1
|
Zhao Y, Jiang Y, Shen Y, Su LD. Sepsis Impairs Purkinje Cell Functions and Motor Behaviors Through Microglia Activation. CEREBELLUM (LONDON, ENGLAND) 2024; 23:329-339. [PMID: 36790600 DOI: 10.1007/s12311-023-01531-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 02/09/2023] [Indexed: 02/16/2023]
Abstract
The most common clinical manifestation of sepsis-related encephalopathy (SAE) is the deterioration of cognitive function. Besides, increasing evidence shows that SAE patients exhibit coordination and sensorimotor dysfunctions, suggesting that SAE affects motor function with unclear mechanism. In the present work, we explored the effects of SAE on cerebellar Purkinje cells (PCs) using cecal ligation and perforation (CLP), a standard model for inducing sepsis symptoms similar to those in human patients. Our results show that the sepsis can activate microglia in the cerebellum and promote the secretion of inflammatory factor TNF-α, which increases intrinsic excitability and synaptic transmission of PCs, inhibits the synaptic plasticity of PCs, and impairs motor learning of mice. These findings address how SAE changes PC functions, and thereby are of great significance to reveal pathophysiological feathers of human patients suffering from SAE.
Collapse
Affiliation(s)
- Yue Zhao
- Department of Physiology and Neuroscience Care Unit, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, 310009, China
| | - Yao Jiang
- Department of Physiology and Neuroscience Care Unit, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, 310009, China
| | - Ying Shen
- Department of Physiology and Neuroscience Care Unit, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, 310009, China.
| | - Li-Da Su
- Department of Physiology and Neuroscience Care Unit, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, 310009, China.
- Key Laboratory of the Diagnosis and Treatment of Severe Trauma and Burn of Zhejiang Province, Hangzhou, 310009, China.
| |
Collapse
|
2
|
Xu FX, Wang XT, Cai XY, Liu JY, Guo JW, Yang F, Chen W, Schonewille M, De Zeeuw C, Zhou L, Shen Y. Purkinje-cell-specific MeCP2 deficiency leads to motor deficits and autistic-like behavior due to aberrations in PTP1B-TrkB-SK signaling. Cell Rep 2023; 42:113559. [PMID: 38100348 DOI: 10.1016/j.celrep.2023.113559] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2022] [Revised: 10/05/2023] [Accepted: 11/22/2023] [Indexed: 12/17/2023] Open
Abstract
Patients with Rett syndrome suffer from a loss-of-function mutation of the Mecp2 gene, which results in various symptoms including autistic traits and motor deficits. Deletion of Mecp2 in the brain mimics part of these symptoms, but the specific function of methyl-CpG-binding protein 2 (MeCP2) in the cerebellum remains to be elucidated. Here, we demonstrate that Mecp2 deletion in Purkinje cells (PCs) reduces their intrinsic excitability through a signaling pathway comprising the small-conductance calcium-activated potassium channel PTP1B and TrkB, the receptor of brain-derived neurotrophic factor. Aberration of this cascade, in turn, leads to autistic-like behaviors as well as reduced vestibulocerebellar motor learning. Interestingly, increasing activity of TrkB in PCs is sufficient to rescue PC dysfunction and abnormal motor and non-motor behaviors caused by Mecp2 deficiency. Our findings highlight how PC dysfunction may contribute to Rett syndrome, providing insight into the underlying mechanism and paving the way for rational therapeutic designs.
Collapse
Affiliation(s)
- Fang-Xiao Xu
- Department of Physiology and Department of Psychiatry, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou 310000, China
| | - Xin-Tai Wang
- Department of Physiology and Department of Psychiatry, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou 310000, China; Institute of Life Sciences, College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou 311121, China
| | - Xin-Yu Cai
- Department of Physiology and Department of Psychiatry, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou 310000, China
| | - Jia-Yu Liu
- Department of Physiology and Department of Psychiatry, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou 310000, China
| | - Jing-Wen Guo
- Department of Physiology and Department of Psychiatry, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou 310000, China
| | - Fan Yang
- Department of Biophysics, Zhejiang University School of Medicine, Hangzhou 310058, China
| | - Wei Chen
- Department of Physiology and Department of Psychiatry, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou 310000, China
| | - Martijn Schonewille
- Department of Neuroscience, Erasmus University Medical Center, 3000 DR Rotterdam, the Netherlands
| | - Chris De Zeeuw
- Department of Neuroscience, Erasmus University Medical Center, 3000 DR Rotterdam, the Netherlands; The Netherlands Institute for Neuroscience, Royal Dutch Academy of Arts and Science, 1105 CA Amsterdam, the Netherlands.
| | - Lin Zhou
- Department of Physiology and Department of Psychiatry, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou 310000, China.
| | - Ying Shen
- Department of Physiology and Department of Psychiatry, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou 310000, China; International Institutes of Medicine, Fourth Affiliated Hospital, Zhejiang University School of Medicine, Yiwu 322000, China; Key Laboratory of Medical Neurobiology of Zhejiang Province, Zhejiang University School of Medicine, Hangzhou 310000, China.
| |
Collapse
|
3
|
Toval A, Baños R, De la Cruz E, Morales-Delgado N, Pallarés JG, Ayad A, Tseng KY, Ferran JL. Habituation Training Improves Locomotor Performance in a Forced Running Wheel System in Rats. Front Behav Neurosci 2017; 11:42. [PMID: 28337132 PMCID: PMC5340750 DOI: 10.3389/fnbeh.2017.00042] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2016] [Accepted: 02/24/2017] [Indexed: 01/06/2023] Open
Abstract
Increasing evidence supports that physical activity promotes mental health; and regular exercise may confer positive effects in neurological disorders. There is growing number of reports that requires the analysis of the impact of physical activity in animal models. Exercise in rodents can be performed under voluntary or forced conditions. The former presents the disadvantage that the volume and intensity of exercise varies from subject to subject. On the other hand, a major challenge of the forced training protocol is the low level of performance typically achieved within a given session. Thus, the aim of the present study was to evaluate the effectiveness of gradual increasing of the volume and intensity (training habituation protocol) to improve the locomotor performance in a forced running-wheel system in rats. Sprague-Dawley rats were randomly assigned to either a group that received an exercise training habituation protocol, or a control group. The locomotor performance during forced running was assessed by an incremental exercise test. The experimental results reveal that the total running time and the distance covered by habituated rats was significantly higher than in control ones. We conclude that the exercise habituation protocol improves the locomotor performance in forced running wheels.
Collapse
Affiliation(s)
- Angel Toval
- Department of Human Anatomy and Psychobiology, School of Medicine, University of MurciaMurcia, Spain; Institute of Biomedical Research of Murcia (IMIB), Virgen de la Arrixaca University Hospital, University of MurciaMurcia, Spain
| | - Raúl Baños
- Department of Human Anatomy and Psychobiology, School of Medicine, University of MurciaMurcia, Spain; Institute of Biomedical Research of Murcia (IMIB), Virgen de la Arrixaca University Hospital, University of MurciaMurcia, Spain
| | - Ernesto De la Cruz
- Department of Physical Activity and Sport, Faculty of Sport Science, University of Murcia Murcia, Spain
| | - Nicanor Morales-Delgado
- Department of Human Anatomy and Psychobiology, School of Medicine, University of MurciaMurcia, Spain; Institute of Biomedical Research of Murcia (IMIB), Virgen de la Arrixaca University Hospital, University of MurciaMurcia, Spain
| | - Jesús G Pallarés
- Human Performance and Sports Science Laboratory, University of Murcia Murcia, Spain
| | - Abdelmalik Ayad
- Department of Human Anatomy and Psychobiology, School of Medicine, University of MurciaMurcia, Spain; Institute of Biomedical Research of Murcia (IMIB), Virgen de la Arrixaca University Hospital, University of MurciaMurcia, Spain
| | - Kuei Y Tseng
- Department of Cellular and Molecular Pharmacology, The Chicago Medical School at Rosalind Franklin University North Chicago, IL, USA
| | - Jose L Ferran
- Department of Human Anatomy and Psychobiology, School of Medicine, University of MurciaMurcia, Spain; Institute of Biomedical Research of Murcia (IMIB), Virgen de la Arrixaca University Hospital, University of MurciaMurcia, Spain
| |
Collapse
|