1
|
Temporal proteomic changes induced by nicotine in human cells: A quantitative proteomics approach. J Proteomics 2021; 241:104244. [PMID: 33895337 DOI: 10.1016/j.jprot.2021.104244] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2020] [Revised: 04/04/2021] [Accepted: 04/19/2021] [Indexed: 12/20/2022]
Abstract
Nicotine is a prominent active compound in tobacco and many smoking cessation products. Some of the biological effects of nicotine are well documented in in vitro and in vivo systems; however, data are scarce concerning the time-dependent changes on protein and phosphorylation events in response to nicotine. Here, we profiled the proteomes of SH-SY5Y and A549 cell lines subjected to acute (15 min, 1 h and 4 h) or chronic (24 h, 48 h) nicotine exposures. We used sample multiplexing (TMTpro16) and quantified more than 9000 proteins and over 7000 phosphorylation events per cell line. Among our findings, we determined a decrease in mitochondrial protein abundance for SH-SY5Y, while we detected alterations in several immune pathways, such as the complement system, for A549 following nicotine treatment. We also explored the proposed association between smoking (specifically nicotine) and SARS-CoV2. Here, we found several host proteins known to interact with viral proteins that were affected by nicotine in a time dependent manner. This dataset can be mined further to investigate the potential role of nicotine in different biological contexts. SIGNIFICANCE: Smoking is a major public health issue that is associated with several serious chronic, yet preventable diseases, including stroke, heart disease, type 2 diabetes, cancer, and susceptibility to infection. Tobacco smoke is a complex mixture of thousands of different compounds, among which nicotine is the main addictive compound. The biological effects of nicotine have been reported in several models, however very little data are available concerning the temporal proteomic and phosphoproteomic changes in response to nicotine. Here, we provide a dataset exploring the potential role of nicotine on different biological processes over time, including implications in the study of SARS-CoV2.
Collapse
|
2
|
Yoo DY, Jung HY, Kim JW, Yim HS, Kim DW, Nam H, Suh JG, Choi JH, Won MH, Yoon YS, Hwang IK. Reduction of dynamin 1 in the hippocampus of aged mice is associated with the decline in hippocampal‑dependent memory. Mol Med Rep 2016; 14:4755-4760. [PMID: 27748822 DOI: 10.3892/mmr.2016.5804] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2015] [Accepted: 09/07/2016] [Indexed: 11/06/2022] Open
Abstract
Dynamin 1 is a known synaptic protein, which has is key in the presynaptic regulation of endocytosis. The present study investigated the association between age and the observed changes in Morris water maze performance, and immunoreactivity and protein levels of dynamin 1 in the mouse hippocampal formation. In addition, the effects of dynasore, an inhibitor of dynamin 1, on the hippocampal dependent memory were determined to elucidate the correlation between dynamin 1 and memory. In the training phase of the Morris water maze task, the mean escape latency of the aged group (24 months old) was significantly longer, compared with that of the adult group (4 months old), although the average swimming speed and the total distance traveled during the probe trial were similar in the two groups. In the aged group, the time spent locating the target platform was significantly longer and the time spent in the correct quadrant was significantly shorter, compared with those in the adult group. In the adult group, a moderate level of dynamin 1 was detected in the hippocampal CA1 and CA3 regions, and in the dentate gyrus. In the aged group, the immunoreactivity of dynamin 1 was almost eliminated in the CA3 region and the dentate gyrus. In addition, the protein levels of dynamin 1 in the brain were significantly lower in the aged group, compared with those in the adult group. The direct infusion of dynasore, significantly reduced the contextual memory, compared with that of animals in the vehicle‑treated group. These results suggested that dynamin 1 was susceptible to the aging process, and that a reduction in dynamin 1 may result in hippocampal‑dependent memory deficits by disrupting endocytosis and the release of neurotransmitters.
Collapse
Affiliation(s)
- Dae Young Yoo
- Department of Anatomy and Cell Biology, College of Veterinary Medicine and Research Institute for Veterinary Science, Seoul National University, Seoul 08826, Republic of Korea
| | - Hyo Young Jung
- Department of Anatomy and Cell Biology, College of Veterinary Medicine and Research Institute for Veterinary Science, Seoul National University, Seoul 08826, Republic of Korea
| | - Jong Whi Kim
- Department of Anatomy and Cell Biology, College of Veterinary Medicine and Research Institute for Veterinary Science, Seoul National University, Seoul 08826, Republic of Korea
| | - Hee Sun Yim
- Department of Biochemistry and Molecular Biology, Research Institute of Oral Sciences, College of Dentistry, Kangneung‑Wonju National University, Gangneung, Gangwon 25457, Republic of Korea
| | - Dae Won Kim
- Department of Biochemistry and Molecular Biology, Research Institute of Oral Sciences, College of Dentistry, Kangneung‑Wonju National University, Gangneung, Gangwon 25457, Republic of Korea
| | - Hajin Nam
- Department of Medical Genetics, College of Medicine, Hallym University, Chuncheon, Gangwon 24252, Republic of Korea
| | - Jun Gyo Suh
- Department of Medical Genetics, College of Medicine, Hallym University, Chuncheon, Gangwon 24252, Republic of Korea
| | - Jung Hoon Choi
- Department of Anatomy, College of Veterinary Medicine, Kangwon National University, Chuncheon, Gangwon 24341, Republic of Korea
| | - Moo-Ho Won
- Department of Neurobiology, School of Medicine, Kangwon National University, Chuncheon, Gangwon 24341, Republic of Korea
| | - Yeo Sung Yoon
- Department of Anatomy and Cell Biology, College of Veterinary Medicine and Research Institute for Veterinary Science, Seoul National University, Seoul 08826, Republic of Korea
| | - In Koo Hwang
- Department of Anatomy and Cell Biology, College of Veterinary Medicine and Research Institute for Veterinary Science, Seoul National University, Seoul 08826, Republic of Korea
| |
Collapse
|
3
|
Non-coding RNAs--novel targets in neurotoxicity. Neurotoxicology 2012; 33:530-44. [PMID: 22394481 DOI: 10.1016/j.neuro.2012.02.013] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2011] [Revised: 02/17/2012] [Accepted: 02/18/2012] [Indexed: 12/24/2022]
Abstract
Over the past ten years non-coding RNAs (ncRNAs) have emerged as pivotal players in fundamental physiological and cellular processes and have been increasingly implicated in cancer, immune disorders, and cardiovascular, neurodegenerative, and metabolic diseases. MicroRNAs (miRNAs) represent a class of ncRNA molecules that function as negative regulators of post-transcriptional gene expression. miRNAs are predicted to regulate 60% of all human protein-coding genes and as such, play key roles in cellular and developmental processes, human health, and disease. Relative to counterparts that lack bindings sites for miRNAs, genes encoding proteins that are post-transcriptionally regulated by miRNAs are twice as likely to be sensitive to environmental chemical exposure. Not surprisingly, miRNAs have been recognized as targets or effectors of nervous system, developmental, hepatic, and carcinogenic toxicants, and have been identified as putative regulators of phase I xenobiotic-metabolizing enzymes. In this review, we give an overview of the types of ncRNAs and highlight their roles in neurodevelopment, neurological disease, activity-dependent signaling, and drug metabolism. We then delve into specific examples that illustrate their importance as mediators, effectors, or adaptive agents of neurotoxicants or neuroactive pharmaceutical compounds. Finally, we identify a number of outstanding questions regarding ncRNAs and neurotoxicity.
Collapse
|
4
|
Wang J, Yuan W, Li MD. Genes and pathways co-associated with the exposure to multiple drugs of abuse, including alcohol, amphetamine/methamphetamine, cocaine, marijuana, morphine, and/or nicotine: a review of proteomics analyses. Mol Neurobiol 2011; 44:269-86. [PMID: 21922273 DOI: 10.1007/s12035-011-8202-4] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2011] [Accepted: 08/31/2011] [Indexed: 10/17/2022]
Abstract
Drug addiction is a chronic neuronal disease. In recent years, proteomics technology has been widely used to assess the protein expression in the brain tissues of both animals and humans exposed to addictive drugs. Through this approach, a large number of proteins potentially involved in the etiology of drug addictions have been identified, which provide a valuable resource to study protein function, biochemical pathways, and networks related to the molecular mechanisms underlying drug dependence. In this article, we summarize the recent application of proteomics to profiling protein expression patterns in animal or human brain tissues after the administration of alcohol, amphetamine/methamphetamine, cocaine, marijuana, morphine/heroin/butorphanol, or nicotine. From available reports, we compiled a list of 497 proteins associated with exposure to one or more addictive drugs, with 160 being related to exposure to at least two abused drugs. A number of biochemical pathways and biological processes appear to be enriched among these proteins, including synaptic transmission and signaling pathways related to neuronal functions. The data included in this work provide a summary and extension of the proteomics studies on drug addiction. Furthermore, the proteins and biological processes highlighted here may provide valuable insight into the cellular activities and biological processes in neurons in the development of drug addiction.
Collapse
Affiliation(s)
- Ju Wang
- Department of Psychiatry and Neurobehavioral Sciences, University of Virginia, Charlottesville, VA 22911, USA
| | | | | |
Collapse
|