1
|
Liu Q, Cheng L, Li F, Zhu H, Lu X, Huang C, Yuan X. NSC689857, an inhibitor of Skp2, produces antidepressant-like effects in mice. Behav Pharmacol 2024; 35:227-238. [PMID: 38651981 DOI: 10.1097/fbp.0000000000000773] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/25/2024]
Abstract
We have previously reported that two inhibitors of an E3 ligase S-phase kinase-associated protein 2 (Skp2), SMIP004 and C1, have an antidepressant-like effect in non-stressed and chronically stressed mice. This prompted us to ask whether other Skp2 inhibitors could also have an antidepressant effect. Here, we used NSC689857, another Skp2 inhibitor, to investigate this hypothesis. The results showed that administration of NSC689857 (5 mg/kg) produced an antidepressant-like effect in a time-dependent manner in non-stressed male mice, which started 8 days after drug administration. Dose-dependent analysis showed that administration of 5 and 10 mg/kg, but not 1 mg/kg, of NSC689857 produced antidepressant-like effects in both non-stressed male and female mice. Administration of NSC689857 (5 mg/kg) also induced antidepressant-like effects in non-stressed male mice when administered three times within 24 h (24, 5, and 1 h before testing) but not when administered acutely (1 h before testing). In addition, NSC689857 and fluoxetine coadministration produced additive antidepressant-like effects in non-stressed male mice. These effects of NSC689857 were not associated with the changes in locomotor activity. Administration of NSC689857 (5 mg/kg) also attenuated depression-like behaviors in male mice induced by chronic social defeat stress, suggesting therapeutic potential of NSC689857 in depression. Overall, these results suggest that NSC689857 is capable of exerting antidepressant-like effects in both non-stressed and chronically stressed mice.
Collapse
Affiliation(s)
- Qingqing Liu
- Department of Pharmacy, Nantong Third People's Hospital, Affiliated Nantong Hospital 3 of Nantong University, Nantong
| | - Li Cheng
- Department of Pharmacy, Changzhou Geriatric Hospital Affiliated to Soochow University, Changzhou No. 7 People's Hospital, Changzhou
| | - Fu Li
- Department of Pharmacy, Changzhou Geriatric Hospital Affiliated to Soochow University, Changzhou No. 7 People's Hospital, Changzhou
| | - Haojie Zhu
- Department of Pharmacology, School of Pharmacy, Nantong University, Nantong, Jiangsu
| | - Xu Lu
- Department of Pharmacology, School of Pharmacy, Nantong University, Nantong, Jiangsu
| | - Chao Huang
- Department of Pharmacology, School of Pharmacy, Nantong University, Nantong, Jiangsu
| | - Xiaomei Yuan
- Department of Cardiology, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, Sichuan, China
| |
Collapse
|
2
|
Wang Y, Chang X, Zhang H, Hou Y, Zheng X, Zhang Y, Chen S. Hypothalamic Gene Expression in a Rat Model of Chronic Unpredictable Mild Stress Treated with Electroacupuncture. Neurochem Res 2024; 49:1406-1416. [PMID: 38522048 DOI: 10.1007/s11064-024-04124-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2023] [Revised: 02/07/2024] [Accepted: 02/10/2024] [Indexed: 03/25/2024]
Abstract
Depression is characterized by the loss of pleasure and a depressed mood, and it is a common mental disorder in the twenty-first century. Multiple gene imbalances, which are considered pathological factors in depression, were detected in the brain. Electroacupuncture is an effective therapeutic approach for depression that has minimal side effects. As a crucial structure in the hypothalamus-pituitary-adrenal, the hypothalamus plays a key role in depression. Our study focused on the transcriptome level in the hypothalamus of depressive rats. After chronic unpredictable mild stress, the rats exhibited depressive-like behaviors, such as decreased sucrose consumption in the SPT, increased time in the central area of the OFT and increased immobility in the FST. Moreover, electroacupuncture alleviated depressive behaviors. Because of the importance of the hypothalamus in depression, we next detected gene expression in the hypothalamus. A total of 510 genes (125 upregulated genes and 385 downregulated genes) were detected in the hypothalamus of depressive rats. 15 of the 125 upregulated genes and 63 of the 385 downregulated genes could be altered by electroacupuncture, which suggests the antidepressant effect of electroacupuncture. Our study also provided the evidence that regulation of transcriptome in the hypothalamus might be a potential mechanism of electroacupuncture treatment.
Collapse
Affiliation(s)
- Ying Wang
- Innovative Institute of Chinese Medicine and Phamacy, Research Institute of Acupuncture and Moxibustion, Shandong University of Traditional Chinese Medicine, Jinan, 250355, Shandong, China
| | - Xiaoli Chang
- Innovative Institute of Chinese Medicine and Phamacy, Research Institute of Acupuncture and Moxibustion, Shandong University of Traditional Chinese Medicine, Jinan, 250355, Shandong, China
| | - Haiyan Zhang
- Innovative Institute of Chinese Medicine and Phamacy, Research Institute of Acupuncture and Moxibustion, Shandong University of Traditional Chinese Medicine, Jinan, 250355, Shandong, China
| | - Yi Hou
- Innovative Institute of Chinese Medicine and Phamacy, Research Institute of Acupuncture and Moxibustion, Shandong University of Traditional Chinese Medicine, Jinan, 250355, Shandong, China
| | - Xinjie Zheng
- Innovative Institute of Chinese Medicine and Phamacy, Research Institute of Acupuncture and Moxibustion, Shandong University of Traditional Chinese Medicine, Jinan, 250355, Shandong, China
| | - Yujiao Zhang
- Innovative Institute of Chinese Medicine and Phamacy, Research Institute of Acupuncture and Moxibustion, Shandong University of Traditional Chinese Medicine, Jinan, 250355, Shandong, China.
| | - Shaozong Chen
- Innovative Institute of Chinese Medicine and Phamacy, Research Institute of Acupuncture and Moxibustion, Shandong University of Traditional Chinese Medicine, Jinan, 250355, Shandong, China.
| |
Collapse
|
3
|
Liu SJ, Cai TH, Fang CL, Lin SZ, Yang WQ, Wei Y, Zhou F, Liu L, Luo Y, Guo ZY, Zhao G, Li YP, Li LM. Long-term exercise training down-regulates m 6A RNA demethylase FTO expression in the hippocampus and hypothalamus: an effective intervention for epigenetic modification. BMC Neurosci 2022; 23:54. [PMID: 36163017 PMCID: PMC9513931 DOI: 10.1186/s12868-022-00742-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2022] [Accepted: 09/15/2022] [Indexed: 11/14/2022] Open
Abstract
Background Exercise boosts the health of some brain parts, such as the hippocampus and hypothalamus. Several studies show that long-term exercise improves spatial learning and memory, enhances hypothalamic leptin sensitivity, and regulates energy balance. However, the effect of exercise on the hippocampus and hypothalamus is not fully understood. The study aimed to find epigenetic modifications or changes in gene expression of the hippocampus and hypothalamus due to exercise. Methods Male C57BL/6 mice were randomly divided into sedentary and exercise groups. All mice in the exercise group were subjected to treadmill exercise 5 days per week for 1 h each day. After the 12-week exercise intervention, the hippocampus and hypothalamus tissue were used for RNA-sequencing or molecular biology experiments. Results In both groups, numerous differentially expressed genes of the hippocampus (up-regulated: 53, down-regulated: 49) and hypothalamus (up-regulated: 24, down-regulated: 40) were observed. In the exercise group, increased level of N6-methyladenosine (m6A) was observed in the hippocampus and hypothalamus (p < 0.05). Furthermore, the fat mass and obesity-associated gene (FTO) of the hippocampus and hypothalamus were down-regulated in the exercise group (p < 0.001). In addition, the Fto co-expression genes of the mouse brain were studied and analyzed using database to determine the potential roles of exercise-downregulated FTO in the brain. Conclusion The findings demonstrate that long-term exercise might elevates the levels of m6A-tagged transcripts in the hippocampus and hypothalamus via down-regulation of FTO. Hence, exercise might be an effective intervention for epigenetic modification.
Collapse
Affiliation(s)
- Shu-Jing Liu
- Center for Scientific Research and Institute of Exercise and Health, Guangzhou Sport University, Guangzhou, China
| | - Tong-Hui Cai
- The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, 510260, China
| | - Chun-Lu Fang
- Center for Scientific Research and Institute of Exercise and Health, Guangzhou Sport University, Guangzhou, China
| | - Shao-Zhang Lin
- The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, 510260, China
| | - Wen-Qi Yang
- Center for Scientific Research and Institute of Exercise and Health, Guangzhou Sport University, Guangzhou, China
| | - Yuan Wei
- Center for Scientific Research and Institute of Exercise and Health, Guangzhou Sport University, Guangzhou, China
| | - Fu Zhou
- Center for Scientific Research and Institute of Exercise and Health, Guangzhou Sport University, Guangzhou, China
| | - Ling Liu
- Center for Scientific Research and Institute of Exercise and Health, Guangzhou Sport University, Guangzhou, China
| | - Yuan Luo
- Center for Scientific Research and Institute of Exercise and Health, Guangzhou Sport University, Guangzhou, China
| | - Zi-Yi Guo
- Center for Scientific Research and Institute of Exercise and Health, Guangzhou Sport University, Guangzhou, China
| | - Ge Zhao
- Center for Scientific Research and Institute of Exercise and Health, Guangzhou Sport University, Guangzhou, China
| | - Ya-Ping Li
- Center for Scientific Research and Institute of Exercise and Health, Guangzhou Sport University, Guangzhou, China
| | - Liang-Ming Li
- Center for Scientific Research and Institute of Exercise and Health, Guangzhou Sport University, Guangzhou, China.
| |
Collapse
|
4
|
Hsieh MC, Ho YC, Lai CY, Wang HH, Yang PS, Cheng JK, Chen GD, Ng SC, Lee AS, Tseng KW, Lin TB, Peng HY. Blocking the Spinal Fbxo3/CARM1/K + Channel Epigenetic Silencing Pathway as a Strategy for Neuropathic Pain Relief. Neurotherapeutics 2021; 18:1295-1315. [PMID: 33415686 PMCID: PMC8423947 DOI: 10.1007/s13311-020-00977-5] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/18/2020] [Indexed: 11/29/2022] Open
Abstract
Many epigenetic regulators are involved in pain-associated spinal plasticity. Coactivator-associated arginine methyltransferase 1 (CARM1), an epigenetic regulator of histone arginine methylation, is a highly interesting target in neuroplasticity. However, its potential contribution to spinal plasticity-associated neuropathic pain development remains poorly explored. Here, we report that nerve injury decreased the expression of spinal CARM1 and induced allodynia. Moreover, decreasing spinal CARM1 expression by Fbxo3-mediated CARM1 ubiquitination promoted H3R17me2 decrement at the K+ channel promoter, thereby causing K+ channel epigenetic silencing and the development of neuropathic pain. Remarkably, in naïve rats, decreasing spinal CARM1 using CARM1 siRNA or a CARM1 inhibitor resulted in similar epigenetic signaling and allodynia. Furthermore, intrathecal administration of BC-1215 (a novel Fbxo3 inhibitor) prevented CARM1 ubiquitination to block K+ channel gene silencing and ameliorate allodynia after nerve injury. Collectively, the results reveal that this newly identified spinal Fbxo3-CARM1-K+ channel gene functional axis promotes neuropathic pain. These findings provide essential insights that will aid in the development of more efficient and specific therapies against neuropathic pain.
Collapse
Affiliation(s)
- Ming-Chun Hsieh
- Department of Medicine, Mackay Medical College, No.46, Sec. 3, Zhongzheng Rd, Sanzhi Dist, New Taipei, 25245, Taiwan
| | - Yu-Cheng Ho
- School of Medicine, College of Medicine, I-Shou University, Kaohsiung City, Taiwan
| | - Cheng-Yuan Lai
- Department of Medicine, Mackay Medical College, No.46, Sec. 3, Zhongzheng Rd, Sanzhi Dist, New Taipei, 25245, Taiwan
| | - Hsueh-Hsiao Wang
- Department of Medicine, Mackay Medical College, No.46, Sec. 3, Zhongzheng Rd, Sanzhi Dist, New Taipei, 25245, Taiwan
| | - Po-Sheng Yang
- Department of Medicine, Mackay Medical College, No.46, Sec. 3, Zhongzheng Rd, Sanzhi Dist, New Taipei, 25245, Taiwan
- Department of Surgery, Mackay Memorial Hospital, Taipei, Taiwan
| | - Jen-Kun Cheng
- Department of Medicine, Mackay Medical College, No.46, Sec. 3, Zhongzheng Rd, Sanzhi Dist, New Taipei, 25245, Taiwan
- Department of Anesthesiology, Mackay Memorial Hospital, Taipei, Taiwan
| | - Gin-Den Chen
- Department of Obstetrics and Gynecology, Chung Shan Medical University Hospital, Chung Shan Medical University, Taichung, Taiwan
- School of Medicine, Chung Shan Medical University, Taichung, Taiwan
| | - Soo-Cheen Ng
- Department of Obstetrics and Gynecology, Chung Shan Medical University Hospital, Chung Shan Medical University, Taichung, Taiwan
- School of Medicine, Chung Shan Medical University, Taichung, Taiwan
| | - An-Sheng Lee
- Department of Medicine, Mackay Medical College, No.46, Sec. 3, Zhongzheng Rd, Sanzhi Dist, New Taipei, 25245, Taiwan
| | - Kuang-Wen Tseng
- Department of Medicine, Mackay Medical College, No.46, Sec. 3, Zhongzheng Rd, Sanzhi Dist, New Taipei, 25245, Taiwan
| | - Tzer-Bin Lin
- Department of Physiology, School of Medicine, College of Medicine, Taipei Medical University, Taipei, 11031, Taiwan
- Cell Physiology and Molecular Image Research Center, Wan Fang Hospital, Taipei Medical University, Taipei, 11689, Taiwan
- Department of Biotechnology, College of Medical and Health Science, Asia University, Taichung, 41354, Taiwan
| | - Hsien-Yu Peng
- Department of Medicine, Mackay Medical College, No.46, Sec. 3, Zhongzheng Rd, Sanzhi Dist, New Taipei, 25245, Taiwan.
| |
Collapse
|
5
|
Identification of the antidepressive properties of C1, a specific inhibitor of Skp2, in mice. Behav Pharmacol 2021; 32:62-72. [PMID: 33416256 DOI: 10.1097/fbp.0000000000000604] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
We have reported that SMIP004, an inhibitor of S-phase kinase-associated protein 2 (Skp2), displays antidepressant-like activities in stress-naïve and chronically stressed mice. Here, we investigated the antidepressant-like effect of C1, another inhibitor of Skp2, in mouse models following acute or chronic drug administration at different doses and treatment times by using the tail suspension test (TST), forced swimming test (FST), and social interaction test (SIT). The time- and dose-dependent results showed that the antidepressant-like effect of C1 occurred 8 days after the drug treatment, and C1 produced antidepressant-like activities at the dose of 5 and 10 but not 1 mg/kg in male or female mice. C1 administration (5 mg/kg) also induced antidepressant-like effects in stress-naïve mice in a three-times administration mode within 24 h (24, 5, and 1 h before the test) but not in an acute administration mode (1 h before the test). The C1 and fluoxetine co-administration produced additive effect on depression-like behaviors in stress-naïve mice. The antidepressant-like effect of C1 was not associated with the change in locomotor activity, as no increased locomotor activity was observed in different treatment modes. Furthermore, the long-term C1 treatment (5 mg/kg) was found to ameliorate the depression-like behaviors in chronic social defeat stress-exposed mice, suggesting that C1 can produce antidepressant-like actions in stress conditions. Since C1 is a specific inhibitor of Skp2, our results demonstrate that inhibition of Skp2 might be a potential strategy for the treatment of depression, and Skp2 may be potential target for the development of novel antidepressants.
Collapse
|
6
|
Yang CC, Wei XP, Fu XM, Qian LT, Xie LJ, Liu HB, Li G, Li XG, Zeng XW. Down-regulating microRNA-20a regulates CDH1 to protect against cerebral ischemia/reperfusion injury in rats. Cell Cycle 2021; 20:54-64. [PMID: 33345691 PMCID: PMC7849677 DOI: 10.1080/15384101.2020.1856498] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2020] [Revised: 11/14/2020] [Accepted: 11/20/2020] [Indexed: 02/08/2023] Open
Abstract
Studies have extensively focused on the involvement of microRNAs (miRNAs) in cerebral ischemia/reperfusion (I/R) injury but not much on the specific role of miR-20a. Hence, this study is purposed to decipher whether miR-20a could regulate cadherin 1 (CDH1) to affect cerebral I/R injury in rats. Rat transient middle cerebral artery occlusion model (MCAO) was established. Rats were injected with lentiviral solution containing miR-20a inhibitor, or overexpressed CDH1 or combined depleted miR-20a and CDH1 to explore their roles in cerebral I/R injury. Oxidative stress-related factors, miR-20a, CDH1, nuclear factor-kappaB (NF-κB) and Nestin expression in brain tissues were detected by RT-qPCR and western blot assay. The target relation between miR-20a and CDH1 was predicted by online website and further confirmed by luciferase activity assay. In rats with cerebral I/R injury, increased miR-20a and decreased CDH1 were found in brain tissues. Reduction of miR-20a or elevation of CDH1 attenuated behavior function in MCAO rats. Inhibiting miR-20a or restoring CDH1 restrained oxidative stress, attenuated pathological damage of neurons, promoted neuron survival, and down-regulated NF-κB and Nestin expression in brain tissues of MCAO rats. CDH1 was determined to a target gene of miR-20a. This study elucidates that down-regulating miR-20a elevates CDH1 to protect neurons from cerebral I/R injury, which paves a new way for treatment of cerebral I/R injury.
Collapse
Affiliation(s)
- Chun-chun Yang
- Department of Neurosurgery, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, China
- School of Medicine, Shandong University, Jinan, Shandong, China
- Department of Neurosurgery, Fuyang People’s Hospital, Fuyang, Anhui, China
| | - Xiang-pin Wei
- Department of Neurosurgery, AnHui Provincial Hospital, Shandong University, Anhui, China
| | - Xian-ming Fu
- Department of Neurosurgery, AnHui Provincial Hospital, Shandong University, Anhui, China
| | - Ling-tao Qian
- Department of Neurosurgery, Fuyang People’s Hospital, Fuyang, China
| | - Lan-jun Xie
- Department of Neurosurgery, Fuyang People’s Hospital, Fuyang, China
| | - Hong-bo Liu
- Department of Stroke Center, Fuyang People’s Hospital, Fuyang, China
| | - Gang Li
- Department of Neurosurgery, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, China
| | - Xin-gang Li
- Department of Neurosurgery, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, China
| | - Xian-wei Zeng
- Department of Neurosurgery, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, China
| |
Collapse
|
7
|
APC-Cdh1 Inhibits the Proliferation and Activation of Oligodendrocyte Precursor Cells after Mechanical Stretch Injury. BIOMED RESEARCH INTERNATIONAL 2019; 2019:9524561. [PMID: 31139661 PMCID: PMC6500630 DOI: 10.1155/2019/9524561] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/03/2019] [Accepted: 03/25/2019] [Indexed: 12/21/2022]
Abstract
The incidence of spinal cord injury (SCI) continues to increase; however, the involved mechanisms remain unclear. Anaphase promoting complex (APC) and its regulatory subunit Cdh1 play important roles in the growth, development, and repair of the central nervous system (CNS). Cdh1 is involved in the pathophysiological processes of neuronal apoptosis and astrocyte-reactive proliferation after ischemic brain injury, whereas the role played by APC-Cdh1 in the proliferation and activation of oligodendrocyte precursor cells (OPCs) after SCI remains unresolved. Using primary cultures of spinal oligodendrocyte precursor cells, we successfully established an in vitro mechanical stretch injury model to simulate SCI. Cell viability and proliferation were determined by MTT assay and flow cytometric analysis of the cell cycle. Real-time fluorescent quantitative PCR and Western blot analysis determined the mRNA and protein expression levels of Cdh1 and its downstream substrates Skp2 and Id2. Mechanical stretch injury decreased the proliferative activity of OPCs and enhanced cellular Cdh1 expression. Dampened expression of Cdh1 in primary OPCs significantly promoted proliferation and activation of OPCs after SCI. In addition, the expression of the downstream substrates of Cdh1, Skp2, and Id2 was decreased following mechanical injury, whereas adenovirus-mediated Cdh1 RNA interference increased postinjury expression of Skp2 and Id2. These findings suggest that APC-Cdh1 might be involved in regulating the proliferation and activation of OPCs after mechanical SCI. Moreover, degraded ubiquitination of the downstream substrates Skp2 and Id2 might play an important role, at least in part, in the beneficial effects of OPCs activity following SCI.
Collapse
|
8
|
Zhang B, Chen X, Lv Y, Wu X, Gui L, Zhang Y, Qiu J, Song G, Yao W, Wan L, Zhang C. Cdh1 overexpression improves emotion and cognitive-related behaviors via regulating hippocampal neuroplasticity in global cerebral ischemia rats. Neurochem Int 2019; 124:225-237. [PMID: 30677437 DOI: 10.1016/j.neuint.2019.01.015] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2018] [Revised: 12/06/2018] [Accepted: 01/15/2019] [Indexed: 01/08/2023]
Abstract
Post-stroke survivors exhibited cognitive deficits and performed emotional impairment. However, the effect of global cerebral ischemia on standard behavioral measures of emotionality and underlying mechanism remain largely unknown. Our previous work identified that down-regulation of Cdh1 contributed to ischemic neuronal death in rat, thus we hypothesized that Cdh1 exerts a role in emotionality after cerebral ischemia, and we investigated the effect of Cdh1 overexpression on neurogenic behaviors and possible mechanisms in transient global cerebral ischemia reperfusion (tGCI/R) rats. A series of behavioral tests were used to evaluate emotion and cognitive related behaviors, and molecular biological techniques were employed to investigate hippocampal neuroplasticity. The results showed that tGCI/R rats displayed anxiety- and depression-like behaviors and a certain degree of cognitive impairment, and these abnormal behaviors accompanied with a loss of hippocampal synapses and dendritic spines, disruption of dendrite arborization and decline in the level of GAP-43, synaptophysin, synapsin and PSD-95. However, Cdh1 overexpression improved negative emotionality, ameliorated cognitive deficits, rescued hippocampal synapses loss, prevented dendritic network disorganization, and increased the level of synaptic-associated proteins after tGCI/R. Taken together, these findings suggest that Cdh1 overexpression exerts a neuroprotective effect by regulating hippocampal neuroplasticity thus improving negative emotionality and cognitive deficits after tGCI/R.
Collapse
Affiliation(s)
- Bo Zhang
- Department of Anesthesiology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China; Department of Anesthesiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Xuhui Chen
- Department of Anesthesiology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Youyou Lv
- Department of Anesthesiology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China; Department of Anesthesiology, The Fifth Affiliated Hospital of Sun Yat-Sen University, Zhuhai, 510275, China
| | - Xi Wu
- Department of Anesthesiology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China; Department of Anesthesiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Lingli Gui
- Department of Anesthesiology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Yue Zhang
- Department of Anesthesiology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Jin Qiu
- Department of Anesthesiology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Guizhi Song
- Department of Quality Inspection, Wuhan Institute of Biological Products, Wuhan, 430060, China
| | - Wenlong Yao
- Department of Anesthesiology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Li Wan
- Department of Anesthesiology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China.
| | - Chuanhan Zhang
- Department of Anesthesiology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China.
| |
Collapse
|
9
|
Wang D, Xu X, Wu Y, Lin Y, Gao M, Hu P, Chen D, Lu X, Chen Z, Wang H, Huang C. SMIP004: A compound with antidepressant-like activities in mouse models. Eur J Pharmacol 2019; 843:260-267. [DOI: 10.1016/j.ejphar.2018.11.039] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2018] [Revised: 11/23/2018] [Accepted: 11/28/2018] [Indexed: 12/19/2022]
|
10
|
Li Z, Zhang B, Yao W, Zhang C, Wan L, Zhang Y. APC-Cdh1 Regulates Neuronal Apoptosis Through Modulating Glycolysis and Pentose-Phosphate Pathway After Oxygen-Glucose Deprivation and Reperfusion. Cell Mol Neurobiol 2019; 39:123-135. [PMID: 30460429 PMCID: PMC11469847 DOI: 10.1007/s10571-018-0638-x] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2018] [Accepted: 11/14/2018] [Indexed: 01/30/2023]
Abstract
Anaphase-promoting complex (APC) with its coactivator Cdh1 is required to maintain the postmitotic state of neurons via degradation of Cyclin B1, which aims to prevent aberrant cell cycle entry that causes neuronal apoptosis. Interestingly, evidence is accumulating that apart from the cell cycle, APC-Cdh1 also involves in neuronal metabolism via modulating the glycolysis promoting enzyme, 6-phosphofructo-2-kinase/fructose-2,6-bisphosphatase-3 (PFKFB3). Here, we showed that under oxygen-glucose deprivation and reperfusion (OGD/R), APC-Cdh1 was decreased in primary cortical neurons. Likewise, the neurons exhibited enhanced glycolysis when oxygen supply was reestablished during reperfusion, which was termed as the "neuronal Warburg effect." In particular, the reperfused neurons showed elevated PFKFB3 expression in addition to a reduction in glucose 6-phosphate dehydrogenase (G6PD). Such changes directed neuronal glucose metabolism from pentose-phosphate pathway (PPP) to aerobic glycolysis compared to the normal neurons, resulting in increased ROS production and apoptosis during reperfusion. Pretreatment of neurons with Cdh1 expressing lentivirus before OGD could reverse this metabolic shift and attenuated ROS-induced apoptosis. However, the metabolism regulation and neuroprotection by Cdh1 under OGD/R condition could be blocked when co-transfecting neurons with Ken box-mut-PFKFB3 (which is APC-Cdh1 insensitive). Based on these data, we suggest that the Warburg effect may contribute to apoptotic mechanisms in neurons under OGD/R insult, and targeting Cdh1 may be a potential therapeutic strategy as both glucose metabolic regulator and apoptosis suppressor of neurons in brain injuries.
Collapse
Affiliation(s)
- Zuofan Li
- Department of Anesthesiology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1095 Jiefang Avenue, Wuhan, 430030, China
| | - Bo Zhang
- Department of Anesthesiology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1095 Jiefang Avenue, Wuhan, 430030, China
| | - Wenlong Yao
- Department of Anesthesiology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1095 Jiefang Avenue, Wuhan, 430030, China
| | - Chuanhan Zhang
- Department of Anesthesiology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1095 Jiefang Avenue, Wuhan, 430030, China
| | - Li Wan
- Department of Anesthesiology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1095 Jiefang Avenue, Wuhan, 430030, China
| | - Yue Zhang
- Department of Anesthesiology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1095 Jiefang Avenue, Wuhan, 430030, China.
| |
Collapse
|
11
|
Zhang B, Wei K, Li X, Hu R, Qiu J, Zhang Y, Yao W, Zhang C, Zhu C. Upregulation of Cdh1 signaling in the hippocampus attenuates brain damage after transient global cerebral ischemia in rats. Neurochem Int 2017; 112:166-178. [PMID: 28711656 DOI: 10.1016/j.neuint.2017.07.005] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2017] [Revised: 07/07/2017] [Accepted: 07/10/2017] [Indexed: 01/27/2023]
Abstract
Cerebral ischemia is a major cause of brain dysfunction. The E3 ubiquitin ligase anaphase-promoting complex and its coactivator Cdh1 have been reported to be involved in the regulation of neuronal survival, differentiation, axonal growth and synaptic development in the central nervous system. However, its role in the ischemic brain and the underlying mechanisms remain poorly understood. The present study aimed to investigate the effects of Cdh1 overexpression on the ischemic rat brain by direct intra-hippocampal injection of lentivirus-delivered Cdh1 before transient global cerebral ischemia reperfusion. Spatial memory acquisition and retention were assessed using a Morris water maze task. Neuronal damage, glial activation, oxidative stress and the synaptic ultrastructure were also examined. The results indicated that a recombinant Cdh1-encoding lentiviral vector can upregulate the expression of Cdh1 in the rat hippocampus. Cdh1 overexpression increased the survival rates of rats, reversed the abnormal accumulation of cyclin B1, alleviated neuronal death, inhibited glial activation, mitigated oxidative stress, modulated synaptic plasticity and improved neurological deficits caused by ischemia. Our study indicates that targeting the Cdh1 signaling pathway in the hippocampus may provide a promising therapeutic strategy for the clinical treatment of transient global cerebral ischemia.
Collapse
Affiliation(s)
- Bo Zhang
- Department of Anesthesiology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, PR China
| | - Kai Wei
- Department of Anesthesiology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, PR China
| | - Xuan Li
- Department of Anesthesiology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, PR China
| | - Rong Hu
- Department of Anesthesiology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, PR China
| | - Jin Qiu
- Department of Anesthesiology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, PR China
| | - Yue Zhang
- Department of Anesthesiology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, PR China
| | - Wenlong Yao
- Department of Anesthesiology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, PR China
| | - Chuanhan Zhang
- Department of Anesthesiology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, PR China
| | - Chang Zhu
- Department of Anesthesiology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, PR China.
| |
Collapse
|
12
|
Fuchsberger T, Martínez-Bellver S, Giraldo E, Teruel-Martí V, Lloret A, Viña J. Aβ Induces Excitotoxicity Mediated by APC/C-Cdh1 Depletion That Can Be Prevented by Glutaminase Inhibition Promoting Neuronal Survival. Sci Rep 2016; 6:31158. [PMID: 27514492 PMCID: PMC4981891 DOI: 10.1038/srep31158] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2015] [Accepted: 07/15/2016] [Indexed: 02/08/2023] Open
Abstract
The E3 ubiquitin ligase anaphase-promoting complex/cyclosome (APC/C) is activated by the fizzy-related protein homolog/CDC20-like protein 1 (cdh1) in post-mitotic neurons. Growing evidence suggests that dysregulation of APC/C-Cdh1 is involved in neurodegenerative diseases. Here we show in neurons that oligomers of amyloid beta (Aβ), a peptide related to Alzheimer’s disease, cause proteasome-dependent degradation of cdh1. This leads to a subsequent increase in glutaminase (a degradation target of APC/C-Cdh1), which causes an elevation of glutamate levels and further intraneuronal Ca2+ dysregulation, resulting in neuronal apoptosis. Glutaminase inhibition prevents glutamate excitotoxicity and apoptosis in Aβ treated neurons. Furthermore, glutamate also decreases cdh1 and leads to accumulation of glutaminase, suggesting that there may be a positive feedback loop of cdh1 inactivation. We confirmed the main findings in vivo using microinjection of either Aβ or glutamate in the CA1 region of the rat hippocampus. We show here for the first time in vivo that both Aβ and glutamate cause nuclear exclusion of cdh1 and an increase in glutaminase. These results show that maintaining normal APC/C-Cdh1 activity may be a useful target in Alzheimer’s disease treatment.
Collapse
Affiliation(s)
- T Fuchsberger
- Department of Physiology, Faculty of Medicine, University of Valencia, INCLIVA Avda. Blasco Ibañez 15, 46010 Valencia, Spain
| | - S Martínez-Bellver
- Department of Anatomy and Human Embriology, Faculty of Medicine, University of Valencia, Avda. Blasco Ibañez 15, 46010 Valencia, Spain.,Department of Cellular Biology and Parasitology, Faculty of Biology, University of Valencia, Avda. Doctor Moliner 50, 46100 Valencia, Spain
| | - E Giraldo
- Department of Physiology, Faculty of Medicine, University of Valencia, INCLIVA Avda. Blasco Ibañez 15, 46010 Valencia, Spain
| | - V Teruel-Martí
- Department of Anatomy and Human Embriology, Faculty of Medicine, University of Valencia, Avda. Blasco Ibañez 15, 46010 Valencia, Spain
| | - A Lloret
- Department of Physiology, Faculty of Medicine, University of Valencia, INCLIVA Avda. Blasco Ibañez 15, 46010 Valencia, Spain
| | - J Viña
- Department of Physiology, Faculty of Medicine, University of Valencia, INCLIVA Avda. Blasco Ibañez 15, 46010 Valencia, Spain
| |
Collapse
|
13
|
Hu R, Li L, Li D, Tan W, Wan L, Zhu C, Zhang Y, Zhang C, Yao W. Downregulation of Cdh1 signalling in spinal dorsal horn contributes to the maintenance of mechanical allodynia after nerve injury in rats. Mol Pain 2016; 12:12/0/1744806916647376. [PMID: 27184142 PMCID: PMC4956001 DOI: 10.1177/1744806916647376] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2016] [Accepted: 04/04/2016] [Indexed: 12/29/2022] Open
Abstract
Background Anaphase-promoting complex/cyclosome (APC/C) and its co-activator Cdh1 are important ubiquitin-ligases in proliferating cells and terminally differentiated neurons. In recent years, APC/C-Cdh1 has been reported as an important complex contributing to synaptic development and transmission. Interestingly, cortical APC/C-Cdh1 is found to play a critical role in the maintenance of neuropathic pain, but it is not clear whether APC/C-Cdh1 in spinal dorsal cord is involved in molecular mechanisms of neuropathic pain conditions. Results Immunostaining showed that Cdh1 was mainly distributed in dorsal horn neurons of the spinal cord in rats. Its expression was downregulated in the ipsilateral dorsal horn at 14 days after spared nerve injury. Rescued expression of Cdh1 in spinal cord by intrathecal administration of recombinant lentivirus encoding Cdh1 (Lenti-Cdh1-GFP) significantly attenuated spared nerve injury-induced mechanical allodynia. Furthermore, rescued expression of spinal Cdh1 significantly reduced surface membrane expression of GluR1, but increased the expression of GluR1-related erythropoietin-producing human hepatocellular receptor A4 and its ligand EphrinA1 in dorsal horn of spared nerve injury-treated animals. Conclusions This study indicates that a downregulation of Cdh1 expression in spinal dorsal horn is involved in molecular mechanisms underlying the maintenance of neuropathic pain. Upregulation of spinal Cdh1 may be a promising approach to treat neuropathic pain.
Collapse
Affiliation(s)
- Rong Hu
- Department of Anesthesiology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Li Li
- Department of Physiology, Hubei University of Chinese Medicine, Wuhan, China
| | - Dajia Li
- Department of Anesthesiology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Wei Tan
- Department of Anesthesiology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Li Wan
- Department of Anesthesiology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Chang Zhu
- Department of Anesthesiology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yue Zhang
- Department of Anesthesiology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Chuanhan Zhang
- Department of Anesthesiology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Wenlong Yao
- Department of Anesthesiology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|
14
|
Schmidt-Kastner R. Genomic approach to selective vulnerability of the hippocampus in brain ischemia–hypoxia. Neuroscience 2015; 309:259-79. [DOI: 10.1016/j.neuroscience.2015.08.034] [Citation(s) in RCA: 74] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2015] [Revised: 08/12/2015] [Accepted: 08/17/2015] [Indexed: 01/06/2023]
|
15
|
Lv Y, Zhang B, Zhai C, Qiu J, Zhang Y, Yao W, Zhang C. PFKFB3-mediated glycolysis is involved in reactive astrocyte proliferation after oxygen-glucose deprivation/reperfusion and is regulated by Cdh1. Neurochem Int 2015; 91:26-33. [PMID: 26498254 DOI: 10.1016/j.neuint.2015.10.006] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2015] [Revised: 10/09/2015] [Accepted: 10/15/2015] [Indexed: 01/13/2023]
Abstract
Reactive astrocyte proliferation is involved in many central degenerative diseases. The enzyme 6-phosphofructo-2-kinase/fructose-2,6-bisphosphatase isoform 3 (PFKFB3), an allosteric activator of 6-phosphofructo-1-kinase (PFK1), controls glycolytic flux. Furthermore, APC/C-Cdh1 plays a crucial role in brain metabolism by regulating PFKFB3 expression. Previous studies have defined the roles of PFKFB3-mediated glycolysis in pathological angiogenesis, cell autophagy, and amyloid plaque deposition in proliferating cells. However, the role of PFKFB3 in reactive astrocyte proliferation after cerebral ischemia is unknown. In this study, we cultured rat primary cortical astrocytes and established an oxygen-glucose deprivation/reperfusion (OGD/R) model to mimic cerebral ischemia in vivo. Astrocyte proliferation was measured by western blotting for proliferating cell nuclear antigen (PCNA) and by EdU incorporation. We found that OGD/R up-regulated PFKFB3 and PFK1 expression, which was accompanied by reactive astrocyte proliferation. Knockdown of PFKFB3 by siRNA transfection significantly inhibited reactive astrocyte proliferation and lactate release, an indicator of glycolysis. We found that PFKFB3 and PFK1 expression were down-regulated and lactate release was decreased when OGD/R-induced astrocyte proliferation was inhibited by a Cdh1-expressing lentivirus. Thus, reactive astrocyte proliferation can be effectively suppressed by down-regulation of PFKFB3 through control of glycolytic flux, which is downstream of APC/C-Cdh1.
Collapse
Affiliation(s)
- Youyou Lv
- Department of Anesthesiology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Bo Zhang
- Department of Anesthesiology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Chunchun Zhai
- Department of Anesthesiology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Jin Qiu
- Department of Anesthesiology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Yue Zhang
- Department of Anesthesiology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Wenlong Yao
- Department of Anesthesiology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China.
| | - Chuanhan Zhang
- Department of Anesthesiology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China.
| |
Collapse
|
16
|
Tan W, Yao WL, Hu R, Lv YY, Wan L, Zhang CH, Zhu C. Alleviating neuropathic pain mechanical allodynia by increasing Cdh1 in the anterior cingulate cortex. Mol Pain 2015; 11:56. [PMID: 26364211 PMCID: PMC4568074 DOI: 10.1186/s12990-015-0058-6] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2015] [Accepted: 08/26/2015] [Indexed: 12/30/2022] Open
Abstract
Background Plastic changes in the anterior cingulate cortex (ACC) are critical in the pathogenesis of pain hypersensitivity caused by injury to peripheral nerves. Cdh1, a co-activator subunit of anaphase-promoting complex/cyclosome (APC/C) regulates synaptic differentiation and transmission. Based on this, we hypothesised that the APC/C–Cdh1 played an important role in long-term plastic changes induced by neuropathic pain in ACC. Results We employed spared nerve injury (SNI) model in rat and found Cdh1 protein level in the ACC was down-regulated 3, 7 and 14 days after SNI surgery. We detected increase in c-Fos expression, numerical increase of organelles, swollen myelinated fibre and axon collapse of neuronal cells in the ACC of SNI rat. Additionally, AMPA receptor GluR1 subunit protein level was up-regulated on the membrane through a pathway that involves EphA4 mediated by APC/C–Cdh1, 3 and 7 days after SNI surgery. To confirm the effect of Cdh1 in neuropathic pain, Cdh1-expressing lentivirus was injected into the ACC of SNI rat. Intra-ACC treatment with Cdh1-expressing lentivirus vectors elevated Cdh1 levels, erased synaptic strengthening, as well as alleviating established mechanical allodynia in SNI rats. We also found Cdh1-expressing lentivirus normalised SNI-induced redistribution of AMPA receptor GluR1 subunit in ACC by regulating AMPA receptor trafficking. Conclusions These results provide evidence that Cdh1 in ACC synapses may offer a novel therapeutic strategy for treating chronic neuropathic pain.
Collapse
Affiliation(s)
- Wei Tan
- Department of Anesthesiology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China.
| | - Wen-Long Yao
- Department of Anesthesiology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China.
| | - Rong Hu
- Department of Anesthesiology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China.
| | - You-You Lv
- Department of Anesthesiology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China.
| | - Li Wan
- Department of Anesthesiology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China.
| | - Chuan-Han Zhang
- Department of Anesthesiology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China.
| | - Chang Zhu
- Department of Anesthesiology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China.
| |
Collapse
|
17
|
Andrographolide activates the canonical Wnt signalling pathway by a mechanism that implicates the non-ATP competitive inhibition of GSK-3β: autoregulation of GSK-3β in vivo. Biochem J 2015; 466:415-30. [DOI: 10.1042/bj20140207] [Citation(s) in RCA: 54] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Andrographolide activates the canonical Wnt pathway and induces the transcription of Wnt target genes through a mechanism independent of Wnt ligand binding to its receptor, by direct substrate-competitive inhibition of GSK-3.
Collapse
|
18
|
Qiu J, Zhang C, Lv Y, Zhang Y, Zhu C, Wang X, Yao W. Cdh1 inhibits reactive astrocyte proliferation after oxygen-glucose deprivation and reperfusion. Neurochem Int 2013; 63:87-92. [PMID: 23727062 DOI: 10.1016/j.neuint.2013.05.009] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2013] [Revised: 05/08/2013] [Accepted: 05/19/2013] [Indexed: 12/23/2022]
Abstract
Anaphase-promoting complex (APC) and its co-activator Cdh1 are required for cell cycle regulation in proliferating cells. Recent studies have defined diverse functions of APC-Cdh1 in nervous system development and injury. Our previous studies have demonstrated the activity of APC-Cdh1 is down-regulated in hippocampus after global cerebral ischemia. But the detailed mechanisms of APC-Cdh1 in ischemic nervous injury are unclear. It is known that astrocyte proliferation is an important pathophysiological process following cerebral ischemia. However, the role of APC-Cdh1 in reactive astrocyte proliferation is not determined yet. In the present study, we cultured primary cerebral astrocytes and set up in vitro oxygen-glucose deprivation and reperfusion model. Our results showed that the expression of Cdh1 was decreased while Skp2 (the downstream substrate of APC-Cdh1) was increased in astrocytes after 1h oxygen-glucose deprivation and reperfusion. The down-regulation of APC-Cdh1 was coupled with reactive astrocyte proliferation. By constructing Cdh1 expressing lentivirus system, we also found exogenous Cdh1 can down-regulate Skp2 and inhibit reactive astrocyte proliferation induced by oxygen-glucose deprivation and reperfusion. Moreover, Western blot showed that other downstream proteins of APC-Cdh1, PFK-1 and SnoN, were decreased in the inhibition of reactive astrocyte proliferation with Cdh1 expressing lentivirus treatment. These results suggest that Cdh1 plays an important role in the regulation of reactive astrocyte proliferation induced by oxygen-glucose deprivation and reperfusion.
Collapse
Affiliation(s)
- Jin Qiu
- Department of Anesthesiology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | | | | | | | | | | | | |
Collapse
|