1
|
Temnik M, Rudyk M, Balakin A, Gurin S, Dovbynchuk T, Byshovets R, Dzubenko N, Tolstanova G, Skivka L. Anti-inflammatory effects of 64Zn-aspartate is accompanied by cognitive improvements in rats with Aβ 1-40-induced alzheimer disease. Sci Rep 2025; 15:14272. [PMID: 40274975 PMCID: PMC12022080 DOI: 10.1038/s41598-025-97830-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2025] [Accepted: 04/07/2025] [Indexed: 04/26/2025] Open
Abstract
Alzheimer disease (AD) is a debilitating progressive dementia, whose pathophysiology is not fully understood. Chronic inflammation is now widely accepted as one of the key features of AD pathogenesis. Because of this, anti-inflammatory preparations are considered as putative disease modifying agents. A new compound of zinc aspartate with enriched light atoms 64Zn (64Zn-asp) was evaluated as a possible anti-AD agent using Aβ1-40-induced AD model. Intrahippocampal Aβ1-40 injection resulted in pronounced neuroinflammation, as was evidenced by increased phagocytic activity, augmented reactive oxygen species generation, and up-regulated CD86 and CD206 expression by microglia. In rats with Aβ1-40-induced AD, persistent systemic inflammation was also registered, as was ascertained by significantly increased white blood cell-based inflammatory indices and development of anemia of inflammation. Neuro- and systemic inflammation in rats was accompanied by hippocampal dopamine neuron loss, as well as by impairment of short-term and remote spatial memory and cognitive flexibility. Intravenous 64Zn-asp administration rats with AD was associated with returning all microglia indicators to normal range. All aforementioned features of systemic inflammation were not observed in these animals. Anti-inflammatory 64Zn-asp effect was strongly correlated with improvement of short-term spatial memory and cognitive flexibility, and moderately-with betterment of remote spatial memory. These results demonstrated that i.v. 64Zn-asp administration could reverse the inflammatory and, as a result, cognitive effects of intra-hippocampal Aβ1-40 in rats. Therefore, its use may be a viable approach in the complex therapeutic strategy for AD.
Collapse
Affiliation(s)
- Max Temnik
- Physical Chemistry, Vector Vitale, North Miami Beach, USA
| | - Mariia Rudyk
- Educational and Scientific Centre "Institute of Biology and Medicine", Taras Shevchenko National University of Kyiv, 2, Hlushkova Avenue, Kyiv, 03022, Ukraine.
| | | | - Sergey Gurin
- Physical Chemistry, Vector Vitale, North Miami Beach, USA
| | - Taisa Dovbynchuk
- Educational and Scientific Centre "Institute of Biology and Medicine", Taras Shevchenko National University of Kyiv, 2, Hlushkova Avenue, Kyiv, 03022, Ukraine
| | - Roman Byshovets
- Department of Internal Diseases, Bogomolets National Medical University, 13, Shevchenko Blvd., Kyiv, 01004, Ukraine
| | - Nataliia Dzubenko
- Educational and Scientific Institute of High Technologies, Taras Shevchenko National University of Kyiv, 4g, Hlushkova Avenue, Kyiv, 03022, Ukraine
| | - Ganna Tolstanova
- Educational and Scientific Institute of High Technologies, Taras Shevchenko National University of Kyiv, 4g, Hlushkova Avenue, Kyiv, 03022, Ukraine
| | - Larysa Skivka
- Educational and Scientific Centre "Institute of Biology and Medicine", Taras Shevchenko National University of Kyiv, 2, Hlushkova Avenue, Kyiv, 03022, Ukraine
| |
Collapse
|
2
|
Nefodova A, Rudyk M, Dovhyi R, Dovbynchuk T, Dzubenko N, Tolstanova G, Skivka L. Systemic inflammation in Aβ 1-40-induced Alzheimer's disease model: New translational opportunities. Brain Res 2024; 1837:148960. [PMID: 38679313 DOI: 10.1016/j.brainres.2024.148960] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2024] [Revised: 03/21/2024] [Accepted: 04/23/2024] [Indexed: 05/01/2024]
Abstract
Alzheimer disease (AD) is the most frequent cause of dementia, and the most common neurodegenerative disease, which is characterized by memory impairment, neuronal death, and synaptic loss in the hippocampus. Sporadic late-onset AD, which accounts for over 95 % of disease cases, is a multifactorial pathology with complex etiology and pathogenesis. Nowadays, neuroinflammation is considered the third most important component of AD pathogenesis in addition to amyloid peptide generation and deposition. Neuroinflammation is associated with the impairment of blood-brain barrier and leakage of inflammatory mediators into the periphery with developing systemic inflammatory responses. Systemic inflammation is currently considered one of the therapeutic targets for AD treatment, that necessitates in-depth study of this phenomenon in appropriate non-transgenic animal models. This study was aimed to explore systemic inflammatory manifestations in rats with Aβ1-40-induced AD. The impairment of spatial memory and cognitive flexibility in Aβ1-40-lesioned rats was accompanied by pronounced systemic inflammation, which was confirmed by commonly accepted biomarkers: increased hematological indices of systemic inflammation (NLR, dNLR, LMR, PLR and SII), signs of anemia of inflammation or chronic diseases, and pro-inflammatory polarized activation of circulating phagocytes. In addition, markers of systemic inflammation strongly correlated with disorders of remote cognitive flexibility in Aβ1-40-lesioned rats. These results indicate, that Aβ1-40-induced AD model permits the investigation of specific element of the disease - systemic inflammation in addition to well reproduced neuroinflammation and impairment of spatial memory and cognitive flexibility. It increases translational value of this well-known model.
Collapse
Affiliation(s)
- Anastasiia Nefodova
- Educational and Scientific Centre "Institute of Biology and Medicine", Taras Shevchenko National University of Kyiv, 2, Hlushkov Avenue, Kyiv 03022, Ukraine
| | - Mariia Rudyk
- Educational and Scientific Centre "Institute of Biology and Medicine", Taras Shevchenko National University of Kyiv, 2, Hlushkov Avenue, Kyiv 03022, Ukraine.
| | - Roman Dovhyi
- Educational and Scientific Centre "Institute of Biology and Medicine", Taras Shevchenko National University of Kyiv, 2, Hlushkov Avenue, Kyiv 03022, Ukraine
| | - Taisa Dovbynchuk
- Educational and Scientific Centre "Institute of Biology and Medicine", Taras Shevchenko National University of Kyiv, 2, Hlushkov Avenue, Kyiv 03022, Ukraine
| | - Nataliia Dzubenko
- Educational and Scientific Institute of High Technologies, Taras Shevchenko University of Kyiv, 4g, Hlushkov Avenue, Kyiv 03022, Ukraine
| | - Ganna Tolstanova
- Educational and Scientific Institute of High Technologies, Taras Shevchenko University of Kyiv, 4g, Hlushkov Avenue, Kyiv 03022, Ukraine
| | - Larysa Skivka
- Educational and Scientific Centre "Institute of Biology and Medicine", Taras Shevchenko National University of Kyiv, 2, Hlushkov Avenue, Kyiv 03022, Ukraine
| |
Collapse
|
3
|
Gezen-Ak D, Dursun E. Vitamin D, a Secosteroid Hormone and Its Multifunctional Receptor, Vitamin D Receptor, in Alzheimer's Type Neurodegeneration. J Alzheimers Dis 2023; 95:1273-1299. [PMID: 37661883 DOI: 10.3233/jad-230214] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/05/2023]
Abstract
Vitamin D is a secosteroid hormone exerting neurosteroid-like properties. Its well-known nuclear hormone receptor, and recently proposed as a mitochondrial transcription factor, vitamin D receptor, acts for its primary functions. The second receptor is an endoplasmic reticulum protein, protein disulfide isomerase A3 (PDIA3), suggested to act as a rapid response. Vitamin D has effects on various systems, particularly through calcium metabolism. Among them, the nervous system has an important place in the context of our subject. Recent studies have shown that vitamin D and its receptors have numerous effects on the nervous system. Neurodegeneration is a long-term process. Throughout a human life span, so is vitamin D deficiency. Our previous studies and others have suggested that the out-come of long-term vitamin D deficiency (hypovitaminosis D or inefficient utilization of vitamin D), may lead neurons to be vulnerable to aging and neurodegeneration. We suggest that keeping vitamin D levels at adequate levels at all stages of life, considering new approaches such as agonists that can activate vitamin D receptors, and utilizing other derivatives produced in the synthesis process with UVB are crucial when considering vitamin D-based intervention studies. Given most aspects of vitamin D, this review outlines how vitamin D and its receptors work and are involved in neurodegeneration, emphasizing Alzheimer's disease.
Collapse
Affiliation(s)
- Duygu Gezen-Ak
- Department of Neuroscience, Brain and Neurodegenerative Disorders Research Laboratories, Institute of Neurological Sciences, Istanbul University-Cerrahpasa, Istanbul, Turkey
| | - Erdinc Dursun
- Department of Neuroscience, Brain and Neurodegenerative Disorders Research Laboratories, Institute of Neurological Sciences, Istanbul University-Cerrahpasa, Istanbul, Turkey
| |
Collapse
|
4
|
Galber C, Carissimi S, Baracca A, Giorgio V. The ATP Synthase Deficiency in Human Diseases. Life (Basel) 2021; 11:life11040325. [PMID: 33917760 PMCID: PMC8068106 DOI: 10.3390/life11040325] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2021] [Revised: 04/01/2021] [Accepted: 04/03/2021] [Indexed: 11/29/2022] Open
Abstract
Human diseases range from gene-associated to gene-non-associated disorders, including age-related diseases, neurodegenerative, neuromuscular, cardiovascular, diabetic diseases, neurocognitive disorders and cancer. Mitochondria participate to the cascades of pathogenic events leading to the onset and progression of these diseases independently of their association to mutations of genes encoding mitochondrial protein. Under physiological conditions, the mitochondrial ATP synthase provides the most energy of the cell via the oxidative phosphorylation. Alterations of oxidative phosphorylation mainly affect the tissues characterized by a high-energy metabolism, such as nervous, cardiac and skeletal muscle tissues. In this review, we focus on human diseases caused by altered expressions of ATP synthase genes of both mitochondrial and nuclear origin. Moreover, we describe the contribution of ATP synthase to the pathophysiological mechanisms of other human diseases such as cardiovascular, neurodegenerative diseases or neurocognitive disorders.
Collapse
Affiliation(s)
- Chiara Galber
- Consiglio Nazionale delle Ricerche, Institute of Neuroscience, I-35121 Padova, Italy
- Department of Biomedical and Neuromotor Sciences, University of Bologna, I-40126 Bologna, Italy
| | - Stefania Carissimi
- Consiglio Nazionale delle Ricerche, Institute of Neuroscience, I-35121 Padova, Italy
| | - Alessandra Baracca
- Department of Biomedical and Neuromotor Sciences, University of Bologna, I-40126 Bologna, Italy
| | - Valentina Giorgio
- Consiglio Nazionale delle Ricerche, Institute of Neuroscience, I-35121 Padova, Italy
- Department of Biomedical and Neuromotor Sciences, University of Bologna, I-40126 Bologna, Italy
| |
Collapse
|
5
|
Ebanks B, Ingram TL, Chakrabarti L. ATP synthase and Alzheimer's disease: putting a spin on the mitochondrial hypothesis. Aging (Albany NY) 2020; 12:16647-16662. [PMID: 32853175 PMCID: PMC7485717 DOI: 10.18632/aging.103867] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2020] [Accepted: 07/21/2020] [Indexed: 12/21/2022]
Abstract
It is estimated that over 44 million people across the globe have dementia, and half of these cases are believed to be Alzheimer’s disease (AD). As the proportion of the global population which is over the age 60 increases so will the number of individuals living with AD. This will result in ever-increasing demands on healthcare systems and the economy. AD can be either sporadic or familial, but both present with similar pathobiology and symptoms. Three prominent theories about the cause of AD are the amyloid, tau and mitochondrial hypotheses. The mitochondrial hypothesis focuses on mitochondrial dysfunction in AD, however little attention has been given to the potential dysfunction of the mitochondrial ATP synthase in AD. ATP synthase is a proton pump which harnesses the chemical potential energy of the proton gradient across the inner mitochondrial membrane (IMM), generated by the electron transport chain (ETC), in order to produce the cellular energy currency ATP. This review presents the evidence accumulated so far that demonstrates dysfunction of ATP synthase in AD, before highlighting two potential pharmacological interventions which may modulate ATP synthase.
Collapse
Affiliation(s)
- Brad Ebanks
- School of Veterinary Medicine and Science, University of Nottingham, Sutton Bonington LE12 5RD, UK
| | - Thomas L Ingram
- School of Veterinary Medicine and Science, University of Nottingham, Sutton Bonington LE12 5RD, UK
| | - Lisa Chakrabarti
- School of Veterinary Medicine and Science, University of Nottingham, Sutton Bonington LE12 5RD, UK.,MRC Versus Arthritis Centre for Musculoskeletal Ageing Research, Chesterfield, UK
| |
Collapse
|
6
|
Liao Q, Li Q, Zhao Y, Jiang P, Yan Y, Sun H, Liu W, Feng F, Qu W. Design, synthesis and biological evaluation of novel carboline-cinnamic acid hybrids as multifunctional agents for treatment of Alzheimer’s disease. Bioorg Chem 2020; 99:103844. [DOI: 10.1016/j.bioorg.2020.103844] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2020] [Accepted: 04/08/2020] [Indexed: 01/28/2023]
|
7
|
Ojo JO, Crynen G, Algamal M, Vallabhaneni P, Leary P, Mouzon B, Reed JM, Mullan M, Crawford F. Unbiased Proteomic Approach Identifies Pathobiological Profiles in the Brains of Preclinical Models of Repetitive Mild Traumatic Brain Injury, Tauopathy, and Amyloidosis. ASN Neuro 2020; 12:1759091420914768. [PMID: 32241177 PMCID: PMC7132820 DOI: 10.1177/1759091420914768] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
No concerted investigation has been conducted to explore overlapping and distinct
pathobiological mechanisms between repetitive mild traumatic brain injury
(r-mTBI) and tau/amyloid proteinopathies considering the long history of
association between TBI and Alzheimer’s disease. We address this problem by
using unbiased proteomic approaches to generate detailed time-dependent brain
molecular profiles of response to repetitive mTBI in C57BL/6 mice and in mouse
models of amyloidosis (with amyloid precursor protein KM670/671NL (Swedish) and
Presenilin 1 M146L mutations [PSAPP]) and tauopathy (hTau). Brain tissues from
animals were collected at different timepoints after injuries (24 hr–12 months
post-injury) and at different ages for tau or amyloid transgenic models (3, 9,
and 15 months old), encompassing the pre-, peri-, and post-“onset” of cognitive
and pathological phenotypes. We identified 30 hippocampal and 47 cortical
proteins that were significantly modulated over time in the r-mTBI compared with
sham mice. These proteins identified TBI-dependent modulation of
phosphatidylinositol-3-kinase/AKT signaling, protein kinase A signaling, and
PPARα/RXRα activation in the hippocampus and protein kinase A signaling,
gonadotropin-releasing hormone signaling, and B cell receptor signaling in the
cortex. Previously published neuropathological studies of our mTBI model showed
a lack of amyloid and tau pathology. In PSAPP mice, we identified 19 proteins
significantly changing in the cortex and only 7 proteins in hTau mice versus
wild-type littermates. When we explored the overlap between our r-mTBI model and
the PSAPP/hTau models, a fairly small coincidental change was observed involving
only eight significantly regulated proteins. This work suggests a very distinct
TBI neurodegeneration and also that other factors are needed to drive
pathologies such as amyloidosis and tauopathy postinjury.
Collapse
Affiliation(s)
- Joseph O Ojo
- Experimental Neuropathology and Proteomic Laboratory, Roskamp Institute, Sarasota, Florida, United States.,James A. Haley Veterans' Hospital, Tampa, Florida, United States.,School of Life, Health and Chemical Sciences, The Open University, Milton Keynes, United Kingdom
| | - Gogce Crynen
- Experimental Neuropathology and Proteomic Laboratory, Roskamp Institute, Sarasota, Florida, United States.,School of Life, Health and Chemical Sciences, The Open University, Milton Keynes, United Kingdom
| | - Moustafa Algamal
- Experimental Neuropathology and Proteomic Laboratory, Roskamp Institute, Sarasota, Florida, United States.,School of Life, Health and Chemical Sciences, The Open University, Milton Keynes, United Kingdom
| | - Prashanti Vallabhaneni
- Experimental Neuropathology and Proteomic Laboratory, Roskamp Institute, Sarasota, Florida, United States
| | - Paige Leary
- Experimental Neuropathology and Proteomic Laboratory, Roskamp Institute, Sarasota, Florida, United States
| | - Benoit Mouzon
- Experimental Neuropathology and Proteomic Laboratory, Roskamp Institute, Sarasota, Florida, United States.,James A. Haley Veterans' Hospital, Tampa, Florida, United States.,School of Life, Health and Chemical Sciences, The Open University, Milton Keynes, United Kingdom
| | - Jon M Reed
- Experimental Neuropathology and Proteomic Laboratory, Roskamp Institute, Sarasota, Florida, United States.,Boehringer Ingelheim Pharmaceuticals, Inc., Ridgefield, Connecticut, United States
| | - Michael Mullan
- Experimental Neuropathology and Proteomic Laboratory, Roskamp Institute, Sarasota, Florida, United States.,School of Life, Health and Chemical Sciences, The Open University, Milton Keynes, United Kingdom
| | - Fiona Crawford
- Experimental Neuropathology and Proteomic Laboratory, Roskamp Institute, Sarasota, Florida, United States.,James A. Haley Veterans' Hospital, Tampa, Florida, United States.,School of Life, Health and Chemical Sciences, The Open University, Milton Keynes, United Kingdom
| |
Collapse
|
8
|
Takasugi N, Hiraoka H, Nakahara K, Akiyama S, Fujikawa K, Nomura R, Furuichi M, Uehara T. The Emerging Role of Electrophiles as a Key Regulator for Endoplasmic Reticulum (ER) Stress. Int J Mol Sci 2019; 20:E1783. [PMID: 30974903 PMCID: PMC6480251 DOI: 10.3390/ijms20071783] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2019] [Revised: 03/28/2019] [Accepted: 04/08/2019] [Indexed: 12/13/2022] Open
Abstract
The unfolded protein response (UPR) is activated by the accumulation of misfolded proteins in the endoplasmic reticulum (ER), which is called ER stress. ER stress sensors PERK, IRE1, and ATF6 play a central role in the initiation and regulation of the UPR; they inhibit novel protein synthesis and upregulate ER chaperones, such as protein disulfide isomerase, to remove unfolded proteins. However, when recovery from ER stress is difficult, the UPR pathway is activated to eliminate unhealthy cells. This signaling transition is the key event of many human diseases. However, the precise mechanisms are largely unknown. Intriguingly, reactive electrophilic species (RES), which exist in the environment or are produced through cellular metabolism, have been identified as a key player of this transition. In this review, we focused on the function of representative RES: nitric oxide (NO) as a gaseous RES, 4-hydroxynonenal (HNE) as a lipid RES, and methylmercury (MeHg) as an environmental organic compound RES, to outline the relationship between ER stress and RES. Modulation by RES might be a target for the development of next-generation therapy for ER stress-associated diseases.
Collapse
Affiliation(s)
- Nobumasa Takasugi
- Department of Medicinal Pharmacology, Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences, Okayama University, Okayama 700-8530, Japan.
| | - Hideki Hiraoka
- Department of Medicinal Pharmacology, Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences, Okayama University, Okayama 700-8530, Japan.
| | - Kengo Nakahara
- Department of Medicinal Pharmacology, Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences, Okayama University, Okayama 700-8530, Japan.
| | - Shiori Akiyama
- Department of Medicinal Pharmacology, Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences, Okayama University, Okayama 700-8530, Japan.
| | - Kana Fujikawa
- Department of Medicinal Pharmacology, Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences, Okayama University, Okayama 700-8530, Japan.
| | - Ryosuke Nomura
- Department of Medicinal Pharmacology, Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences, Okayama University, Okayama 700-8530, Japan.
| | - Moeka Furuichi
- Department of Medicinal Pharmacology, Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences, Okayama University, Okayama 700-8530, Japan.
| | - Takashi Uehara
- Department of Medicinal Pharmacology, Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences, Okayama University, Okayama 700-8530, Japan.
| |
Collapse
|
9
|
Kheirbakhsh R, Haddadi M, Muhammadnejad A, Abdollahi A, Shahi F, Amanpour-Gharaei B, Abrahim-Habibi A, Barati T, Amanpour S. Long-term behavioral, histological, biochemical and hematological evaluations of amyloid beta-induced Alzheimer’s disease in rat. Acta Neurobiol Exp (Wars) 2018. [DOI: 10.21307/ane-2018-004] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
|
10
|
Kuo YC, Lin CY, Li JS, Lou YI. Wheat germ agglutinin-conjugated liposomes incorporated with cardiolipin to improve neuronal survival in Alzheimer's disease treatment. Int J Nanomedicine 2017; 12:1757-1774. [PMID: 28280340 PMCID: PMC5340244 DOI: 10.2147/ijn.s128396] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Curcumin (CRM) and nerve growth factor (NGF) were entrapped in liposomes (LIP) with surface wheat germ agglutinin (WGA) to downregulate the phosphorylation of kinases in Alzheimer’s disease (AD) therapy. Cardiolipin (CL)-conjugated LIP carrying CRM (CRM-CL/LIP) and also carrying NGF (NGF-CL/LIP) were used with AD models of SK-N-MC cells and Wistar rats after an insult with β-amyloid peptide (Aβ). We found that CRM-CL/LIP inhibited the expression of phosphorylated p38 (p-p38), phosphorylated c-Jun N-terminal kinase (p-JNK), and p-tau protein at serine 202 and prevented neurodegeneration of SK-N-MC cells. In addition, NGF-CL/LIP could enhance the quantities of p-neurotrophic tyrosine kinase receptor type 1 and p-extracellular signal-regulated kinase 5 for neuronal rescue. Moreover, WGA-grafted CRM-CL/LIP and WGA-grafted NGF-CL/LIP significantly improved the permeation of CRM and NGF across the blood–brain barrier, reduced Aβ plaque deposition and the malondialdehyde level, and increased the percentage of normal neurons and cholinergic activity in the hippocampus of AD rats. Based on the marker expressions and in vivo evidence, current LIP carriers can be promising drug delivery systems to protect nervous tissue against Aβ-induced apoptosis in the brain during the clinical management of AD.
Collapse
Affiliation(s)
| | | | - Jay-Shake Li
- Department of Psychology, National Chung Cheng University, Chia-Yi
| | - Yung-I Lou
- Department of Accounting, Providence University, Taichung, Taiwan, Republic of China
| |
Collapse
|
11
|
Chen J, Zhan L, Lu X, Xiao C, Sun N. The Alteration of ZiBuPiYin Recipe on Proteomic Profiling of Forebrain Postsynaptic Density of db/db Mice with Diabetes-Associated Cognitive Decline. J Alzheimers Dis 2017; 56:471-489. [PMID: 27886008 DOI: 10.3233/jad-160691] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Affiliation(s)
- Jing Chen
- Institute (College) of Integrative Medicine, Dalian Medical University, Dalian, Liaoning, China
| | - Libin Zhan
- Nanjing University of Chinese Medicine, Nanjing, Jiangsu, China
- The Second Affiliated Hospital of Dalian Medical University, Dalian, Liaoning, China
| | - Xiaoguang Lu
- Department of Emergency Medicine, Zhongshan Hospital, Dalian University, Dalian, Liaoning, China
| | - Chi Xiao
- The Second Affiliated Hospital of Dalian Medical University, Dalian, Liaoning, China
| | - Nijing Sun
- The Second Affiliated Hospital of Dalian Medical University, Dalian, Liaoning, China
| |
Collapse
|
12
|
Khodagholi F, Digaleh H, Motamedi F, Foolad F, Shaerzadeh F. Nitric Oxide and Protein Disulfide Isomerase Explain the Complexities of Unfolded Protein Response Following Intra-hippocampal Aβ Injection. Cell Mol Neurobiol 2016; 36:873-881. [PMID: 26391027 PMCID: PMC11482335 DOI: 10.1007/s10571-015-0271-x] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2015] [Accepted: 09/15/2015] [Indexed: 12/20/2022]
Abstract
Several pathways involved in regulation of intracellular protein integrity are known as the protein quality control (PQC) system. Molecular chaperones as the main players are engaged in various aspects of PQC system. According to the importance of these proteins in cell survival, in the present study, we traced endoplasmic reticulum-specific markers and chaperone-mediated autophagy (CMA)-associated factors as two main arms of PQC system in intra-hippocampal amyloid beta (Aβ)-injected rats during 10 days running. Data analysis from Western blot indicated that exposure to Aβ activates immunoglobulin heavy-chain-binding protein (Bip) which is the upstream regulator of unfolded protein responses (UPR). Activation of UPR system eventually led to induction of pro-apoptotic factors like CHOP, calpain, and caspase-12. Moreover, our data revealed that protein disulfide isomerase activity dramatically decreased after Aβ injection, which could be attributed to the increased levels of nitric oxide. Besides, Aβ injection induced levels of 2 members of heat shock proteins (Hsp) 70 and 90. Elevated levels of Hsps family members are accompanied by increased levels of lysosome-associated membrane protein type-2A (Lamp-2A) that are involved in CMA. Despite the reduction in CHOP, calpain, caspase-12, and Lamp-2A protein levels, the levels of molecular chaperones Bip, Hsps70, and 90 increased 10 days after Aβ injection in comparison to the control group. Based on our results, 10 days after Aβ injection, despite the activation of protective chaperones, markers associated with neurotoxicity were still elevated.
Collapse
Affiliation(s)
- Fariba Khodagholi
- NeuroBiology Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
- Neuroscience Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Hadi Digaleh
- NeuroBiology Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
- Neuroscience Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Fereshteh Motamedi
- NeuroBiology Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
- Neuroscience Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Forough Foolad
- NeuroBiology Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
- Neuroscience Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Fatemeh Shaerzadeh
- Department of Physiology, Faculty of Medicine, Hormozgan University of Medical Sciences, Bandar Abbas, Iran.
| |
Collapse
|
13
|
Dong P, Zhang L, Zhan L, Liu Y. Ultra high performance liquid chromatography with mass spectrometry for the rapid analysis and global characterization of multiple constituents from Zibu Piyin Recipe. J Sep Sci 2015; 39:595-602. [DOI: 10.1002/jssc.201500852] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2015] [Revised: 10/23/2015] [Accepted: 11/09/2015] [Indexed: 01/17/2023]
Affiliation(s)
- Peipei Dong
- Institute of Integrative Medicine; Dalian Medical University; Dalian China
| | - Lin Zhang
- Institute of Integrative Medicine; Dalian Medical University; Dalian China
| | - Libin Zhan
- School of Basic Medical Sciences; Nanjing University of Chinese Medicine; Nanjing China
- Department of Traditional Chinese Medicine, the Second Affiliated Hospital; Dalian Medical University; Dalian China
| | - Yanqiu Liu
- Institute of Integrative Medicine; Dalian Medical University; Dalian China
| |
Collapse
|
14
|
Kheirbakhsh R, Chinisaz M, Khodayari S, Amanpour S, Dehpour AR, Muhammadnejad A, Larijani B, Ebrahim-Habibi A. Injection of insulin amyloid fibrils in the hippocampus of male Wistar rats: report on memory impairment and formation of amyloid plaques. Neurol Sci 2015; 36:1411-6. [PMID: 25787810 DOI: 10.1007/s10072-015-2169-2] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2014] [Accepted: 03/09/2015] [Indexed: 10/23/2022]
Abstract
Amyloid fibrils result from a particular type of protein aggregation, and have been linked with various disorders, including neurodegenerative ones. In the case of Alzheimer's disease, amyloid beta (abeta) fibrils are detected in patients' brain, in the amyloid plaques. These fibrils can be produced in vitro, and their injection into animals' brains generates an animal model of Alzheimer's disease. Based on the structural similarity of amyloid fibrils that are formed from different proteins, we hypothesized that injecting insulin amyloid fibrils into rats' brains could result in amyloid plaque formation. Fourteen male Wistar rats were divided into control and experimental groups (n = 7). The experimental group was bilaterally injected with insulin amyloid in the hippocampus. Seven days after injection, a shuttle box test was performed and the experimental group's memory was found to be impaired. Histological investigation of these rats' brain showed the formation of amyloid plaques in the hippocampus. A limited test has provided preliminary evidence for the stability of these plaques up to 35 days. Further complementary studies are required to fully validate the proposed procedure, which is simple and relatively low cost, and could be suggested as an alternative to models generated with abeta fibrils.
Collapse
Affiliation(s)
- Raheleh Kheirbakhsh
- Biosensor Research Center, Endocrinology and Metabolism Molecular-Cellular Sciences Institute, Tehran University of Medical Sciences, Shariati Hospital, North Kargar Avenue, 1411413137, Tehran, Iran
| | | | | | | | | | | | | | | |
Collapse
|
15
|
Swomley AM, Förster S, Keeney JT, Triplett J, Zhang Z, Sultana R, Butterfield DA. Abeta, oxidative stress in Alzheimer disease: evidence based on proteomics studies. BIOCHIMICA ET BIOPHYSICA ACTA 2014; 1842:1248-57. [PMID: 24120836 PMCID: PMC3981962 DOI: 10.1016/j.bbadis.2013.09.015] [Citation(s) in RCA: 142] [Impact Index Per Article: 12.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/31/2013] [Revised: 09/27/2013] [Accepted: 09/28/2013] [Indexed: 01/01/2023]
Abstract
The initiation and progression of Alzheimer disease (AD) is a complex process not yet fully understood. While many hypotheses have been provided as to the cause of the disease, the exact mechanisms remain elusive and difficult to verify. Proteomic applications in disease models of AD have provided valuable insights into the molecular basis of this disorder, demonstrating that on a protein level, disease progression impacts numerous cellular processes such as energy production, cellular structure, signal transduction, synaptic function, mitochondrial function, cell cycle progression, and proteasome function. Each of these cellular functions contributes to the overall health of the cell, and the dysregulation of one or more could contribute to the pathology and clinical presentation in AD. In this review, foci reside primarily on the amyloid β-peptide (Aβ) induced oxidative stress hypothesis and the proteomic studies that have been conducted by our laboratory and others that contribute to the overall understanding of this devastating neurodegenerative disease.
Collapse
Affiliation(s)
- Aaron M Swomley
- Department of Chemistry, Center of Membrane Sciences, University of Kentucky, Lexington, KY 40506, USA; Sanders-Brown Center on Aging, University of Kentucky, Lexington, KY 40506, USA
| | - Sarah Förster
- Department of Biochemistry, Institute of Animal Sciences, University of Bonn, Bonn, Germany
| | - Jierel T Keeney
- Department of Chemistry, Center of Membrane Sciences, University of Kentucky, Lexington, KY 40506, USA; Sanders-Brown Center on Aging, University of Kentucky, Lexington, KY 40506, USA
| | - Judy Triplett
- Department of Chemistry, Center of Membrane Sciences, University of Kentucky, Lexington, KY 40506, USA; Sanders-Brown Center on Aging, University of Kentucky, Lexington, KY 40506, USA
| | - Zhaoshu Zhang
- Department of Chemistry, Center of Membrane Sciences, University of Kentucky, Lexington, KY 40506, USA; Sanders-Brown Center on Aging, University of Kentucky, Lexington, KY 40506, USA
| | - Rukhsana Sultana
- Department of Chemistry, Center of Membrane Sciences, University of Kentucky, Lexington, KY 40506, USA; Sanders-Brown Center on Aging, University of Kentucky, Lexington, KY 40506, USA
| | - D Allan Butterfield
- Department of Chemistry, Center of Membrane Sciences, University of Kentucky, Lexington, KY 40506, USA; Sanders-Brown Center on Aging, University of Kentucky, Lexington, KY 40506, USA.
| |
Collapse
|
16
|
Shi Z, Sun X, Liu X, Chen S, Chang Q, Chen L, Song G, Li H. Evaluation of an Aβ1–40-induced cognitive deficit in rat using a reward-directed instrumental learning task. Behav Brain Res 2012; 234:323-33. [DOI: 10.1016/j.bbr.2012.07.006] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2012] [Revised: 07/03/2012] [Accepted: 07/06/2012] [Indexed: 01/04/2023]
|
17
|
Therapeutic Effect of Yi-Chi-Tsung-Ming-Tang on Amyloid β-Induced Alzheimer's Disease-Like Phenotype via an Increase of Acetylcholine and Decrease of Amyloid β. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2012; 2012:414536. [PMID: 22754582 PMCID: PMC3382387 DOI: 10.1155/2012/414536] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/13/2012] [Accepted: 04/23/2012] [Indexed: 11/17/2022]
Abstract
Alzheimer's disease (AD) is an irreversible neurodegenerative disorder characterized by amyloid accumulation, neuronal death, and cognitive impairments. Yi-Chi-Tsung-Ming-Tang (YCTMT) is a traditional Chinese medicine and has never been used to enhance cognitive function and treat neurodegenerative disorders such as senile dementia. Whether YCTMT has a beneficial role in improving learning and memory in AD patients remains unclear. The present study showed that oral administration of YCTMT ameliorated amyloid-β- (Aβ1−40) injection-induced learning and memory impairments in rats, examined using passive avoidance and Morris water-maze tests. Immunostaining and Western Blot results showed that continuous Aβ1−40 infusion caused amyloid accumulation and decreased acetylcholine level in hippocampus. Oral administration of medium and high dose of YCTMT 7 days after the Aβ1−40 infusion decreased amyloid accumulation area and reversed acetylcholine decline in the Aβ1−40-injected hippocampus, suggesting that YCTMT might inhibit Aβ plague accumulation and rescue reduced acetylcholine expression. This study has provided evidence on the beneficial role of YCTMT in ameliorating amyloid-induced AD-like symptom, indicating that YCTMT may offer an alternative strategy for treating AD.
Collapse
|