1
|
Dalla Volta R, Scarfone F, Brambilla D, Esposti R, Cavallari P. Corticospinal suppression in response to pics with implied hand actions: A follow up TMS study. Brain Cogn 2025; 186:106298. [PMID: 40222071 DOI: 10.1016/j.bandc.2025.106298] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2024] [Revised: 03/20/2025] [Accepted: 04/08/2025] [Indexed: 04/15/2025]
Abstract
Presentation of bodily actions is known to affect motor system activity in perceivers' brain. A previous study (Gianelli, Kuehne, Lo Presti, Mencaraglia & Dalla Volta, 2020) employing hand-tool interaction with apparent motion showed early suppression of corticospinal excitability in hand muscles. To control for the role of apparent motion and to investigate the suppression duration, in the present follow up study participants observed pics displaying hand-tool actions, with no apparent motion but only implied motion. Single pulse TMS was delivered on the hand sector of the left motor cortex at 1 s after fixation cross (baseline), at 150, 350, 500 and 700 ms from stimulus onset, while motor evoked potentials (MEPs) were recorded from the contralateral first dorsal interosseus muscle. Results showed a difference in MEP amplitude between hand action-related and control pics where hand action observation suppressed corticospinal excitability, suggesting early and enduring motor inhibition. In addition, MEP amplitude decreased over time. These findings rule out a necessary role of apparent motion, indicating that the simple presentation of hand actions with implied motion effectively induced motor inhibition. Corticospinal suppression may act to prevent the motor system from automatically transforming observed actions into overt movements whenever an action is observed.
Collapse
Affiliation(s)
- Riccardo Dalla Volta
- Sezione di Fisiologia, Dipartimento di Fisiopatologia Medico-Chirurgica e dei Trapianti, Università degli Studi di Milano, Via Mangiagalli 32, 20133 Milano, Italy; Laboratorio Sperimentale di Fisiopatologia Neuromotoria, IRCCS Istituto Auxologico Italiano, Meda, Italy.
| | - Francesco Scarfone
- Dipartimento di Scienze Mediche e Chirurgiche, Università Magna Graecia di Catanzaro, Viale Europa, Loc. Germaneto, 88100 Catanzaro, Italy
| | - Dario Brambilla
- Sezione di Fisiologia, Dipartimento di Fisiopatologia Medico-Chirurgica e dei Trapianti, Università degli Studi di Milano, Via Mangiagalli 32, 20133 Milano, Italy
| | - Roberto Esposti
- Sezione di Fisiologia, Dipartimento di Fisiopatologia Medico-Chirurgica e dei Trapianti, Università degli Studi di Milano, Via Mangiagalli 32, 20133 Milano, Italy
| | - Paolo Cavallari
- Sezione di Fisiologia, Dipartimento di Fisiopatologia Medico-Chirurgica e dei Trapianti, Università degli Studi di Milano, Via Mangiagalli 32, 20133 Milano, Italy; Laboratorio Sperimentale di Fisiopatologia Neuromotoria, IRCCS Istituto Auxologico Italiano, Meda, Italy
| |
Collapse
|
2
|
Bianco V, Finisguerra A, D'Argenio G, Boscarol S, Urgesi C. Contextual expectations shape the motor coding of movement kinematics during the prediction of observed actions: A TMS study. Neuroimage 2024; 297:120702. [PMID: 38909762 DOI: 10.1016/j.neuroimage.2024.120702] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2024] [Revised: 06/17/2024] [Accepted: 06/21/2024] [Indexed: 06/25/2024] Open
Abstract
Contextual information may shape motor resonance and support intention understanding during observation of incomplete, ambiguous actions. It is unclear, however, whether this effect is contingent upon kinematics ambiguity or contextual information is continuously integrated with kinematics to predict the overarching action intention. Moreover, a differentiation between the motor mapping of the intention suggested by context or kinematics has not been clearly demonstrated. In a first action execution phase, 29 participants were asked to perform reaching-to-grasp movements towards big or small food objects with the intention to eat or to move; electromyography from the First Dorsal Interosseous (FDI) and Abductor Digiti Minimi (ADM) was recorded. Depending on object size, the intentions to eat or to move were differently implemented by a whole-hand or a precision grip kinematics, thus qualifying an action-muscle dissociation. Then, in a following action prediction task, the same participants were asked to observe an actor performing the same actions and to predict his/her intention while motor resonance was assessed for the same muscles. Of note, videos were interrupted at early or late action phases, and actions were embedded in contexts pointing toward an eating or a moving intention, congruently or incongruently with kinematics. We found greater involvement of the FDI or ADM in the execution of precision or whole-hand grips, respectively. Crucially, this pattern of activation was mirrored during observation of the same actions in congruent contexts, but it was cancelled out or reversed in the incongruent ones, either when videos were interrupted at either early or long phases of action deployment. Our results extend previous evidence by showing that contextual information shapes motor resonance not only under conditions of perceptual uncertainty but also when more informative kinematics is available.
Collapse
Affiliation(s)
- Valentina Bianco
- Department of Brain and Behavioral Sciences, University of Pavia, 27100 Pavia, Italy; Laboratory of Cognitive Neuroscience, Department of Languages and Literatures, Communication, Education and Society, University of Udine, Udine, Italy.
| | | | - Giulia D'Argenio
- Laboratory of Cognitive Neuroscience, Department of Languages and Literatures, Communication, Education and Society, University of Udine, Udine, Italy; Fondazione Progettoautismo FVG Onlus, Feletto Umberto, Udine, Italy
| | - Sara Boscarol
- Scientific Institute, IRCCS E. Medea, Pasian di Prato, Udine, Italy; University of Camerino, Center for Neuroscience, Camerino, Italy
| | - Cosimo Urgesi
- Laboratory of Cognitive Neuroscience, Department of Languages and Literatures, Communication, Education and Society, University of Udine, Udine, Italy; Scientific Institute, IRCCS E. Medea, Pasian di Prato, Udine, Italy
| |
Collapse
|
3
|
Guidali G, Picardi M, Franca M, Caronni A, Bolognini N. The social relevance and the temporal constraints of motor resonance in humans. Sci Rep 2023; 13:15933. [PMID: 37741884 PMCID: PMC10517949 DOI: 10.1038/s41598-023-43227-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2023] [Accepted: 09/21/2023] [Indexed: 09/25/2023] Open
Abstract
In humans, motor resonance effects can be tracked by measuring the enhancement of corticospinal excitability by action observation. Uncovering factors driving motor resonance is crucial for optimizing action observation paradigms in experimental and clinical settings. In the present study, we deepen motor resonance properties for grasping movements. Thirty-five healthy subjects underwent an action observation task presenting right-hand grasping movements differing from their action goal. Single-pulse transcranial magnetic stimulation was applied over the left primary motor cortex at 100, 200, or 300 ms from the onset of the visual stimulus depicting the action. Motor-evoked potentials were recorded from four muscles of the right hand and forearm. Results show a muscle-specific motor resonance effect at 200 ms after movement but selectively for observing a socially relevant grasp towards another human being. This effect correlates with observers' emotional empathy scores, and it was followed by inhibition of motor resonance at 300 ms post-stimulus onset. No motor resonance facilitation emerged while observing intransitive hand movement or object grasping. This evidence highlights the social side of motor resonance and its dependency on temporal factors.
Collapse
Affiliation(s)
- Giacomo Guidali
- Department of Psychology & NeuroMI-Milan Centre for Neuroscience, University of Milano-Bicocca, Piazza dell'Ateneo Nuovo 1, 20126, Milan, Italy.
| | - Michela Picardi
- Ph.D. Program in Neuroscience, School of Medicine and Surgery, University of Milano-Bicocca, Monza, Italy
- Department of Neurorehabilitation Sciences, Casa di cura Igea, Milan, Italy
| | - Maria Franca
- Department of Psychology & NeuroMI-Milan Centre for Neuroscience, University of Milano-Bicocca, Piazza dell'Ateneo Nuovo 1, 20126, Milan, Italy
- Ph.D. Program in Neuroscience, School of Medicine and Surgery, University of Milano-Bicocca, Monza, Italy
| | - Antonio Caronni
- Department of Neurorehabilitation Sciences, IRCCS Istituto Auxologico Italiano, Ospedale San Luca, Milan, Italy
- Department of Biomedical Sciences for Health, University of Milan, Milan, Italy
| | - Nadia Bolognini
- Department of Psychology & NeuroMI-Milan Centre for Neuroscience, University of Milano-Bicocca, Piazza dell'Ateneo Nuovo 1, 20126, Milan, Italy.
- Laboratory of Neuropsychology, Department of Neurorehabilitation Sciences, IRCCS Istituto Auxologico Italiano, Milan, Italy.
| |
Collapse
|
4
|
Syrov N, Yakovlev L, Miroshnikov A, Kaplan A. Beyond passive observation: feedback anticipation and observation activate the mirror system in virtual finger movement control via P300-BCI. Front Hum Neurosci 2023; 17:1180056. [PMID: 37213933 PMCID: PMC10192585 DOI: 10.3389/fnhum.2023.1180056] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2023] [Accepted: 04/13/2023] [Indexed: 05/23/2023] Open
Abstract
Action observation (AO) is widely used as a post-stroke therapy to activate sensorimotor circuits through the mirror neuron system. However, passive observation is often considered to be less effective and less interactive than goal-directed movement observation, leading to the suggestion that observation of goal-directed actions may have stronger therapeutic potential, as goal-directed AO has been shown to activate mechanisms for monitoring action errors. Some studies have also suggested the use of AO as a form of Brain-computer interface (BCI) feedback. In this study, we investigated the potential for observation of virtual hand movements within a P300-based BCI as a feedback system to activate the mirror neuron system. We also explored the role of feedback anticipation and estimation mechanisms during movement observation. Twenty healthy subjects participated in the study. We analyzed event-related desynchronization and synchronization (ERD/S) of sensorimotor EEG rhythms and Error-related potentials (ErrPs) during observation of virtual hand finger flexion presented as feedback in the P300-BCI loop and compared the dynamics of ERD/S and ErrPs during observation of correct feedback and errors. We also analyzed these EEG markers during passive AO under two conditions: when subjects anticipated the action demonstration and when the action was unexpected. A pre-action mu-ERD was found both before passive AO and during action anticipation within the BCI loop. Furthermore, a significant increase in beta-ERS was found during AO within incorrect BCI feedback trials. We suggest that the BCI feedback may exaggerate the passive-AO effect, as it engages feedback anticipation and estimation mechanisms as well as movement error monitoring simultaneously. The results of this study provide insights into the potential of P300-BCI with AO-feedback as a tool for neurorehabilitation.
Collapse
Affiliation(s)
- Nikolay Syrov
- V. Zelman Center for Neurobiology and Brain Rehabilitation, Skolkovo Institute of Science and Technology, Moscow, Russia
- Baltic Center for Neurotechnology and Artificial Intelligence, Immanuel Kant Baltic Federal University, Kaliningrad, Russia
- *Correspondence: Nikolay Syrov,
| | - Lev Yakovlev
- V. Zelman Center for Neurobiology and Brain Rehabilitation, Skolkovo Institute of Science and Technology, Moscow, Russia
- Baltic Center for Neurotechnology and Artificial Intelligence, Immanuel Kant Baltic Federal University, Kaliningrad, Russia
| | - Andrei Miroshnikov
- Baltic Center for Neurotechnology and Artificial Intelligence, Immanuel Kant Baltic Federal University, Kaliningrad, Russia
| | - Alexander Kaplan
- V. Zelman Center for Neurobiology and Brain Rehabilitation, Skolkovo Institute of Science and Technology, Moscow, Russia
- Baltic Center for Neurotechnology and Artificial Intelligence, Immanuel Kant Baltic Federal University, Kaliningrad, Russia
- Department of Human and Animal Physiology, Faculty of Biology, Lomonosov Moscow State University, Moscow, Russia
| |
Collapse
|
5
|
Syrov N, Bredikhin D, Yakovlev L, Miroshnikov A, Kaplan A. Mu-desynchronization, N400 and corticospinal excitability during observation of natural and anatomically unnatural finger movements. Front Hum Neurosci 2022; 16:973229. [PMID: 36118966 PMCID: PMC9480608 DOI: 10.3389/fnhum.2022.973229] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2022] [Accepted: 08/15/2022] [Indexed: 11/25/2022] Open
Abstract
The action observation networks (AON) (or the mirror neuron system) are the neural underpinnings of visuomotor integration and play an important role in motor control. Besides, one of the main functions of the human mirror neuron system is recognition of observed actions and the prediction of its outcome through the comparison with the internal mental motor representation. Previous studies focused on the human mirror neurons (MNs) activation during object-oriented movements observation, therefore intransitive movements observation effects on MNs activity remains relatively little-studied. Moreover, the dependence of MNs activation on the biomechanical characteristics of observed movement and their biological plausibility remained highly underexplored. In this study we proposed that naturalness of observed intransitive movement can modulate the MNs activity. Event-related desynchronization (ERD) of sensorimotor electroencephalography (EEG) rhythms, N400 event-related potentials (ERPs) component and corticospinal excitability were investigated in twenty healthy volunteers during observation of simple non-transitive finger flexion that might be either biomechanically natural or unnatural when finger wriggled out toward the dorsal side of palm. We showed that both natural and unnatural movements caused mu/beta-desynchronization, which gradually increased during the flexion phase and returned to baseline while observation of extension. Desynchronization of the mu-rhythm was significantly higher during observation of the natural movements. At the same time, beta-rhythm was not found to be sensitive to the action naturalness. Also, observation of unnatural movements caused an increased amplitude of the N400 component registered in the centro-parietal regions. We suggest that the sensitivity of N400 to intransitive action observation with no explicit semantic context might imply the broader role of N400 sources within AON. Surprisingly, no changes in corticospinal excitability were found. This lack of excitability modulation by action observation could be related with dependence of the M1 activity on the observed movement phase.
Collapse
Affiliation(s)
- Nikolay Syrov
- Baltic Center for Artificial Intelligence and Neurotechnology, Immanuel Kant Baltic Federal University, Kaliningrad, Russia
- V. Zelman Center for Neurobiology and Brain Restoration, Skolkovo Institute of Science and Technology, Moscow, Russia
- *Correspondence: Nikolay Syrov,
| | - Dimitri Bredikhin
- Department of Human and Animal Physiology, Faculty of Biology, M. V. Lomonosov Moscow State University, Moscow, Russia
- Department of Psychology, Centre for Cognition and Decision Making, National Research University Higher School of Economics, Moscow, Russia
| | - Lev Yakovlev
- Baltic Center for Artificial Intelligence and Neurotechnology, Immanuel Kant Baltic Federal University, Kaliningrad, Russia
- V. Zelman Center for Neurobiology and Brain Restoration, Skolkovo Institute of Science and Technology, Moscow, Russia
| | - Andrei Miroshnikov
- Baltic Center for Artificial Intelligence and Neurotechnology, Immanuel Kant Baltic Federal University, Kaliningrad, Russia
| | - Alexander Kaplan
- Baltic Center for Artificial Intelligence and Neurotechnology, Immanuel Kant Baltic Federal University, Kaliningrad, Russia
- Department of Human and Animal Physiology, Faculty of Biology, M. V. Lomonosov Moscow State University, Moscow, Russia
| |
Collapse
|
6
|
Gianelli C, Kühne K, Lo Presti S, Mencaraglia S, Dalla Volta R. Action processing in the motor system: Transcranial Magnetic Stimulation (TMS) evidence of shared mechanisms in the visual and linguistic modalities. Brain Cogn 2020; 139:105510. [PMID: 31923805 DOI: 10.1016/j.bandc.2019.105510] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2019] [Revised: 11/26/2019] [Accepted: 12/09/2019] [Indexed: 11/17/2022]
Abstract
In two experiments, we compared the dynamics of corticospinal excitability when processing visually or linguistically presented tool-oriented hand actions in native speakers and sequential bilinguals. In a third experiment we used the same procedure to test non-motor, low-level stimuli, i.e. scrambled images and pseudo-words. Stimuli were presented in sequence: pictures (tool + tool-oriented hand action or their scrambled counterpart) and words (tool noun + tool-action verb or pseudo-words). Experiment 1 presented German linguistic stimuli to native speakers, while Experiment 2 presented English stimuli to non-natives. Experiment 3 tested Italian native speakers. Single-pulse trascranial magnetic stimulation (spTMS) was applied to the left motor cortex at five different timings: baseline, 200 ms after tool/noun onset, 150, 350 and 500 ms after hand/verb onset with motor-evoked potentials (MEPs) recorded from the first dorsal interosseous (FDI) and abductor digiti minimi (ADM) muscles. We report strong similarities in the dynamics of corticospinal excitability across the visual and linguistic modalities. MEPs' suppression started as early as 150 ms and lasted for the duration of stimulus presentation (500 ms). Moreover, we show that this modulation is absent for stimuli with no motor content. Overall, our study supports the notion of a core, overarching system of action semantics shared by different modalities.
Collapse
Affiliation(s)
- Claudia Gianelli
- Division of Cognitive Sciences, University of Potsdam, Germany; IUSS, University School of Advanced Studies, Pavia, Italy.
| | - Katharina Kühne
- Division of Cognitive Sciences, University of Potsdam, Germany
| | - Sara Lo Presti
- IUSS, University School of Advanced Studies, Pavia, Italy
| | | | - Riccardo Dalla Volta
- Department of Medical and Surgical Sciences, Università Magna Graecia, Catanzaro, Italy.
| |
Collapse
|
7
|
Hannah R, Rocchi L, Rothwell JC. Observing Without Acting: A Balance of Excitation and Suppression in the Human Corticospinal Pathway? Front Neurosci 2018; 12:347. [PMID: 29875628 PMCID: PMC5974331 DOI: 10.3389/fnins.2018.00347] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2018] [Accepted: 05/04/2018] [Indexed: 01/07/2023] Open
Abstract
Transcranial magnetic stimulation (TMS) studies of human primary motor cortex (M1) indicate an increase corticospinal excitability during the observation of another's action. This appears to be somewhat at odds with recordings of pyramidal tract neurons in primate M1 showing that there is a balance of increased and decreased activity across the population. TMS is known to recruit a mixed population of cortical neurons, and so one explanation for previous results is that TMS tends to recruit those excitatory output neurons whose activity is increased during action observation. Here we took advantage of the directional sensitivity of TMS to recruit different subsets of M1 neurons and probed whether they responded differentially to action observation in a manner consistent with the balanced change in activity in primates. At the group level we did not observe the expected increase in corticospinal excitability for either TMS current direction during the observation of a precision grip movement. Instead, we observed substantial inter-individual variability ranging from strong facilitation to strong suppression of corticospinal excitability that was similar across both current directions. Thus, we found no evidence of any differential changes in the excitability of distinct M1 neuronal populations during action observation. The most notable change in corticospinal excitability at the group level was a general increase, across muscles and current directions, when participants went from a baseline state outside the task to a baseline state within the actual observation task. We attribute this to arousal- or attention-related processes, which appear to have a similar effect on the different corticospinal pathways targeted by different TMS current directions. Finally, this rather non-specific increase in corticospinal excitability suggests care should be taken when selecting a “baseline” state against which to compare changes during action observation.
Collapse
Affiliation(s)
- Ricci Hannah
- University College London Institute of Neurology, London, United Kingdom
| | - Lorenzo Rocchi
- University College London Institute of Neurology, London, United Kingdom
| | - John C Rothwell
- University College London Institute of Neurology, London, United Kingdom
| |
Collapse
|
8
|
Betti S, Castiello U, Sartori L. Kick with the finger: symbolic actions shape motor cortex excitability. Eur J Neurosci 2015; 42:2860-6. [PMID: 26354677 DOI: 10.1111/ejn.13067] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2015] [Revised: 09/02/2015] [Accepted: 09/04/2015] [Indexed: 11/29/2022]
Abstract
A large body of research indicates that observing actions made by others is associated with corresponding motor facilitation of the observer's corticospinal system. However, it is still controversial whether this matching mechanism strictly reflects the kinematics of the observed action or its meaning. To test this issue, motor evoked potentials induced by single-pulse transcranial magnetic stimulation were recorded from hand and leg muscles while participants observed a symbolic action carried out with the index finger, but classically performed with the leg (i.e., a soccer penalty kick). A control condition in which participants observed a similar (but not symbolic) hand movement was also included. Results showed that motor facilitation occurs both in the observer's hand (first dorsal interosseous) and leg (quadriceps femoris) muscles. The present study provides evidence that both the kinematics and the symbolic value of an observed action are able to modulate motor cortex excitability. The human motor system is thus not only involved in mirroring observed actions but is also finely tuned to their symbolic value.
Collapse
Affiliation(s)
- Sonia Betti
- Dipartimento di Psicologia Generale, Università di Padova, Via Venezia 8, 35131, Padova, Italy
| | - Umberto Castiello
- Dipartimento di Psicologia Generale, Università di Padova, Via Venezia 8, 35131, Padova, Italy.,Center for Cognitive Neuroscience, Università di Padova, Padova, Italy.,Centro Linceo Interdisciplinare Beniamino Segre, Accademia dei Lincei, Roma, Italy
| | - Luisa Sartori
- Dipartimento di Psicologia Generale, Università di Padova, Via Venezia 8, 35131, Padova, Italy.,Center for Cognitive Neuroscience, Università di Padova, Padova, Italy
| |
Collapse
|
9
|
Bianco R, Novembre G, Keller PE, Scharf F, Friederici AD, Villringer A, Sammler D. Syntax in Action Has Priority over Movement Selection in Piano Playing: An ERP Study. J Cogn Neurosci 2015; 28:41-54. [PMID: 26351994 DOI: 10.1162/jocn_a_00873] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
Abstract
Complex human behavior is hierarchically organized. Whether or not syntax plays a role in this organization is currently under debate. The present ERP study uses piano performance to isolate syntactic operations in action planning and to demonstrate their priority over nonsyntactic levels of movement selection. Expert pianists were asked to execute chord progressions on a mute keyboard by copying the posture of a performing model hand shown in sequences of photos. We manipulated the final chord of each sequence in terms of Syntax (congruent/incongruent keys) and Manner (conventional/unconventional fingering), as well as the strength of its predictability by varying the length of the Context (five-chord/two-chord progressions). The production of syntactically incongruent compared to congruent chords showed a response delay that was larger in the long compared to the short context. This behavioral effect was accompanied by a centroparietal negativity in the long but not in the short context, suggesting that a syntax-based motor plan was prepared ahead. Conversely, the execution of the unconventional manner was not delayed as a function of Context and elicited an opposite electrophysiological pattern (a posterior positivity). The current data support the hypothesis that motor plans operate at the level of musical syntax and are incrementally translated to lower levels of movement selection.
Collapse
Affiliation(s)
- Roberta Bianco
- Max Planck Institute for Human Cognitive and Brain Sciences, Leipzig, Germany
| | | | | | - Florian Scharf
- Max Planck Institute for Human Cognitive and Brain Sciences, Leipzig, Germany
| | - Angela D Friederici
- Max Planck Institute for Human Cognitive and Brain Sciences, Leipzig, Germany
| | - Arno Villringer
- Max Planck Institute for Human Cognitive and Brain Sciences, Leipzig, Germany
| | - Daniela Sammler
- Max Planck Institute for Human Cognitive and Brain Sciences, Leipzig, Germany
| |
Collapse
|
10
|
Sartori L, Betti S, Chinellato E, Castiello U. The multiform motor cortical output: Kinematic, predictive and response coding. Cortex 2015; 70:169-78. [DOI: 10.1016/j.cortex.2015.01.019] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2014] [Revised: 12/30/2014] [Accepted: 01/27/2015] [Indexed: 11/24/2022]
|
11
|
Sartori L, Betti S, Perrone C, Castiello U. Congruent and Incongruent Corticospinal Activations at the Level of Multiple Effectors. J Cogn Neurosci 2015; 27:2063-70. [PMID: 26102231 DOI: 10.1162/jocn_a_00841] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
Abstract
Motor resonance is defined as the subliminal activation of the motor system while observing actions performed by others. However, resonating with another person's actions is not always an appropriate response: In real life, people do not just imitate but rather respond in a suitable fashion. A growing body of neurophysiologic studies has demonstrated that motor resonance can be overridden by complementary motor responses (such as preparing a precision grip on a small object when seeing an open hand in sign of request). In this study, we investigated the relationship between congruent and incongruent corticospinal activations at the level of multiple effectors. The modulation of motor evoked potentials evoked by single-pulse TMS over the motor cortex was assessed in upper and lower limb muscles of participants observing a soccer player performing a penalty kick straight in their direction. Study results revealed a double dissociation: Seeing the soccer player kicking the ball triggered a motor resonance in the observer's lower limb, whereas the upper limb response afforded by the object was overridden. On the other hand, seeing the ball approaching the observers elicited a complementary motor activation in upper limbs while motor resonance in lower limbs disappeared. Control conditions showing lateral kicks, mimicked kicks, and a ball in penalty area were also included to test the motor coding of object affordances. Results point to a modulation of motor responses in different limbs over the course of action and in function of their relevance in different contexts. We contend that ecologically valid paradigms are now needed to shed light on the motor system functioning in complex forms of interaction.
Collapse
|
12
|
Gueugneau N, Mc Cabe SI, Villalta JI, Grafton ST, Della-Maggiore V. Direct mapping rather than motor prediction subserves modulation of corticospinal excitability during observation of actions in real time. J Neurophysiol 2015; 113:3700-7. [PMID: 25810483 DOI: 10.1152/jn.00416.2014] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2014] [Accepted: 03/20/2015] [Indexed: 11/22/2022] Open
Abstract
Motor facilitation refers to the specific increment in corticospinal excitability (CSE) elicited by the observation of actions performed by others. To date, the precise nature of the mechanism at the basis of this phenomenon is unknown. One possibility is that motor facilitation is driven by a predictive process reminiscent of the role of forward models in motor control. Alternatively, motor facilitation may result from a model-free mechanism by which the basic elements of the observed action are directly mapped onto their cortical representations. Our study was designed to discern these alternatives. To this aim, we recorded the time course of CSE for the first dorsal interosseous (FDI) and the abductor digiti minimi (ADM) during observation of three grasping actions in real time, two of which strongly diverged in kinematics from their natural (invariant) form. Although artificially slow movements used in most action observation studies might enhance the observer's discrimination performance, the use of videos in real time is crucial to maintain the time course of CSE within the physiological range of daily actions. CSE was measured at 4 time points within a 240-ms window that best captured the kinematic divergence from the invariant form. Our results show that CSE of the FDI, not the ADM, closely follows the functional role of the muscle despite the mismatch between the natural and the divergent kinematics. We propose that motor facilitation during observation of actions performed in real time reflects the model-free coding of perceived movement following a direct mapping mechanism.
Collapse
Affiliation(s)
- Nicolas Gueugneau
- Institute of Physiology and Biophysics Bernardo Houssay (IFIBIO Houssay), Department of Physiology and Biophysics, School of Medicine, University of Buenos Aires, Buenos Aires, Argentina; and
| | - Sofia I Mc Cabe
- Institute of Physiology and Biophysics Bernardo Houssay (IFIBIO Houssay), Department of Physiology and Biophysics, School of Medicine, University of Buenos Aires, Buenos Aires, Argentina; and
| | - Jorge I Villalta
- Institute of Physiology and Biophysics Bernardo Houssay (IFIBIO Houssay), Department of Physiology and Biophysics, School of Medicine, University of Buenos Aires, Buenos Aires, Argentina; and
| | - Scott T Grafton
- Department of Psychology, University of California, Santa Barbara, California
| | - Valeria Della-Maggiore
- Institute of Physiology and Biophysics Bernardo Houssay (IFIBIO Houssay), Department of Physiology and Biophysics, School of Medicine, University of Buenos Aires, Buenos Aires, Argentina; and
| |
Collapse
|
13
|
Grasping synergies: A motor-control approach to the mirror neuron mechanism. Phys Life Rev 2015; 12:91-103. [DOI: 10.1016/j.plrev.2014.11.002] [Citation(s) in RCA: 46] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2014] [Accepted: 11/10/2014] [Indexed: 11/21/2022]
|
14
|
Cavallo A, Ansuini C, Becchio C. The (un)coupling between action execution and observation: comment on "Grasping synergies: a motor-control approach to the mirror neuron mechanism" by D'Ausilio, Bartoli and Maffongelli. Phys Life Rev 2015; 12:129-30. [PMID: 25619152 DOI: 10.1016/j.plrev.2015.01.006] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2014] [Accepted: 12/30/2014] [Indexed: 11/29/2022]
Affiliation(s)
- Andrea Cavallo
- Centre for Cognitive Science, Department of Psychology, University of Turin, Torino, Italy
| | - Caterina Ansuini
- Department of Robotics, Brain and Cognitive Sciences, Fondazione Istituto Italiano di Tecnologia, Genova, Italy
| | - Cristina Becchio
- Department of Robotics, Brain and Cognitive Sciences, Fondazione Istituto Italiano di Tecnologia, Genova, Italy; Centre for Cognitive Science, Department of Psychology, University of Turin, Torino, Italy.
| |
Collapse
|
15
|
Buchanan JJ, Ramos J, Robson N. The perception–action dynamics of action competency are altered by both physical and observational training. Exp Brain Res 2015; 233:1289-305. [DOI: 10.1007/s00221-015-4207-y] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2014] [Accepted: 01/13/2015] [Indexed: 11/30/2022]
|
16
|
Naish KR, Houston-Price C, Bremner AJ, Holmes NP. Effects of action observation on corticospinal excitability: Muscle specificity, direction, and timing of the mirror response. Neuropsychologia 2014; 64:331-48. [PMID: 25281883 DOI: 10.1016/j.neuropsychologia.2014.09.034] [Citation(s) in RCA: 134] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2014] [Revised: 09/05/2014] [Accepted: 09/19/2014] [Indexed: 02/07/2023]
Affiliation(s)
- Katherine R Naish
- School of Psychology and Clinical Language Sciences, University of Reading, Earley Gate, Whiteknights, Reading RG6 6AL, UK; Centre for Integrative Neuroscience and Neurodynamics, University of Reading, Earley Gate, Whiteknights, Reading RG6 6AL, UK; Department of Psychology, Neuroscience & Behaviour, McMaster University, 1280 Main Street West, Hamilton, ON, Canada L8S 4L8.
| | - Carmel Houston-Price
- University of Reading Malaysia, Menara Kotaraya, Level 7, Jalan Trus, Johor Bahru, Malaysia 80000.
| | - Andrew J Bremner
- Department of Psychology, Goldsmiths, University of London, New Cross, London SE14 6NW, UK.
| | - Nicholas P Holmes
- School of Psychology and Clinical Language Sciences, University of Reading, Earley Gate, Whiteknights, Reading RG6 6AL, UK; Centre for Integrative Neuroscience and Neurodynamics, University of Reading, Earley Gate, Whiteknights, Reading RG6 6AL, UK.
| |
Collapse
|
17
|
Sartori L, Begliomini C, Panozzo G, Garolla A, Castiello U. The left side of motor resonance. Front Hum Neurosci 2014; 8:702. [PMID: 25249966 PMCID: PMC4158788 DOI: 10.3389/fnhum.2014.00702] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2014] [Accepted: 08/21/2014] [Indexed: 11/25/2022] Open
Abstract
Motor resonance is defined as the internal activation of an observer's motor system, specifically attuned to the perceived movement. In social contexts, however, different patterns of observed and executed muscular activation are frequently required. This is the case, for instance, of seeing a key offered with a precision grip and received by opening the hand. Novel evidence suggests that compatibility effects in motor resonance can be altered by social response preparation. What is not known is how handedness modulates this effect. The present study aimed at determining how a left- and a right-handed actor grasping an object and then asking for a complementary response influences corticospinal activation in left- and right-handers instructed to observe the scene. Transcranial magnetic stimulation (TMS)-induced motor evoked potentials (MEPs) were thus recorded from the dominant hands of left- and right-handers. Interestingly, requests posed by the right-handed actor induced a motor activation in the participants' respective dominant hands, suggesting that left-handers tend to mirror right-handers with their most efficient hand. Whereas requests posed by the left-handed actor activated the anatomically corresponding muscles (i.e., left hand) in all the participants, right-handers included. Motor resonance effects classically reported in the literature were confirmed when observing simple grasping actions performed by the right-handed actor. These findings indicate that handedness influences both congruent motor resonance and complementary motor preparation to observed actions.
Collapse
Affiliation(s)
- Luisa Sartori
- Dipartimento di Psicologia Generale, Università degli Studi di PadovaPadova, Italy
- Cognitive Neuroscience Center, Università degli Studi di PadovaPadova, Italy
| | - Chiara Begliomini
- Dipartimento di Psicologia Generale, Università degli Studi di PadovaPadova, Italy
- Cognitive Neuroscience Center, Università degli Studi di PadovaPadova, Italy
| | - Giulia Panozzo
- Dipartimento di Psicologia Generale, Università degli Studi di PadovaPadova, Italy
| | - Alice Garolla
- Dipartimento di Psicologia Generale, Università degli Studi di PadovaPadova, Italy
| | - Umberto Castiello
- Dipartimento di Psicologia Generale, Università degli Studi di PadovaPadova, Italy
- Cognitive Neuroscience Center, Università degli Studi di PadovaPadova, Italy
| |
Collapse
|
18
|
Mc Cabe SI, Villalta JI, Saunier G, Grafton ST, Della-Maggiore V. The Relative Influence of Goal and Kinematics on Corticospinal Excitability Depends on the Information Provided to the Observer. Cereb Cortex 2014; 25:2229-37. [PMID: 24591524 DOI: 10.1093/cercor/bhu029] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Viewing a person perform an action activates the observer's motor system. Whether this phenomenon reflects the action's kinematics or its final goal remains a matter of debate. One alternative to this apparent controversy is that the relative influence of goal and kinematics depends on the information available to the observer. Here, we addressed this possibility. For this purpose, we measured corticospinal excitability (CSE) while subjects viewed 3 different grasping actions with 2 goals: a large and a small object. Actions were directed to the large object, the small object, or corrected online in which case the goal switched during the movement. We first determined the kinematics and dynamics of the 3 actions during execution. This information was used in 2 other experiments to measure CSE while observers viewed videos of the same actions. CSE was recorded prior to movement onset and at 3 time points during the observed action. To discern between goal and kinematics, information about the goal was manipulated across experiments. We found that the goal influenced CSE only when its identity was known before movement onset. In contrast, a kinematic modulation of CSE was observed whether or not information regarding the goal was provided.
Collapse
Affiliation(s)
- Sofía I Mc Cabe
- Department of Physiology and Biophysics, School of Medicine, University of Buenos Aires, Buenos Aires C1121ABG, Argentina
| | - Jorge Ignacio Villalta
- Department of Physiology and Biophysics, School of Medicine, University of Buenos Aires, Buenos Aires C1121ABG, Argentina
| | - Ghislain Saunier
- Centro de Ciências da Saúde, Laboratorio de Neurobiologia II, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Scott T Grafton
- Department of Psychology, University of California, Santa Barbara, CA, USA
| | - Valeria Della-Maggiore
- Department of Physiology and Biophysics, School of Medicine, University of Buenos Aires, Buenos Aires C1121ABG, Argentina
| |
Collapse
|
19
|
Cavallo A, Bucchioni G, Castiello U, Becchio C. Goal or movement? Action representation within the primary motor cortex. Eur J Neurosci 2013; 38:3507-12. [PMID: 23961848 DOI: 10.1111/ejn.12343] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2013] [Accepted: 07/24/2013] [Indexed: 11/30/2022]
Affiliation(s)
- Andrea Cavallo
- Department of Psychology, Centre for Cognitive Science; University of Torino; Via Po 14 10123 Torino Italy
| | - Giulia Bucchioni
- Laboratoire de Neuroscience Functionelles et Pathologies; UFR de Médicine; Université de Picardie Jules Verne; Amiens France
| | - Umberto Castiello
- Department of General Psychology; University of Padova; Padova Italy
| | - Cristina Becchio
- Department of Psychology, Centre for Cognitive Science; University of Torino; Via Po 14 10123 Torino Italy
| |
Collapse
|
20
|
Janssen L, Steenbergen B, Carson RG. Anticipatory Planning Reveals Segmentation of Cortical Motor Output During Action Observation. Cereb Cortex 2013; 25:192-201. [DOI: 10.1093/cercor/bht220] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
|
21
|
Lago-Rodriguez A, Lopez-Alonso V, Fernández-del-Olmo M. Mirror neuron system and observational learning: Behavioral and neurophysiological evidence. Behav Brain Res 2013; 248:104-13. [DOI: 10.1016/j.bbr.2013.03.033] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2013] [Revised: 03/18/2013] [Accepted: 03/22/2013] [Indexed: 11/16/2022]
|
22
|
Senna I, Bolognini N, Maravita A. Grasping with the foot: goal and motor expertise in action observation. Hum Brain Mapp 2013; 35:1750-60. [PMID: 23671004 DOI: 10.1002/hbm.22289] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2012] [Revised: 02/20/2013] [Accepted: 02/20/2013] [Indexed: 11/08/2022] Open
Abstract
Action observation typically induces an online inner simulation of the observed movements. Here we investigate whether action observation merely activates, in the observer, the muscles involved in the observed movement or also muscles that are typically used to achieve the observed action goal. In a first experiment, hand and foot motor areas were stimulated by means of transcranial magnetic stimulation, while participants viewed a typical hand action (grasping) or a nonspecific action (stepping over an object) performed by either a hand or a foot. Hand motor evoked potentials (MEPs) increased for grasping and stepping over actions performed by the hand and for grasping actions performed by the foot. Conversely, foot MEPs increased only for actions performed by the foot. In a second experiment, participants viewed a typical hand action (grasping a pencil) and a typical foot action (pressing a foot-pedal) performed by either a hand or a foot. Again, hand MEPs increased not only during the observation of both actions performed by the hand but also for grasping actions performed by the foot. Foot MEPs increased not only during the observation of grasping and pressing actions performed by the foot but also for pressing actions performed by the hand. This evidence indicates that motor activations by action observation occur also in the muscles typically used to perform the observed action, even when the action is executed by an unusual effector, hence suggesting a double coding of observed actions: a strict somatotopic coding and an action goal coding based on the observer's motor expertise.
Collapse
Affiliation(s)
- Irene Senna
- Department of Psychology, University of Milano-Bicocca, Milano, Italy
| | | | | |
Collapse
|
23
|
Sartori L, Begliomini C, Castiello U. Motor resonance in left- and right-handers: evidence for effector-independent motor representations. Front Hum Neurosci 2013; 7:33. [PMID: 23408666 PMCID: PMC3570897 DOI: 10.3389/fnhum.2013.00033] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2012] [Accepted: 01/28/2013] [Indexed: 12/01/2022] Open
Abstract
The idea of motor resonance was born at the time that it was demonstrated that cortical and spinal pathways of the motor system are specifically activated during both action-observation and execution. What is not known is if the human action observation-execution matching system simulates actions through motor representations specifically attuned to the laterality of the observed effectors (i.e., effector-dependent representations) or through abstract motor representations unconnected to the observed effector (i.e., effector-independent representations). To answer that question we need to know how the information necessary for motor resonance is represented or integrated within the representation of an effector. Transcranial magnetic stimulation (TMS)-induced motor evoked potentials (MEPs) were thus recorded from the dominant and non-dominant hands of left- and right-handed participants while they observed a left- or a right-handed model grasping an object. The anatomical correspondence between the effector being observed and the observer's effector classically reported in the literature was confirmed by the MEP response in the dominant hand of participants observing models with their same hand preference. This effect was found in both left- as well as in right-handers. When a broader spectrum of options, such as actions performed by a model with a different hand preference, was instead considered, that correspondence disappeared. Motor resonance was noted in the observer's dominant effector regardless of the laterality of the hand being observed. This would indicate that there is a more sophisticated mechanism which works to convert someone else's pattern of movement into the observer's optimal motor commands and that effector-independent representations specifically modulate motor resonance.
Collapse
Affiliation(s)
- Luisa Sartori
- Dipartimento di Psicologia Generale, Università degli Studi di Padova Padova, Italy
| | | | | |
Collapse
|
24
|
Motor cortex excitability is tightly coupled to observed movements. Neuropsychologia 2012; 50:2341-7. [DOI: 10.1016/j.neuropsychologia.2012.06.002] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2011] [Revised: 05/28/2012] [Accepted: 06/06/2012] [Indexed: 11/23/2022]
|