1
|
Mechanism of Oxytocin-Induced Contraction in Rat Gastric Circular Smooth Muscle. Int J Mol Sci 2022; 24:ijms24010441. [PMID: 36613886 PMCID: PMC9820280 DOI: 10.3390/ijms24010441] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2022] [Revised: 12/20/2022] [Accepted: 12/23/2022] [Indexed: 12/29/2022] Open
Abstract
Oxytocin produces an excitatory effect on gastric muscle through the activation of receptors present on stomach smooth muscle cells. However, the intracellular mechanisms that mediate oxytocin excitatory effects are still largely unknown. Therefore, we aimed to investigate the signaling pathways involved in oxytocin-induced contractions in gastric smooth muscle, shedding light on phospholipase C (PLC)-β1 signaling and its downstream molecules, including inositol 1,4,5- trisphosphate (IP3) and myosin light chain kinase (MLCK). The contractions of gastric smooth muscle from male rats were measured in an organ bath set up in response to exogenous oxytocin 10-7 M, in the presence and absence of inhibitors of the indicated signaling molecules. Oxytocin (10-9-10-5 M) induced dose-dependent stomach smooth muscle contraction. Pre-incubation with atosiban, an oxytocin receptor inhibitor, abolished the oxytocin-induced contraction. Moreover, PLC β1 inhibitor (U73122) and IP3 inhibitor Xestospongin C inhibited oxytocin-induced muscle contraction to various degrees. Verapamil, a calcium channel blocker, inhibited oxytocin-induced contraction, and pre-incubation of the strips, with both verapamil and Xestospongin C, further inhibited the excitatory effect of oxytocin. Chelation of intracellular calcium with BAPT-AM (1,2-bis-(o-aminophenoxy) ethane-N,N,N',N'-tetraacetic acid) significantly inhibited the effect of oxytocin on muscle contraction. Finally, pre-incubation of the strips with the Ca2+/calmodulin-dependent protein kinase selective inhibitor STO-609 significantly inhibited the contraction induced by oxytocin. These results suggest that oxytocin directly stimulates its cell surface receptor to activate PLC β1, which in turn liberates IP3, which eventually elevates intracellular calcium, the prerequisite for smooth muscle contraction.
Collapse
|
2
|
Jiang Y, Zimmerman JE, Browning KN, Travagli RA. Stress-induced neuroplasticity in the gastric response to brainstem oxytocin in male rats. Am J Physiol Gastrointest Liver Physiol 2022; 322:G513-G522. [PMID: 35170350 PMCID: PMC8993533 DOI: 10.1152/ajpgi.00347.2021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
Previous studies have shown that pharmacological manipulations with stress-related hormones such as corticotropin-releasing factor and thyrotropin-releasing hormone induce neuroplasticity in brainstem vagal neurocircuits, which modulate gastric tone and motility. The prototypical antistress hormone oxytocin (OXT) has been shown to modulate gastric tone and motility via vagal pathways, and descending hypothalamic oxytocinergic inputs play a major role in the vagally dependent gastric-related adaptations to stress. The aim of this study was to investigate the possible cellular mechanisms through which OXT modulates central vagal brainstem and peripheral enteric neurocircuits of male Sprague-Dawley rats in response to chronic repetitive stress. After chronic (5 consecutive days) of homotypic or heterotypic stress load, the response to exogenous brainstem administration of OXT was examined using whole cell patch-clamp recordings from gastric-projecting vagal motoneurons and in vivo recordings of gastric tone and motility. GABAergic currents onto vagal motoneurons were decreased by OXT in stressed, but not in naïve rats. In naïve rats, microinjections of OXT in vagal brainstem nuclei-induced gastroinhibition via peripheral release of nitric oxide (NO). In stressed rats, however, the OXT-induced gastroinhibition was determined by the release of both NO and vasoactive intestinal peptide (VIP). Taken together, our data indicate that stress induces neuroplasticity in the response to OXT in the neurocircuits, which modulate gastric tone and motility. In particular, stress uncovers the OXT-mediated modulation of brainstem GABAergic currents and alters the peripheral gastric response to vagal stimulation.NEW & NOTEWORTHY The prototypical antistress hormone, oxytocin (OXT), modulates gastric tone and motility via vagal pathways, and descending hypothalamic-brainstem OXT neurocircuits play a major role in the vagally dependent adaptation of gastric motility and tone to stress. The current study suggests that in the neurocircuits, which modulate gastric tone and motility, stress induces neuroplasticity in the response to OXT and may reflect the dysregulation observed in stress-exacerbated functional motility disorders.
Collapse
Affiliation(s)
- Yanyan Jiang
- 1Department of Neural and Behavioral Sciences, Penn State College of Medicine, Hershey, Pennsylvania
| | | | - Kirsteen N. Browning
- 1Department of Neural and Behavioral Sciences, Penn State College of Medicine, Hershey, Pennsylvania
| | - R. Alberto Travagli
- 1Department of Neural and Behavioral Sciences, Penn State College of Medicine, Hershey, Pennsylvania
| |
Collapse
|
3
|
Bülbül M, Sinen O. The influence of early-life and adulthood stressors on brain neuropeptide-S system. Neuropeptides 2022; 92:102223. [PMID: 34982971 DOI: 10.1016/j.npep.2021.102223] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/06/2021] [Revised: 12/07/2021] [Accepted: 12/25/2021] [Indexed: 11/18/2022]
Abstract
Central administered neuropeptide-S (NPS) was shown to reduce stress response in rodents. This study aimed to investigate the alterations in NPS system upon chronic exposure to early-life and adulthood stressors. Newborn pups underwent maternal separation (MS) from postnatal day 1 to 14 comprised of daily 3-h separations. In the adulthood, 90-min of restraint stress was loaded to males as an acute stress (AS) model. For chronic homotypic stress (CHS), same stressor was applied for 5 consecutive days. The changes in the expression and the release of NPS were monitored by immunohistochemistry and microdialysis, respectively. Throughout the CHS, heart rate variability (HRV) was analyzed on a daily basis. The immunoreactivity for NPS receptor (NPSR) was detected in basolateral amygdala (BLA) and hypothalamic paraventricular nucleus (PVN) by immunofluorescence staining. The NPS expression in the brainstem was increased upon AS which was more prominent following CHS, whereas these responses were found to be blunted in MS counterparts. Similar to histological data, the stress-induced release of NPS in BLA was attenuated in MS rats. CHS-induced elevations in sympatho-vagal balance were alleviated in control rats; which was not observed in MS rats. The expression of NPSR in BLA and PVN was down-regulated in MS rats. The brain NPS/NPSR system appears to be susceptible to the early-life stressors and the subsequent chronic stress exposure in adulthood which results in altered autonomic outflow.
Collapse
Affiliation(s)
- Mehmet Bülbül
- Department of Physiology, Akdeniz University, Faculty of Medicine, Antalya, Turkey.
| | - Osman Sinen
- Department of Physiology, Akdeniz University, Faculty of Medicine, Antalya, Turkey
| |
Collapse
|
4
|
Bülbül M, Sinen O. Sexual dimorphism in maternally separated rats: effects of repeated homotypic stress on gastrointestinal motor functions. Exp Brain Res 2021; 239:2551-2560. [PMID: 34160630 DOI: 10.1007/s00221-021-06151-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2021] [Accepted: 06/08/2021] [Indexed: 11/30/2022]
Abstract
Experiencing stressful events during early life has been considered as a risk factor for development of functional gastrointestinal disorders in adulthood. This study aimed to investigate the sex-related differences in stress-induced gastrointestinal (GI) dysmotility in rats exposed to neonatal maternal separation (MS). Newborn pups were removed from mothers for 180 min from postnatal day-1 to day-14. Experiments were performed in male and female offsprings at adulthood. Elevated plus maze (EPM) test was used to assess MS-induced anxiety-like behaviors. Ninety minute of restraint stress was applied for once or 5 consecutive days for acute stress (AS) or repeated homotypic stress (RHS), respectively. Measurement of fecal output (FO) and gastric emptying (GE), and hypothalamic microdialysis were performed. Both in males and females, MS produced anxiety-like behaviors. AS delayed GE and increased FO in all groups. In RHS-loaded MS females, AS-induced alterations in GE and FO were restored, however, no adaptation was observed in male counterparts. Regardless of sex and neonatal stress experience, AS significantly increased corticotropin-releasing factor (CRF) release from paraventricular nucleus of hypothalamus, whereas females were found more susceptible than males. Following RHS, AS-induced elevations in CRF release were attenuated only in MS females, but not in males. Both females and males seem to be prone to AS-induced alterations in hypothalamic CRF system and in GI motor functions. Neonatal MS disturbs chronic stress coping mechanisms in males. Conversely, females are likely to circumvent the deleterious effects of neonatal MS on GI functions through developing a habituation to prolonged stressed conditions.
Collapse
Affiliation(s)
- Mehmet Bülbül
- Department of Physiology, Faculty of Medicine, Akdeniz University, Antalya, 07070, Turkey.
| | - Osman Sinen
- Department of Physiology, Faculty of Medicine, Akdeniz University, Antalya, 07070, Turkey
| |
Collapse
|
5
|
Jiang Y, Travagli RA. Hypothalamic-vagal oxytocinergic neurocircuitry modulates gastric emptying and motility following stress. J Physiol 2020; 598:4941-4955. [PMID: 32864736 PMCID: PMC8451654 DOI: 10.1113/jp280023] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2020] [Accepted: 07/27/2020] [Indexed: 12/30/2022] Open
Abstract
KEY POINTS Stress triggers and exacerbates the symptoms of functional gastrointestinal disorders, such as delayed gastric emptying and impaired gastric motility. Understanding the mechanisms by which the neural circuits, impaired by stress, are restored may help to identify potential targets for more effective therapeutic interventions. Oxytocin administration or release ameliorates the stress-induced delayed gastric emptying and motility. However, is it unclear whether the effects are mediated via the hypothalamic-pituitary-adrenocortical axis or the oxytocinergic projections from the paraventricular nucleus of the hypothalamus to brainstem neurones of the dorsal vagal complex. We used Cre-inducible designer receptors exclusively activated by designer drugs to demonstrate the fundamental role of the oxytocinergic hypothalamic-vagal projections in the gastric adaptation to stress. ABSTRACT Stress triggers and exacerbates the symptoms of functional gastrointestinal (GI) disorders, such as delayed gastric emptying and impaired gastric motility. The prototypical anti-stress hormone, oxytocin (OXT), plays a major role in the modulation of gastric emptying and motility following stress. It is not clear, however, whether the amelioration of dysregulated GI functions by OXT is mediated via an effect on the hypothalamic-pituitary-adrenocortical axis or the oxytocinergic projections from the paraventricular nucleus of the hypothalamus (PVN) to neurones of the dorsal vagal complex (DVC). In the present study we tested the hypothesis that the activity of hypothalamic-vagal oxytocinergic neurocircuits plays a major role in the gastric adaptation to stress. Cre-inducible designer receptors exclusively activated by designer drugs (DREADDs) were injected into the DVC of rats and retrogradely transported to allow selective expression in OXT neurones in the PVN. Following acute stress and either chronic heterotypic (CHe) or chronic homotypic (CHo) stress, gastric emptying was assessed via the [13 C]-octanoic acid breath test, and gastric tone and motility were assessed via strain gauges sewn on the surface of the stomach. Activation of the hypothalamic-vagal oxytocinergic neurocircuitry, by DREADD agonist clozapine-N-oxide (CNO), prevented the delayed gastric emptying observed following acute or CHe stress, and 4th ventricular administration of CNO increased gastric tone and motility. Conversely, CNO-mediated inhibition of the hypothalamic-vagal oxytocinergic neurocircuitry prevented the CHo-induced adaptation in gastric emptying, and an increase in gastric tone and motility. Taken together, the data support the hypothesis that hypothalamic-vagal oxytocinergic neurocircuits play a major role in the modulation of gastric emptying and motility following stress.
Collapse
Affiliation(s)
- Yanyan Jiang
- Department of Neural and Behavioral Sciences, Penn State College of Medicine, Hershey, PA
| | - R Alberto Travagli
- Department of Neural and Behavioral Sciences, Penn State College of Medicine, Hershey, PA
| |
Collapse
|
6
|
Jiang Y, Coleman FH, Kopenhaver Doheny K, Travagli RA. Stress Adaptation Upregulates Oxytocin within Hypothalamo-Vagal Neurocircuits. Neuroscience 2018; 390:198-205. [PMID: 30176320 DOI: 10.1016/j.neuroscience.2018.08.021] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2018] [Revised: 08/20/2018] [Accepted: 08/21/2018] [Indexed: 12/16/2022]
Abstract
Stress plays a pivotal role in the development and/or exacerbation of functional gastrointestinal (GI) disorders. The paraventricular nucleus of the hypothalamus (PVN) contains neurons that are part of the hypothalamic-pituitary-adrenal axis as well as preautonomic neurons innervating, among other areas, gastric-projecting preganglionic neurons of the dorsal vagal complex (DVC). The aim of the present study was to test the hypothesis that stress adaptation upregulates oxytocin (OXT) within PVN-brainstem vagal neurocircuitry. The retrograde tracer cholera toxin B (CTB) was injected into the DVC of rats which, after post-surgical recovery, were pair-housed and exposed to either homo- or heterotypic stress for five consecutive days. Fecal pellets were counted at the end of each stress load. Two hours after the last stressor, the whole brain was excised. Brainstem and hypothalamic nuclei were analyzed immunohistochemically for the presence of both OXT-immunopositive cells in identified preautonomic PVN neurons as well as OXT fibers in the DVC. Rats exposed to chronic homotypic, but not chronic heterotypic stress, had a significant increase in both number of CTB+ OXT co-localized neurons in the PVN as well as density of OXT-positive fibers in the DVC compared to control rats. These data suggest that preautonomic OXT PVN neurons and their projections to the DVC increase following adaptation to stress, and suggest that the possible up-regulation of OXT within PVN-brainstem vagal neurocircuitry may play a role in the adaptation of GI responses to stress.
Collapse
Affiliation(s)
- Yanyan Jiang
- Department of Neural and Behavioral Sciences, Penn State - College of Medicine, Hershey, PA, USA
| | - F Holly Coleman
- Department of Neural and Behavioral Sciences, Penn State - College of Medicine, Hershey, PA, USA
| | | | - R Alberto Travagli
- Department of Neural and Behavioral Sciences, Penn State - College of Medicine, Hershey, PA, USA.
| |
Collapse
|
7
|
Jiang Y, Browning KN, Toti L, Travagli RA. Vagally mediated gastric effects of brain stem α 2-adrenoceptor activation in stressed rats. Am J Physiol Gastrointest Liver Physiol 2018; 314:G504-G516. [PMID: 29351390 PMCID: PMC5966751 DOI: 10.1152/ajpgi.00382.2017] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/29/2017] [Revised: 01/05/2018] [Accepted: 01/09/2018] [Indexed: 02/07/2023]
Abstract
Chronic stress exerts vagally dependent effects to disrupt gastric motility; previous studies have shown that, among other nuclei, A2 neurons are involved in mediating these effects. Several studies have also shown robust in vitro and in vivo effects of α2-adrenoceptor agonists on vagal motoneurons. We have demonstrated previously that brainstem vagal neurocircuits undergo remodeling following acute stress; however, the effects following brief periods of chronic stress have not been investigated. Our aim, therefore, was to test the hypothesis that different types of chronic stress influence gastric tone and motility by inducing plasticity in the response of vagal neurocircuits to α2-adrenoreceptor agonists. In rats that underwent 5 days of either homotypic or heterotypic stress loading, we applied the α2-adrenoceptor agonist, UK14304, either by in vitro brainstem perfusion to examine its ability to modulate GABAergic synaptic inputs to vagal motoneurons or in vivo brainstem microinjection to observe actions to modulate antral tone and motility. In neurons from naïve rats, GABAergic currents were unresponsive to exogenous application of UK14304. In contrast, GABAergic currents were inhibited by UK14304 in all neurons from homotypic and, in a subpopulation of neurons, heterotypic stressed rats. In control rats, UK14304 microinjection inhibited gastric tone and motility via withdrawal of vagal cholinergic tone; in heterotypic stressed rats, the larger inhibition of antrum tone was due to a concomitant activation of peripheral nonadrenergic, noncholinergic pathways. These data suggest that stress induces plasticity in brainstem vagal neurocircuits, leading to an upregulation of α2-mediated responses. NEW & NOTEWORTHY Catecholaminergic neurons of the A2 area play a relevant role in stress-related dysfunction of the gastric antrum. Brief periods of chronic stress load induce plastic changes in the actions of adrenoceptors on vagal brainstem neurocircuits.
Collapse
Affiliation(s)
- Yanyan Jiang
- Department of Neural and Behavioral Sciences, Penn State, College of Medicine , Hershey, Pennsylvania
| | - Kirsteen N Browning
- Department of Neural and Behavioral Sciences, Penn State, College of Medicine , Hershey, Pennsylvania
| | - Luca Toti
- Department of Neural and Behavioral Sciences, Penn State, College of Medicine , Hershey, Pennsylvania
| | - R Alberto Travagli
- Department of Neural and Behavioral Sciences, Penn State, College of Medicine , Hershey, Pennsylvania
| |
Collapse
|
8
|
Bülbül M, Sinen O, Gemici B, İzgüt-Uysal VN. Opposite effects of central oxytocin and arginine vasopressin on changes in gastric motor function induced by chronic stress. Peptides 2017; 87:1-11. [PMID: 27829122 DOI: 10.1016/j.peptides.2016.11.001] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/01/2016] [Revised: 10/26/2016] [Accepted: 11/01/2016] [Indexed: 01/24/2023]
Abstract
Hypothalamic oxytocin (OXT) and arginine vasopressin (AVP) are known to act oppositely on hypothalamic-pituitary-adrenal (HPA) axis, stress response and gastrointestinal (GI) motility. In rodents, exposure to restraint stress (RS) delays gastric emptying (GE), however, repeated exposure to the same stressor (chronic homotypic stress (CHS)), the delayed GE is restored to basal level, while hypothalamic OXT is upregulated. In contrast, when rats are exposed to chronic heterotypic stress (CHeS), these adaptive changes are not observed. Although the involvement of central OXT in gastric motor adaptation is partly investigated, the role of hypothalamic AVP in CHeS-induced maladaptive paradigm is poorly understood. Using in-vivo brain microdialysis in rats, the changes OXT and AVP release from hypothalamus were monitored under basal non-stressed (NS) conditions and in rats exposed to acute stress (AS), CHS and CHeS. To investigate the involvement of central endogenous OXT or AVP in CHS-induced habituation and CHeS-induced maladaptation, chronic central administration of selective OXT receptor antagonist L-371257 and selective AVP V1b receptor antagonist SSR-149415 was performed daily. OXT was measured higher in AS and CHS group, but not in CHeS-loaded rats, whereas AVP significantly increased in rats exposed to AS and CHeS. Additionally, the response of the hypothalamic OXT- and AVP-producing cells was amplified following CHS and CHeS, respectively. In rats exposed to AS for 90min solid GE significantly delayed. The delayed-GE was completely restored to the basal level following CHS, however, it remained delayed in CHeS-loaded rats. The CHS-induced restoration was prevented by L-371257, whereas SSR-149415 abolished the CHeS-induced impaired GE. A significant correlation was observed between GE and (i) OXT in CHS-loaded rats (rho=0.61, p<0.05, positively), (ii) AVP in CHeS-loaded rats (rho=0.69, p<0.05, negatively). Under long term stressed conditions, the release of AVP and OXT from hypothalamus may vary depending on the content of the stressors. Central AVP appears to act oppositely to OXT by mediating CHeS-induced gastric motor maladaptation. Long term central AVP antagonism might be a pharmacological approach for the treatment of stress-related gastric motility disorders.
Collapse
Affiliation(s)
- Mehmet Bülbül
- Akdeniz University, Faculty of Medicine, Department of Physiology, Antalya, Turkey.
| | - Osman Sinen
- Akdeniz University, Faculty of Medicine, Department of Physiology, Antalya, Turkey
| | - Burcu Gemici
- Yeditepe University, Faculty of Medicine, Department of Physiology, İstanbul, Turkey
| | - V Nimet İzgüt-Uysal
- Akdeniz University, Faculty of Medicine, Department of Physiology, Antalya, Turkey
| |
Collapse
|
9
|
Abstract
A large body of research has been dedicated to the effects of gastrointestinal peptides on vagal afferent fibres, yet multiple lines of evidence indicate that gastrointestinal peptides also modulate brainstem vagal neurocircuitry, and that this modulation has a fundamental role in the physiology and pathophysiology of the upper gastrointestinal tract. In fact, brainstem vagovagal neurocircuits comprise highly plastic neurons and synapses connecting afferent vagal fibres, second order neurons of the nucleus tractus solitarius (NTS), and efferent fibres originating in the dorsal motor nucleus of the vagus (DMV). Neuronal communication between the NTS and DMV is regulated by the presence of a variety of inputs, both from within the brainstem itself as well as from higher centres, which utilize an array of neurotransmitters and neuromodulators. Because of the circumventricular nature of these brainstem areas, circulating hormones can also modulate the vagal output to the upper gastrointestinal tract. This Review summarizes the organization and function of vagovagal reflex control of the upper gastrointestinal tract, presents data on the plasticity within these neurocircuits after stress, and discusses the gastrointestinal dysfunctions observed in Parkinson disease as examples of physiological adjustment and maladaptation of these reflexes.
Collapse
|
10
|
Jovanovic P, Stefanovic B, Spasojevic N, Puskas N, Dronjak S. Effects of oxytocin on adreno-medullary catecholamine synthesis, uptake and storage in rats exposed to chronic isolation stress. Endocr Res 2016; 41:124-31. [PMID: 26726927 DOI: 10.3109/07435800.2015.1094086] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
PURPOSE/AIM The adreno-medullar system represents one of the main systems involved in the response to stressful events. The neuropeptide oxytocin, is highly sensitive to the social environment, and regulates autonomic function. Adreno-medullary activity is dependent on the synthesis of catecholamine, its reuptake, release, degradation and vesicular transport. A direct influence of oxytocin on catecholamine synthesizing enzyme and transports in animals exposed to chronic social isolation stress has not been studied yet. MATERIALS AND METHODS In the present study, we examined the effect of chronic oxytocin treatment on the level of plasma catecholamine and its content, mRNA and protein levels of tyrosine hydroxylase (TH), noradrenaline transporter (NET) as well as vesicular monoamine transporter 2 (VMAT2) in the adrenal medulla of socially isolated rats. RESULTS Our results show that, by the end of 12 weeks, social isolation did not produce any significant changes in catecholamine content but increased plasma catecholamine level and synthesis in the adrenal medulla. Oxytocin treatment had no further effect either on catecholamine synthesis or content in socially stressed animals whereas a significant elevation of plasma norepinephrine and epinephrine were reduced. On the other hand, chronic isolation caused a significant increase in VMAT2 and decrease in NET protein levels. Oxytocin treatment brought about an increase in protein levels of NET and its return to the levels of control group. Besides, it further increases VMAT2 protein levels in the adrenal medulla of individually housed rats. CONCLUSION The present results show that peripheral oxytocin treatment enhances catecholamine uptake and storage in the adrenal medulla of chronically isolated animals.
Collapse
Affiliation(s)
- Predrag Jovanovic
- a Department of Molecular Biology and Endocrinology , Institute of Nuclear Sciences "Vinca", University of Belgrade , Belgrade , Serbia
| | - Bojana Stefanovic
- a Department of Molecular Biology and Endocrinology , Institute of Nuclear Sciences "Vinca", University of Belgrade , Belgrade , Serbia
| | - Natasa Spasojevic
- a Department of Molecular Biology and Endocrinology , Institute of Nuclear Sciences "Vinca", University of Belgrade , Belgrade , Serbia
| | - Nela Puskas
- b Faculty of Medicine , Institute of Histology and Embryology "Aleksandar Đ. Kostić", University of Belgrade , Višegradska , Belgrade , Serbia
| | - Sladjana Dronjak
- a Department of Molecular Biology and Endocrinology , Institute of Nuclear Sciences "Vinca", University of Belgrade , Belgrade , Serbia
| |
Collapse
|
11
|
Bülbül M, İzgüt-Uysal VN, Sinen O, Birsen İ, Tanrıöver G. Central apelin mediates stress-induced gastrointestinal motor dysfunction in rats. Am J Physiol Gastrointest Liver Physiol 2016; 310:G249-61. [PMID: 26680735 DOI: 10.1152/ajpgi.00145.2015] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/11/2015] [Accepted: 12/13/2015] [Indexed: 01/31/2023]
Abstract
Apelin, an endogenous ligand for APJ receptor, has been reported to be upregulated in paraventricular nucleus (PVN) following stress. Central apelin is known to stimulate release of corticotropin-releasing factor (CRF) via APJ receptor. We tested the hypothesis that stress-induced gastrointestinal (GI) dysfunction is mediated by central apelin. We also assessed the effect of exogenous apelin on GI motility under nonstressed (NS) conditions in conscious rats. Prior to solid gastric emptying (GE) and colon transit (CT) measurements, APJ receptor antagonist F13A was centrally administered under NS conditions and following acute stress (AS), chronic homotypic stress (CHS), and chronic heterotypic stress (CHeS). Plasma corticosterone was assayed. Strain gage transducers were implanted on serosal surfaces of antrum and distal colon to record postprandial motility. Stress exposure induced coexpression of c-Fos and apelin in hypothalamic PVN. Enhanced hypothalamic apelin and CRF levels in microdialysates were detected following AS and CHeS, which were negatively and positively correlated with GE and CT, respectively. Central F13A administration abolished delayed GE and accelerated CT induced by AS and CHeS. Central apelin-13 administration increased the plasma corticosterone and inhibited GE and CT by attenuating antral and colonic contractions. The inhibitory effect elicited by apelin-13 was abolished by central pretreatment of CRF antagonist CRF9-41 in antrum, but not in distal colon. Central endogenous apelin mediates stress-induced changes in gastric and colonic motor functions through APJ receptor. The inhibitory effects of central exogenous apelin-13 on GI motility appear to be partly CRF dependent. Apelin-13 inhibits colon motor functions through a CRF-independent pathway.
Collapse
Affiliation(s)
- Mehmet Bülbül
- Akdeniz University Faculty of Medicine Department of Physiology, Antalya, Turkey; and
| | - V Nimet İzgüt-Uysal
- Akdeniz University Faculty of Medicine Department of Physiology, Antalya, Turkey; and
| | - Osman Sinen
- Akdeniz University Faculty of Medicine Department of Physiology, Antalya, Turkey; and
| | - İlknur Birsen
- Akdeniz University Faculty of Medicine Department of Physiology, Antalya, Turkey; and
| | - Gamze Tanrıöver
- Akdeniz University Faculty of Medicine Department of Histology and Embryology, Antalya, Turkey
| |
Collapse
|
12
|
Browning KN, Travagli RA. Central nervous system control of gastrointestinal motility and secretion and modulation of gastrointestinal functions. Compr Physiol 2015; 4:1339-68. [PMID: 25428846 DOI: 10.1002/cphy.c130055] [Citation(s) in RCA: 360] [Impact Index Per Article: 36.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Although the gastrointestinal (GI) tract possesses intrinsic neural plexuses that allow a significant degree of autonomy over GI functions, the central nervous system (CNS) provides extrinsic neural inputs that regulate, modulate, and control these functions. While the intestines are capable of functioning in the absence of extrinsic inputs, the stomach and esophagus are much more dependent upon extrinsic neural inputs, particularly from parasympathetic and sympathetic pathways. The sympathetic nervous system exerts a predominantly inhibitory effect upon GI muscle and provides a tonic inhibitory influence over mucosal secretion while, at the same time, regulates GI blood flow via neurally mediated vasoconstriction. The parasympathetic nervous system, in contrast, exerts both excitatory and inhibitory control over gastric and intestinal tone and motility. Although GI functions are controlled by the autonomic nervous system and occur, by and large, independently of conscious perception, it is clear that the higher CNS centers influence homeostatic control as well as cognitive and behavioral functions. This review will describe the basic neural circuitry of extrinsic inputs to the GI tract as well as the major CNS nuclei that innervate and modulate the activity of these pathways. The role of CNS-centered reflexes in the regulation of GI functions will be discussed as will modulation of these reflexes under both physiological and pathophysiological conditions. Finally, future directions within the field will be discussed in terms of important questions that remain to be resolved and advances in technology that may help provide these answers.
Collapse
Affiliation(s)
- Kirsteen N Browning
- Department of Neural and Behavioral Sciences, Penn State College of Medicine, Hershey, Pennsylvania
| | | |
Collapse
|
13
|
Yang X, Xi TF, Li YX, Wang HH, Qin Y, Zhang JP, Cai WT, Huang MT, Shen JQ, Fan XM, Shi XZ, Xie DP. Oxytocin decreases colonic motility of cold water stressed rats via oxytocin receptors. World J Gastroenterol 2014; 20:10886-10894. [PMID: 25152590 PMCID: PMC4138467 DOI: 10.3748/wjg.v20.i31.10886] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/13/2014] [Revised: 04/25/2014] [Accepted: 07/22/2014] [Indexed: 02/07/2023] Open
Abstract
AIM: To investigate whether cold water intake into the stomach affects colonic motility and the involvement of the oxytocin-oxytocin receptor pathway in rats.
METHODS: Female Sprague Dawley rats were used and some of them were ovariectomized. The rats were subjected to gastric instillation with cold (0-4 °C, cold group) or room temperature (20-25 °C, control group) saline for 14 consecutive days. Colon transit was determined with a bead inserted into the colon. Colonic longitudinal muscle strips were prepared to investigate the response to oxytocin in vitro. Plasma concentration of oxytocin was detected by ELISA. Oxytocin receptor expression was investigated by Western blot analysis. Immunohistochemistry was used to locate oxytocin receptors.
RESULTS: Colon transit was slower in the cold group than in the control group (P < 0.05). Colonic smooth muscle contractile response to oxytocin decreased, and the inhibitory effect of oxytocin on muscle contractility was enhanced by cold water intake (0.69 ± 0.08 vs 0.88 ± 0.16, P < 0.05). Atosiban and tetrodotoxin inhibited the effect of oxytocin on colonic motility. Oxytocin receptors were located in the myenteric plexus, and their expression was up-regulated in the cold group (P < 0.05). Cold water intake increased blood concentration of oxytocin, but this effect was attenuated in ovariectomized rats (286.99 ± 83.72 pg/mL vs 100.56 ± 92.71 pg/mL, P < 0.05). However, in ovariectomized rats, estradiol treatment increased blood oxytocin, and the response of colonic muscle strips to oxytocin was attenuated.
CONCLUSION: Cold water intake inhibits colonic motility partially through oxytocin-oxytocin receptor signaling in the myenteric nervous system pathway, which is estrogen dependent.
Collapse
MESH Headings
- Animals
- Cold Temperature
- Colon/innervation
- Dose-Response Relationship, Drug
- Drinking
- Estradiol/pharmacology
- Estrogen Replacement Therapy
- Female
- Gastrointestinal Motility/drug effects
- Hormone Antagonists/pharmacology
- Muscle, Smooth/innervation
- Myenteric Plexus/drug effects
- Myenteric Plexus/metabolism
- Myenteric Plexus/physiopathology
- Ovariectomy
- Oxytocin/blood
- Oxytocin/pharmacology
- Rats, Sprague-Dawley
- Receptors, Oxytocin/agonists
- Receptors, Oxytocin/antagonists & inhibitors
- Receptors, Oxytocin/metabolism
- Signal Transduction/drug effects
- Stress, Psychological/blood
- Stress, Psychological/drug therapy
- Stress, Psychological/physiopathology
- Stress, Psychological/psychology
- Time Factors
- Water
Collapse
|
14
|
Browning KN, Babic T, Toti L, Holmes GM, Coleman FH, Travagli RA. Plasticity in the brainstem vagal circuits controlling gastric motor function triggered by corticotropin releasing factor. J Physiol 2014; 592:4591-605. [PMID: 25128570 DOI: 10.1113/jphysiol.2014.278192] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Stress impairs gastric emptying, reduces stomach compliance and induces early satiety via vagal actions. We have shown recently that the ability of the anti-stress neuropeptide oxytocin (OXT) to modulate vagal brainstem circuits undergoes short-term plasticity via alterations in cAMP levels subsequent to vagal afferent fibre-dependent activation of metabotropic glutamate receptors. The aim of the present study was to test the hypothesis that the OXT-induced gastric response undergoes plastic changes in the presence of the prototypical stress hormone, corticotropin releasing factor (CRF). Whole cell patch clamp recordings showed that CRF increased inhibitory GABAergic synaptic transmission to identified corpus-projecting dorsal motor nucleus of the vagus (DMV) neurones. In naive brainstem slices, OXT perfusion had no effect on inhibitory synaptic transmission; following exposure to CRF (and recovery from its actions), however, re-application of OXT inhibited GABAergic transmission in the majority of neurones tested. This uncovering of the OXT response was antagonized by pretreatment with protein kinase A or adenylate cyclase inhibitors, H89 and di-deoxyadenosine, respectively, indicating a cAMP-mediated mechanism. In naive animals, OXT microinjection in the dorsal vagal complex induced a NO-mediated corpus relaxation. Following CRF pretreatment, however, microinjection of OXT attenuated or, at times reversed, the gastric relaxation which was insensitive to l-NAME but was antagonized by pretreatment with a VIP antagonist. Immunohistochemical analyses of vagal motoneurones showed an increased number of oxytocin receptors present on GABAergic terminals of CRF-treated or stressed vs. naive rats. These results indicate that CRF alters vagal inhibitory circuits that uncover the ability of OXT to modulate GABAergic currents and modifies the gastric corpus motility response to OXT.
Collapse
Affiliation(s)
- Kirsteen N Browning
- Department of Neural and Behavioral Sciences, Penn State University College of Medicine, Hershey, PA, 17033, USA
| | - Tanja Babic
- Department of Neural and Behavioral Sciences, Penn State University College of Medicine, Hershey, PA, 17033, USA
| | - Luca Toti
- Department of Neural and Behavioral Sciences, Penn State University College of Medicine, Hershey, PA, 17033, USA
| | - Gregory M Holmes
- Department of Neural and Behavioral Sciences, Penn State University College of Medicine, Hershey, PA, 17033, USA
| | - F Holly Coleman
- Department of Neural and Behavioral Sciences, Penn State University College of Medicine, Hershey, PA, 17033, USA
| | - R Alberto Travagli
- Department of Neural and Behavioral Sciences, Penn State University College of Medicine, Hershey, PA, 17033, USA
| |
Collapse
|
15
|
Babygirija R, Yoshimoto S, Gribovskaja-Rupp I, Bülbül M, Ludwig K, Takahashi T. Social interaction attenuates stress responses following chronic stress in maternally separated rats. Brain Res 2012; 1469:54-62. [PMID: 22750582 DOI: 10.1016/j.brainres.2012.06.007] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2012] [Revised: 06/06/2012] [Accepted: 06/08/2012] [Indexed: 12/14/2022]
Abstract
Early life stress has been implicated as a risk factor for functional gastrointestinal (GI) disorders. Hypothalamic oxytocin (OXT) is well known to regulate social interactions and affiliative behaviors. We have shown that maternal separation (MS) induces GI dysmotility and impair hypothalamic OXT expression in response to chronic homotypic stress (CHS). We studied whether social interaction can improve GI dysmotility and OXT expression in MS rats. Male neonatal SD rats were exposed to MS for 180 min from postnatal day (PND)-2 to PND-14. After weaning, 3MS rats were housed together (pure MS). In another group, 1MS rat was housed with 2 control rats (mixed MS). Anxiety-like behaviors were evaluated in elevated plus maze (EPM). Solid gastric emptying (GE) and colonic transit (CT) were measured following CHS loading. Expression of corticotropin releasing factor (CRF) and OXT in the paraventricular nucleus (PVN) were evaluated by real time RT-PCR and immunohistochemistry. Pure MS rats demonstrated increased anxiety-like behaviors, which were significantly reduced in mixed MS rats. Delayed GE (31.5±2.8%, n=6) and accelerated CT [Geometric center (GC) =8.9±0.8, n=6] observed in pure MS rats were restored in mixed MS rats (GE=67.8±3.8%, GC=6.7±1.2, n=6, P<0.05) following CHS. OXT mRNA expression was upregulated, while CRF mRNA expression was downregulated in mixed MS rats, compared to pure MS rats. The number of OXT-immunoreactive cells was significantly increased following CHS at the PVN in mixed MS rats. Our study may contribute to the treatment strategies for GI motility disorders associated with early life stress.
Collapse
Affiliation(s)
- Reji Babygirija
- Department of Surgery, Medical College of Wisconsin and Zablocki VA Medical Center, Milwaukee, WI, United States
| | | | | | | | | | | |
Collapse
|
16
|
Physiological consequences of repeated exposures to conditioned fear. Behav Sci (Basel) 2012; 2:57-78. [PMID: 25379216 PMCID: PMC4217585 DOI: 10.3390/bs2020057] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2012] [Revised: 05/05/2012] [Accepted: 05/14/2012] [Indexed: 11/18/2022] Open
Abstract
Activation of the stress response evokes a cascade of physiological reactions that may be detrimental when repeated or chronic, and when triggered after exposure to psychological/emotional stressors. Investigation of the physiological mechanisms responsible for the health damaging effects requires animal paradigms that repeatedly evoke a response to psychological/emotional stressors. To this end, adult male Sprague Dawley rats were repeatedly exposed (2X per day for 20 days) to a context that they were conditioned to fear (conditioned fear test, CFT). Repeated exposure to CFT produced body weight loss, adrenal hypertrophy, thymic involution, and basal corticosterone elevation. In vivo biotelemetry measures revealed that CFT evokes sympathetic nervous system driven increases in heart rate (HR), mean arterial pressure (MAP), and core body temperature. Extinction of behavioral (freezing) and physiological responses to CFT was prevented using minimal reinstatement footshock. MAP responses to the CFT did not diminish across 20 days of exposure. In contrast, HR and cardiac contractility responses declined by day 15, suggesting a shift toward vascular-dominated MAP (a pre-clinical marker of CV dysfunction). Flattened diurnal rhythms, common to stress-related mood/anxiety disorders, were found for most physiological measures. Thus, repeated CFT produces adaptations indicative of the health damaging effects of psychological/emotional stress.
Collapse
|
17
|
Onaka T, Takayanagi Y, Yoshida M. Roles of oxytocin neurones in the control of stress, energy metabolism, and social behaviour. J Neuroendocrinol 2012; 24:587-98. [PMID: 22353547 DOI: 10.1111/j.1365-2826.2012.02300.x] [Citation(s) in RCA: 90] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Oxytocin neurones are activated by stressful stimuli, food intake and social attachment. Activation of oxytocin neurones in response to stressful stimuli or food intake is mediated, at least in part, by noradrenaline/prolactin-releasing peptide (PrRP) neurones in the nucleus tractus solitarius, whereas oxytocin neurones are activated after social stimuli via medial amygdala neurones. Activation of oxytocin neurones induces the release of oxytocin not only from their axon terminals, but also from their dendrites. Oxytocin acts locally where released or diffuses and acts on remote oxytocin receptors widely distributed within the brain, resulting in anxiolytic, anorexic and pro-social actions. The action sites of oxytocin appear to be multiple. Oxytocin shows anxiolytic actions, at least in part, via serotoninergic neurones in the median raphe nucleus, has anorexic actions via pro-opiomelanocortin neurones in the nucleus tractus solitarius and facilitates social recognition via the medial amygdala. Stress, obesity and social isolation are major risk factors for mortality in humans. Thus, the oxytocin-oxytocin receptor system is a therapeutic target for the promotion of human health.
Collapse
Affiliation(s)
- T Onaka
- Division of Brain and Neurophysiology, Department of Physiology, Jichi Medical University, Shinotsuke-shi, Tochigi-ken, Japan.
| | | | | |
Collapse
|
18
|
Bülbül M, Babygirija R, Cerjak D, Yoshimoto S, Ludwig K, Takahashi T. Impaired adaptation of gastrointestinal motility following chronic stress in maternally separated rats. Am J Physiol Gastrointest Liver Physiol 2012; 302:G702-11. [PMID: 22241856 DOI: 10.1152/ajpgi.00447.2011] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
Exposure to early life stress causes increased stress responsiveness and permanent changes in the central nervous system. We recently showed that delayed gastric emptying (GE) and accelerated colonic transit (CT) in response to acute restraint stress (ARS) were completely restored following chronic homotypic stress (CHS) in rats via upregulation of hypothalamic oxytocin (OXT) expression. However, it is unknown whether early life stress affects hypothalamic OXT circuits and gastrointestinal motor function. Neonatal rats were subjected to maternal separation (MS) for 180 min/day for 2 wk. Anxiety-like behaviors were evaluated by the elevated-plus-maze test. GE and CT were measured under nonstressed (NS), ARS, and CHS conditions. Expression of corticotropin-releasing factor (CRF) and OXT in the paraventricular nucleus (PVN) of the hypothalamus was evaluated by real time RT-PCR and immunohistochemistry. MS increased anxiety-like behaviors. ARS delayed GE and accelerated CT in control and MS rats. After CHS, delayed GE and accelerated CT were restored in control, but not MS, rats. CRF mRNA expression was significantly increased in response to ARS in control and MS rats. Increased CRF mRNA expression was still observed following CHS in MS, but not control, rats. In response to CHS, OXT mRNA expression was significantly increased in control, but not MS, rats. The number of OXT-immunoreactive cells was increased following CHS in the magnocellular part of the PVN in control, but not MS, rats. MS impairs the adaptation response of gastrointestinal motility following CHS. The mechanism of the impaired adaptation involves downregulation of OXT and upregulation of CRF in the hypothalamus in MS rats.
Collapse
Affiliation(s)
- Mehmet Bülbül
- Zablocki VA Medical Center, Milwaukee, WI 53295, USA
| | | | | | | | | | | |
Collapse
|
19
|
Yoshimoto S, Cerjak D, Babygirija R, Bulbul M, Ludwig K, Takahashi T. Hypothalamic circuit regulating colonic transit following chronic stress in rats. Stress 2012; 15:227-36. [PMID: 21936687 DOI: 10.3109/10253890.2011.614297] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
Although acute stress accelerates colonic transit, the effect of chronic stress on colonic transit remains unclear. In this study, rats received repeated restraint stress (chronic homotypic stress) or various types of stress (chronic heterotypic stress) for 5 and 7 days, respectively. Vehicle saline, oxytocin (OXT), OXT receptor antagonist or corticotropin-releasing factor (CRF) receptor antagonists were administered by intracerebroventricular (ICV) injection prior to restraint stress for 90 min. Immediately after the stress exposure, the entire colon was removed and the geometric center (GC) of Na51CrO4 (a nonabsorbable radioactive marker; 0.5 μCi) distribution was calculated to measure the transit. Gene expression of OXT and CRF in the paraventricular nucleus (PVN) was evaluated by in situ hybridization. Accelerated colonic transit with the acute stressor was no longer observed following chronic homotypic stress. This restored colonic transit was reversed by ICV injection of an OXT antagonist. In contrast, chronic heterotypic stress significantly accelerated colonic transit, which was attenuated by ICV injection of OXT and by a CRF receptor 1 antagonist. OXT mRNA expression in the PVN was significantly increased following chronic homotypic stress, but not chronic heterotypic stress. However, CRF mRNA expression in the PVN was significantly increased following acute and chronic heterotypic stress, but not chronic homotypic stress. These results indicate that central OXT and CRF play a pivotal role in mediating the colonic dysmotility following chronic stress in rats.
Collapse
Affiliation(s)
- Sazu Yoshimoto
- Department of Surgery, Medical College of Wisconsin, Zablocki VA Medical Center, Milwaukee, WI 53295, USA
| | | | | | | | | | | |
Collapse
|
20
|
Xie DP, Yang X, Cao CY, Wang HH, Li YX, Qin Y, Zhang JP, Chang XW. Exogenous oxytocin reverses the decrease of colonic smooth muscle contraction in antenatal maternal hypoxia mice via ganglia. ACTA ACUST UNITED AC 2011; 172:30-4. [PMID: 21889546 DOI: 10.1016/j.regpep.2011.08.003] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2011] [Revised: 07/11/2011] [Accepted: 08/12/2011] [Indexed: 01/16/2023]
Abstract
Oxytocin (OT) has been reported to have a potential protective effect on stress-induced functional gastrointestinal disorders. This study determined whether colonic contraction in adults was affected by antenatal maternal hypoxia, and whether OT is involved in antenatal maternal hypoxia induced colonic contraction disorder. Isometric spontaneous contractions were recorded in colonic longitudinal muscle strips in order to investigate colonic contractions and the effects of exogenous OT on the contraction in antenatal maternal hypoxia and control mice. Both high potassium and carbachol-induced contractions of proximal colon but not distal colon were reduced in antenatal maternal hypoxia mice. Exogenous OT decreased the contractions of proximal colonic smooth muscle strips in control mice, while it increased contractions in antenatal maternal hypoxia mice. OT increased the contractions of distal colonic smooth muscle strips in both antenatal maternal hypoxia and control mice. Hexamethonium blocked the OT-induced potentiation of proximal colon but not distal colon in antenatal maternal hypoxia mice. These results suggest that exogenous oxytocin reverses the decrease of proximal colonic smooth muscle contraction in antenatal maternal hypoxia mice via ganglia.
Collapse
Affiliation(s)
- Dong-Ping Xie
- Department of Physiology, Tongji University School of Medicine, Shanghai, 200092, PR China.
| | | | | | | | | | | | | | | |
Collapse
|