1
|
Day HLL, Stevenson CW. The neurobiological basis of sex differences in learned fear and its inhibition. Eur J Neurosci 2020; 52:2466-2486. [PMID: 31631413 PMCID: PMC7496972 DOI: 10.1111/ejn.14602] [Citation(s) in RCA: 59] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2019] [Revised: 10/07/2019] [Accepted: 10/15/2019] [Indexed: 12/16/2022]
Abstract
Learning that certain cues or environments predict threat enhances survival by promoting appropriate fear and the resulting defensive responses. Adapting to changing stimulus contingencies by learning that such cues no longer predict threat, or distinguishing between these threat-related and other innocuous stimuli, also enhances survival by limiting fear responding in an appropriate manner to conserve resources. Importantly, a failure to inhibit fear in response to harmless stimuli is a feature of certain anxiety and trauma-related disorders, which are also associated with dysfunction of the neural circuitry underlying learned fear and its inhibition. Interestingly, these disorders are up to twice as common in women, compared to men. Despite this striking sex difference in disease prevalence, the neurobiological factors involved remain poorly understood. This is due in part to the majority of relevant preclinical studies having neglected to include female subjects alongside males, which has greatly hindered progress in this field. However, more recent studies have begun to redress this imbalance and emerging evidence indicates that there are significant sex differences in the inhibition of learned fear and associated neural circuit function. This paper provides a narrative review on sex differences in learned fear and its inhibition through extinction and discrimination, along with the key gonadal hormone and brain mechanisms involved. Understanding the endocrine and neural basis of sex differences in learned fear inhibition may lead to novel insights on the neurobiological mechanisms underlying the enhanced vulnerability to develop anxiety-related disorders that are observed in women.
Collapse
Affiliation(s)
- Harriet L. L. Day
- School of BiosciencesUniversity of NottinghamLoughboroughUK
- Present address:
RenaSci LtdBioCity, Pennyfoot StreetNottinghamNG1 1GFUK
| | | |
Collapse
|
2
|
Uddin SMZ, Robison LS, Fricke D, Chernoff E, Hadjiargyrou M, Thanos PK, Komatsu DE. Methylphenidate regulation of osteoclasts in a dose- and sex-dependent manner adversely affects skeletal mechanical integrity. Sci Rep 2018; 8:1515. [PMID: 29367750 PMCID: PMC5784171 DOI: 10.1038/s41598-018-19894-x] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2017] [Accepted: 01/10/2018] [Indexed: 11/12/2022] Open
Abstract
Methylphenidate (MP) is the most prescribed psychostimulant for ADHD patients, with clinically demonstrated detrimental effects on bone quality, potentially leading to early onset osteoporosis and higher fracture risk. The underlying mechanism for the effects of MP on bone remains elusive. This study demonstrates that sex- and dose-dependent effects of MP on bone quality and quantity are mediated by osteoclast activity. Four-week-old male and female rats were treated with low and high dose MP for 13 weeks. Bone quality and quantity were analyzed using microCT, mechanical testing, histomorphometry, and TRAP staining. Male and female rat bone marrow-derived osteoclasts were treated in a dose-dependent manner (0–1000 ng/ml) and osteoclast activity was determined at days 5, 7, and 14 using TRAP staining, as well as a pit formation assay at day 18. Animal studies showed a dose- and a sex-dependent decrease in mechanical integrity in femora and increased TRAP staining in MP-treated rats. Primary cultures revealed that MP had direct dose- and sex-dependent effects on osteoclast activity, as seen by increased differentiation, activity, and resorption. This study demonstrates for the first time that osteoclasts are differentially regulated by MP in adolescent male and female rats, resulting in sex-dependent effects on the skeleton.
Collapse
Affiliation(s)
- Sardar M Z Uddin
- Department of Orthopaedics, Stony Brook University, Stony Brook, NY, 11794, USA
| | - Lisa S Robison
- Department of Psychology, Stony Brook University, Stony Brook, NY, 11794, USA
| | - Dennis Fricke
- Research Institute on Addiction, University at Buffalo, Buffalo, NY, 14203, USA
| | - Evan Chernoff
- Department of Orthopaedics, Stony Brook University, Stony Brook, NY, 11794, USA
| | - Michael Hadjiargyrou
- Department of Life Sciences, New York Institute of Technology, Old Westbury, NY, 11568, USA
| | - Panayotis K Thanos
- Research Institute on Addiction, University at Buffalo, Buffalo, NY, 14203, USA
| | - David E Komatsu
- Department of Orthopaedics, Stony Brook University, Stony Brook, NY, 11794, USA.
| |
Collapse
|
3
|
Robison LS, Michaelos M, Gandhi J, Fricke D, Miao E, Lam CY, Mauceri A, Vitale M, Lee J, Paeng S, Komatsu DE, Hadjiargyrou M, Thanos PK. Sex Differences in the Physiological and Behavioral Effects of Chronic Oral Methylphenidate Treatment in Rats. Front Behav Neurosci 2017; 11:53. [PMID: 28400722 PMCID: PMC5368228 DOI: 10.3389/fnbeh.2017.00053] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2016] [Accepted: 03/10/2017] [Indexed: 11/13/2022] Open
Abstract
Methylphenidate (MP) is a psychostimulant prescribed for Attention Deficit Hyperactivity Disorder. Previously, we developed a dual bottle 8-h-limited-access-drinking-paradigm for oral MP treatment of rats that mimics the pharmacokinetic profile of treated patients. This study assessed sex differences in response to this treatment. Male and female Sprague Dawley rats were assigned to one of three treatment groups at 4 weeks of age (n = 12/group): Control (water), low dose (LD) MP, and high dose (HD) MP. Rats drank 4 mg/kg MP (LD) or 30 mg/kg MP (HD) during the first hour, and 10 mg/kg (LD) or 60 mg/kg MP (HD) for the remaining 7 h each day. Throughout 3 months of treatment, rats were monitored for body weight, food intake, and fluid intake; as well as tested for open field behavior, circadian activity, novel object recognition, and social interaction. Chronic MP treated rats exhibited reduced fluid intake during distinct treatment weeks to a greater extent in males, and reduced total fluid intake in males only. HD MP treatment decreased body weight in both sexes, while HD MP increased total food intake in females only, likely to offset energy deficits resulting from MP-induced hyperactivity. LD and HD MP increased locomotor activity in the open field, particularly in females and during later treatment weeks. MP dose-dependently increased activity during the dark cycle of circadian testing in females, while in males hyperactivity was only exhibited by HD rats. HD MP increased center activity to a greater extent in males, while MP increased rearing behavior in females only. MP had no effect on social behavior or novel object recognition in either sex. This study concludes that chronic oral MP treatment at clinically-relevant dosages has significant effects on food intake, body weight, open field behavior, and wake cycle activity. Particularly marked sex differences were apparent for locomotor activity, with females being significantly more sensitive to the hyperactivating effects of the drug. These findings suggest that chronic MP exposure beginning in adolescence can have significant behavioral effects that are both dose- and sex-dependent, and raise concerns regarding the reversibility of these effects post-discontinuation of treatment.
Collapse
Affiliation(s)
- Lisa S Robison
- Department of Psychology, Stony Brook University Stony Brook, NY, USA
| | | | - Jason Gandhi
- Department of Psychology, Stony Brook University Stony Brook, NY, USA
| | - Dennis Fricke
- Research Institute on Addictions, University at Buffalo Buffalo, NY, USA
| | - Erick Miao
- Department of Psychology, Stony Brook University Stony Brook, NY, USA
| | - Chiu-Yim Lam
- Department of Psychology, Stony Brook University Stony Brook, NY, USA
| | - Anthony Mauceri
- Department of Psychology, Stony Brook University Stony Brook, NY, USA
| | - Melissa Vitale
- Department of Psychology, Stony Brook University Stony Brook, NY, USA
| | - Junho Lee
- Department of Psychology, Stony Brook University Stony Brook, NY, USA
| | - Soyeh Paeng
- Department of Psychology, Stony Brook University Stony Brook, NY, USA
| | - David E Komatsu
- Department of Orthopedics, Stony Brook University Stony Brook, NY, USA
| | - Michael Hadjiargyrou
- Department of Life Sciences, New York Institute of Technology Old Westbury, NY, USA
| | - Panayotis K Thanos
- Research Institute on Addictions, University at Buffalo Buffalo, NY, USA
| |
Collapse
|
4
|
Carreira MB, Cossio R, Britton GB. Individual and sex differences in high and low responder phenotypes. Behav Processes 2017; 136:20-27. [DOI: 10.1016/j.beproc.2017.01.006] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2016] [Revised: 01/03/2017] [Accepted: 01/09/2017] [Indexed: 11/29/2022]
|
5
|
Montagnini BG, Silveira KM, Pierone BC, de Azevedo Camim N, Anselmo-Franci JA, de Fátima Paccola Mesquita S, Kiss ACI, Gerardin DCC. Reproductive parameters of female Wistar rats treated with methylphenidate during development. Physiol Behav 2016; 167:118-124. [DOI: 10.1016/j.physbeh.2016.08.017] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2016] [Revised: 08/16/2016] [Accepted: 08/16/2016] [Indexed: 11/25/2022]
|
6
|
The effects of rearing environment and chronic methylphenidate administration on behavior and dopamine receptors in adolescent rats. Brain Res 2013; 1527:67-78. [PMID: 23806775 DOI: 10.1016/j.brainres.2013.06.021] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2013] [Revised: 06/13/2013] [Accepted: 06/17/2013] [Indexed: 12/17/2022]
Abstract
Rearing young rodents in socially isolated or environmentally enriched conditions has been shown to affect numerous components of the dopamine system as well as behavior. Methylphenidate (MPH), a commonly used dopaminergic agent, may affect animals differently based on rearing environment. Here we examined the interaction between environment and chronic MPH treatment at clinically relevant doses, administered via osmotic minipump. Young Sprague Dawley rats (PND 21) were assigned to environmentally enriched, pair-housed, or socially isolated rearing conditions, and treated with either 0, 2, 4, or 8 mg/kg/day MPH for 3 weeks. At the end of the treatment period, animals were tested for locomotor activity and anxiety-like behavior. The densities of D1-like and D2-like receptors were measured in the striatum using in vitro receptor autoradiography. Locomotor activity and anxiety-like behavior were increased in isolated animals compared to pair-housed and enriched animals. The density of D1-like receptors was greater in isolated animals, but there were no differences between groups in D2-like receptor density. Finally, there were no effects of MPH administration on any reported measure. This study provides evidence for an effect of early rearing environment on the dopamine system and behavior, and also suggests that MPH administration may not have long-term consequences.
Collapse
|
7
|
Tamburella A, Micale V, Mazzola C, Salomone S, Drago F. The selective norepinephrine reuptake inhibitor atomoxetine counteracts behavioral impairments in trimethyltin-intoxicated rats. Eur J Pharmacol 2012; 683:148-54. [PMID: 22426162 DOI: 10.1016/j.ejphar.2012.02.045] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2012] [Revised: 02/17/2012] [Accepted: 02/26/2012] [Indexed: 12/17/2022]
Abstract
This study was carried out to assess the behavioral effects of the non-psychostimulant drug atomoxetine, in rats prenatally-exposed to the organic compound trimethyltin chloride (TMT) and in spontaneously hypertensive rat (SHR), two rodent models of Attention Deficit/Hyperactivity Disorder (ADHD). At birth, neonatal reflexes (righting, cliff aversion, forelimb placing, forelimb grasping, bar holding and startle) had an earlier onset (i.e. percent of appearance) and completion (maximum appearance, i.e. 100% of the brood exhibiting each reflex) in prenatally TMT-exposed and SHR pups as compared to control groups. Two months after birth, TMT-exposed and SHR rats showed impaired cognitive performances in both the step-through passive avoidance test and the shuttle box active avoidance test. Atomoxetine (1, 3 and 6 mg/kg, i.p.), already at the lowest dose tested, improved learning and memory capacity of prenatally TMT-exposed rats and SHR; while methylphenidate (1, 3 and 6 mg/kg, i.p.), used here as positive control, elicited a significant cognitive enhancing effect only at the higher doses. In the open field test, both TMT-exposed rats and SHR displayed enhanced locomotor activity. Methylphenidate further increased locomotor activity in all groups, whereas atomoxetine reduced the enhanced locomotor activity of TMT-exposed rats and SHR down to the level of controls. These results suggest that prenatal TMT-exposure could be considered as a putative experimental model of ADHD and further support the effectiveness of atomoxetine in the ADHD pharmacotherapy. Furthermore, despite the similar effect of the two drugs on cognitive tasks, they exhibit distinct profiles of activity on locomotion, in ADHD models.
Collapse
Affiliation(s)
- Alessandra Tamburella
- Department of Clinical and Molecular Biomedicine, Section of Pharmacology and Biochemistry, Catania University, Catania, Italy
| | | | | | | | | |
Collapse
|