responded robustly to treatment with the TLR4 activator, lipopolysaccharide (LPS), in terms of cytokine production. Significantly, MDMs from the LP group displayed hypersensitivity to LPS exposure. Interpretation Overall these findings define differential receptor expression and cytokine profiles that occur in MDMs derived from a cohort of IQ memory-discrepant individuals. These changes are indicative of inflammation and may be involved in the prodromal processes leading to the development of neurodegenerative disease.
Collapse
Affiliation(s)
- Eric J Downer
- Trinity College Institute of Neuroscience and Physiology Department, Trinity College, Dublin, Ireland.
| | | | | | | | | | | | | | | |
Collapse
|
16
|
Lu'o'ng KVQ, Nguyen LTH. The role of vitamin D in Alzheimer's disease: possible genetic and cell signaling mechanisms. Am J Alzheimers Dis Other Demen 2013; 28:126-36. [PMID: 23322908 PMCID: PMC10852937 DOI: 10.1177/1533317512473196] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
Alzheimer's disease (AD) is the most common form of dementia in the elderly individuals and is associated with progressive memory loss and cognitive dysfunction. A significant association between AD and low levels of vitamin D has been demonstrated. Furthermore, vitamin D supplements appear to have a beneficial clinical effect on AD by regulating micro-RNA, enhancing toll-like receptors, modulating vascular endothelial factor expression, modulating angiogenin, and advanced glycation end products. Vitamin D also exerts its effects on AD by regulating calcium-sensing receptor expression, enhancing amyloid-β peptides clearance, interleukin 10, downregulating matrix metalloproteinases, upregulating heme oxygenase 1, and suppressing the reduced form of nicotinamide adenine dinucleotide phosphate expression. In conclusion, vitamin D may play a beneficial role in AD. Calcitriol is the best vitamin D supplement for AD, because it is the active form of the vitamin D3 metabolite and modulates inflammatory cytokine expression. Therefore, further investigation of the role of calcitriol in AD is needed.
Collapse
Affiliation(s)
- Khanh Vinh Quoc Lu'o'ng
- Vietnamese American Medical Research Foundation, 14971 Brookhurst St. Westminster, CA 92683, USA.
| | | |
Collapse
|
17
|
Jin C, Zhang F, Zhu J, Yuan J, Xia M, Xu Q, Jiang X, Wu Y, Xu W. Association of CYP46 gene polymorphism with sporadic Alzheimer's disease in Chinese Han populations: a meta-analysis. Int J Neurosci 2013; 123:226-32. [PMID: 23167762 DOI: 10.3109/00207454.2012.751533] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
It is well known that genetic variants play an important role in the pathogenesis of Alzheimer's disease (AD). Recently, several studies have found that an intronic single-nucleotide polymorphism (SNP) in cholesterol 24S-hydroxylase (CYP46) gene was associated with sporadic AD (SAD). Within the CYP46 gene, the most well-studied SNP that has been found to be associated with an increased risk for SAD in Caucasians is the intronic SNP rs754203. Subsequently, other researchers have attempted to validate this finding in Chinese Han populations. However, these studies have produced both negative and positive results. To derive a more precise estimation for whether an association exists between rs754203 and SAD in the Chinese Han population, we performed the present meta-analysis of six case-control studies published up to July 2012 by searching the Medline, AlzGene, CNKI, and Wan Fang databases. Pooled odds ratios (ORs) and 95% confidence intervals (95% CIs) were calculated for four genetic models (allelic model: T vs. C; additive model: TT vs. CC; recessive model: TT + TC vs. CC; dominant model: TC + CC vs. TT) in the six studies, which included a total of 1187 cases and 1283 controls. The statistical analysis showed no significant differences in rs754203 between patients and controls for any of the four genetic models (p > 0.05 for each model). In conclusion, despite several limitations, this meta-analysis indicates that the CYP46 gene SNP rs754203 is not significantly associated with SAD susceptibility in Chinese Han populations.
Collapse
Affiliation(s)
- Chunhui Jin
- Department of Geriatric Psychiatry, Wuxi Mental Health Center, Wuxi, Jiangsu, China.
| | | | | | | | | | | | | | | | | |
Collapse
|
18
|
An Intronic CYP46A1 Polymorphism Is Associated with Alzheimer Disease in a Chinese Han Population. J Mol Neurosci 2012; 47:514-8. [DOI: 10.1007/s12031-012-9778-5] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2012] [Accepted: 04/09/2012] [Indexed: 10/28/2022]
|
19
|
Increased expressions of TLR2 and TLR4 on peripheral blood mononuclear cells from patients with Alzheimer's disease. J Neurol Sci 2012; 315:67-71. [DOI: 10.1016/j.jns.2011.11.032] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2011] [Revised: 11/22/2011] [Accepted: 11/23/2011] [Indexed: 12/20/2022]
|
20
|
Yu JT, Mou SM, Wang LZ, Mao CX, Tan L. Toll-like receptor 2 -196 to -174 del polymorphism influences the susceptibility of Han Chinese people to Alzheimer's disease. J Neuroinflammation 2011; 8:136. [PMID: 21989233 PMCID: PMC3203069 DOI: 10.1186/1742-2094-8-136] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2011] [Accepted: 10/11/2011] [Indexed: 12/01/2022] Open
Abstract
Background Toll-like receptor 2 (TLR2) represents a reasonable functional and positional candidate gene for Alzheimer's disease (AD) as it is located under the linkage region of AD on chromosome 4q, and functionally is involved in the microglia-mediated inflammatory response and amyloid-β clearance. The -196 to -174 del polymorphism affects the TLR2 gene and alters its promoter activity. Methods We recruited 800 unrelated Northern Han Chinese individuals comprising 400 late-onset AD (LOAD) patients and 400 healthy controls matched for gender and age. The -196 to -174 del polymorphism in the TLR2 gene was genotyped using the polymerase chain reaction (PCR) method. Results There were significant differences in genotype (P = 0.026) and allele (P = 0.009) frequencies of the -196 to -174 del polymorphism between LOAD patients and controls. The del allele was associated with an increased risk of LOAD (OR = 1.31, 95% CI = 1.07-1.60, Power = 84.9%). When these data were stratified by apolipoprotein E (ApoE) ε4 status, the observed association was confined to ApoE ε4 non-carriers. Logistic regression analysis suggested an association of LOAD with the polymorphism in a recessive model (OR = 1.64, 95% CI = 1.13-2.39, Bonferroni corrected P = 0.03). Conclusions Our data suggest that the -196 to -174 del/del genotype of TLR2 may increase risk of LOAD in a Northern Han Chinese population.
Collapse
Affiliation(s)
- Jin-Tai Yu
- Department of Neurology, Qingdao Municipal Hospital, School of Medicine, Qingdao University, No.5 Donghai Middle Road, Qingdao, China
| | | | | | | | | |
Collapse
|