1
|
Nabipour M, Mellati A, Abasi M, Barough SE, Karimizade A, Banikarimi P, Hasanzadeh E. Preparation of bilayer tissue-engineered polyurethane/poly-L-lactic acid nerve conduits and their in vitro characterization for use in peripheral nerve regeneration. J Biol Eng 2024; 18:16. [PMID: 38388447 PMCID: PMC10885435 DOI: 10.1186/s13036-024-00412-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2023] [Accepted: 02/06/2024] [Indexed: 02/24/2024] Open
Abstract
BACKGROUND Due to loss of peripheral nerve structure and/or function resulting from trauma, accidents, and other causes, peripheral nerve injuries continue to be a major clinical problem. These injuries can cause partial or total loss of sensory, motor, and autonomic capabilities as well as neuropathic pain. PNI affects between 13 and 23 out of every 100,000 people annually in developed countries. Regeneration of damaged nerves and restoration of function after peripheral nerve injury remain significant therapeutic challenges. Although autologous nerve graft transplantation is a viable therapy option in several clinical conditions, donor site morbidity and a lack of donor tissue often hinder full functional recovery. Biomimetic conduits used in tissue engineering to encourage and direct peripheral nerve regeneration by providing a suitable microenvironment for nerve ingrowth are only one example of the cutting-edge methods made possible by this field. Many innate extracellular matrix (ECM) structures of different tissues can be successfully mimicked by nanofibrous scaffolds. Nanofibrous scaffolds can closely mimic the surface structure and morphology of native ECMs of many tissues. METHODS In this study, we have produced bilayer nanofibrous nerve conduit based on poly-lactic acid/polyurethane/multiwall carbon nanotube (PLA/PU/MWCNT), for application as composite scaffolds for static nerve tissue engineering. The contact angle was indicated to show the hydrophilicity properties of electrospun nanofibers. The SEM images were analyzed to determine the fiber's diameters, scaffold morphology, and endometrial stem cell adhesion. Moreover, MTT assay and DAPI staining were used to show the viability and proliferation of endometrial stem cells. RESULTS The constructed bilayer PLA/PU/MWCNT scaffolds demonstrated the capacity to support cell attachment, and the vitality of samples was assessed using SEM, MTT assay, and DAPI staining technique. CONCLUSIONS According to an in vitro study, electrospun bilayer PLA/PU/MWCNT scaffolds can encourage the adhesion and proliferation of human endometrial stem cells (hEnSCs) and create the ideal environment for increasing cell survival.
Collapse
Affiliation(s)
- Mehran Nabipour
- Department of Tissue Engineering & Regenerative Medicine, School of Advanced Technologies in Medicine, Mazandaran University of Medical Sciences, Sari, Iran
- Student Research Committee, School of Advanced Technologies in Medicine, Mazandaran University of Medical Sciences, Sari, Iran
| | - Amir Mellati
- Department of Tissue Engineering & Regenerative Medicine, School of Advanced Technologies in Medicine, Mazandaran University of Medical Sciences, Sari, Iran
- Molecular and Cell Biology Research Center, Faculty of Medicine, Mazandaran University of Medical Sciences, Sari, Iran
| | - Mozhgan Abasi
- Department of Tissue Engineering & Regenerative Medicine, School of Advanced Technologies in Medicine, Mazandaran University of Medical Sciences, Sari, Iran
- Immunogenetics Research Center, Mazandaran University of Medical Sciences, Sari, Iran
| | - Somayeh Ebrahimi Barough
- Department of Tissue Engineering, School of Advanced Technologies in Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Ayoob Karimizade
- Department of Tissue Engineering & Regenerative Medicine, School of Advanced Technologies in Medicine, Mazandaran University of Medical Sciences, Sari, Iran
- Student Research Committee, School of Advanced Technologies in Medicine, Mazandaran University of Medical Sciences, Sari, Iran
| | - Parnian Banikarimi
- Department of Tissue Engineering & Regenerative Medicine, School of Advanced Technologies in Medicine, Mazandaran University of Medical Sciences, Sari, Iran
- Student Research Committee, School of Advanced Technologies in Medicine, Mazandaran University of Medical Sciences, Sari, Iran
| | - Elham Hasanzadeh
- Department of Tissue Engineering & Regenerative Medicine, School of Advanced Technologies in Medicine, Mazandaran University of Medical Sciences, Sari, Iran.
- Molecular and Cell Biology Research Center, Faculty of Medicine, Mazandaran University of Medical Sciences, Sari, Iran.
- Immunogenetics Research Center, Mazandaran University of Medical Sciences, Sari, Iran.
| |
Collapse
|
2
|
Liu D, Shen H, Zhang K, Shen Y, Wen R, He X, Long G, Li X. Functional Hydrogel Co-Remolding Migration and Differentiation Microenvironment for Severe Spinal Cord Injury Repair. Adv Healthc Mater 2024; 13:e2301662. [PMID: 37937326 DOI: 10.1002/adhm.202301662] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Revised: 10/25/2023] [Indexed: 11/09/2023]
Abstract
Spinal cord injury (SCI) activates nestin+ neural stem cells (NSCs), which can be regarded as potential seed cells for neuronal regeneration. However, the lesion microenvironment seriously hinders the migration of the nestin+ cells to the lesion epicenter and their differentiation into neurons to rebuild neural circuits. In this study, a photosensitive hydrogel scaffold is prepared as drug delivery carrier. Genetically engineered SDF1α and NT3 are designed and the scaffold is binary modified to reshape the lesion microenvironment. The binary modified scaffold can effectively induce the migration and neuronal differentiation of nestin+ NSCs in vitro. When implanted into a rat complete SCI model, many of the SCI-activated nestin+ cells migrate into the lesion site and give rise to neurons in short-term. Meanwhile, long-term repair results also show that implantation of the binary modified scaffold can effectively promote the maturation, functionalization and synaptic network reconstruction of neurons in the lesion site. In addition, animals treated with binary scaffold also showed better improvement in motor functions. The therapeutic strategy based on remolding the migration and neuronal differentiation lesion microenvironment provides a new insight into SCI repair by targeting activated nestin+ cells, which exhibits excellent clinical transformation prospects.
Collapse
Affiliation(s)
- Dingyang Liu
- Department of Biochemistry and Molecular Biology, School of Life Sciences, Central South University, Changsha, Hunan Province, 410078, China
- Department of Neurosurgery, Xiangya Hospital, Central South University, Changsha, Hunan Province, 410008, China
| | - He Shen
- Key Laboratory for Nano-Bio Interface Research, Division of Nanobiomedicine, Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences, Suzhou, 215123, China
| | - Kai Zhang
- Department of Biochemistry and Molecular Biology, School of Life Sciences, Central South University, Changsha, Hunan Province, 410078, China
- Department of Neurosurgery, Xiangya Hospital, Central South University, Changsha, Hunan Province, 410008, China
| | - Yeyu Shen
- Department of Biochemistry and Molecular Biology, School of Life Sciences, Central South University, Changsha, Hunan Province, 410078, China
- Department of Neurosurgery, Xiangya Hospital, Central South University, Changsha, Hunan Province, 410008, China
| | - Runlin Wen
- Department of Biochemistry and Molecular Biology, School of Life Sciences, Central South University, Changsha, Hunan Province, 410078, China
- Department of Neurosurgery, Xiangya Hospital, Central South University, Changsha, Hunan Province, 410008, China
| | - Xinghui He
- Department of Biochemistry and Molecular Biology, School of Life Sciences, Central South University, Changsha, Hunan Province, 410078, China
- Department of Neurosurgery, Xiangya Hospital, Central South University, Changsha, Hunan Province, 410008, China
| | - Ge Long
- Department of Anesthesia, the Third Xiangya Hospital, Central South University, Changsha, Hunan Province, 410078, China
| | - Xing Li
- Department of Biochemistry and Molecular Biology, School of Life Sciences, Central South University, Changsha, Hunan Province, 410078, China
- Department of Neurosurgery, Xiangya Hospital, Central South University, Changsha, Hunan Province, 410008, China
| |
Collapse
|
3
|
Rochkind S, Almog M, Nevo Z. Reviving matrix for nerve reconstruction in rat model of acute and chronic complete spinal cord injury. Neurol Res 2022; 44:1132-1141. [PMID: 35998212 DOI: 10.1080/01616412.2022.2112380] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
This study aimed to investigate the innovative antigliotic guiding regenerative gel (AGRG) as reviving matrix for reconnection of spinal cord defect in rat models of complete acute and chronic spinal cord injury (SCI). In acute SCI, a 2 mm segment of the spinal cord (SC) was removed at Th7-Th8. Then AGRG was injected to the gap or left untreated. In chronic SCI, a 1 mm segment of the spinal cord (SC) was removed at Th7-Th8. One month later, the injured area was cleaned from connective and scar tissue, creating a gap of 2-3 mm. Then, AGRG was injected to the gap or left untreated. Functional, electrophysiological, histological and immunohistochemical assessments were performed. In acute SCI, at week 24, 75% of AGRG group showed a somatosensory evoked potential (SEP) signal. Appearance of myelin basic protein (MBP) was observed in the injured area in the AGRG group (p < 0.1), compared to the untreated group. In chronic SCI, 24 weeks after 2nd surgery, appearance of MBP, indicating presence of myelinated axons, was observed in AGRG group, compared to the untreated group (p < 0.01). These preliminary results suggest that AGRG can serve as a vital bridging station inducing regeneration of injured SC in acute and chronic cases of paraplegia.
Collapse
Affiliation(s)
- Shimon Rochkind
- Research Center for Nerve Reconstruction, Division of Peripheral Nerve Reconstruction, Department of Neurosurgery, Tel Aviv Sourasky Medical Center, Tel Aviv, Israel.,Sackler School of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Mara Almog
- Research Center for Nerve Reconstruction, Division of Peripheral Nerve Reconstruction, Department of Neurosurgery, Tel Aviv Sourasky Medical Center, Tel Aviv, Israel
| | - Zvi Nevo
- Sackler School of Medicine, Tel Aviv University, Tel Aviv, Israel
| |
Collapse
|
4
|
The Effect of Different Routes of Xenogeneic Mesenchymal Stem Cell Transplantation on the Regenerative Potential of Spinal Cord Injury. REGENERATIVE ENGINEERING AND TRANSLATIONAL MEDICINE 2022. [DOI: 10.1007/s40883-022-00290-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/05/2022]
|
5
|
Hall A, Fortino T, Spruance V, Niceforo A, Harrop JS, Phelps PE, Priest CA, Zholudeva LV, Lane MA. Cell transplantation to repair the injured spinal cord. INTERNATIONAL REVIEW OF NEUROBIOLOGY 2022; 166:79-158. [PMID: 36424097 PMCID: PMC10008620 DOI: 10.1016/bs.irn.2022.09.008] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Adam Hall
- Drexel University, Philadelphia, PA, United States; Marion Murray Spinal Cord Research Center, Drexel University, Philadelphia, PA, United States
| | - Tara Fortino
- Drexel University, Philadelphia, PA, United States; Marion Murray Spinal Cord Research Center, Drexel University, Philadelphia, PA, United States
| | - Victoria Spruance
- Drexel University, Philadelphia, PA, United States; Marion Murray Spinal Cord Research Center, Drexel University, Philadelphia, PA, United States; Division of Kidney, Urologic, & Hematologic Diseases, National Institutes of Health, Bethesda, MD, United States
| | - Alessia Niceforo
- Drexel University, Philadelphia, PA, United States; Marion Murray Spinal Cord Research Center, Drexel University, Philadelphia, PA, United States
| | - James S Harrop
- Department of Neurological and Orthopedic Surgery, Thomas Jefferson University, Philadelphia, PA, United States
| | - Patricia E Phelps
- Department of Integrative Biology & Physiology, UCLA, Los Angeles, CA, United States
| | | | - Lyandysha V Zholudeva
- Drexel University, Philadelphia, PA, United States; Marion Murray Spinal Cord Research Center, Drexel University, Philadelphia, PA, United States; Gladstone Institutes, San Francisco, CA, United States
| | - Michael A Lane
- Drexel University, Philadelphia, PA, United States; Marion Murray Spinal Cord Research Center, Drexel University, Philadelphia, PA, United States.
| |
Collapse
|
6
|
Wilson JR, Doty S, Petitt JC, El-Abtah M, Francis JJ, Sharpe MG, Kelly ML, Anderson KD. Feasibility of gabapentin as an intervention for neurorecovery after an acute spinal cord injury: Protocol. Front Neurol 2022; 13:1033386. [PMID: 36419530 PMCID: PMC9676350 DOI: 10.3389/fneur.2022.1033386] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Accepted: 10/21/2022] [Indexed: 11/09/2022] Open
Abstract
Introduction This protocol is describing the first ever prospective, mock-efficacy, dose exploration trial design testing the feasibility of administering gabapentin in the acute setting as an intervention for neurorecovery. Gabapentin is an FDA-approved medication for treating seizures and postherpetic neuralgia and is used broadly off-label for neuropathic pain management for many conditions, including spinal cord injury. Emerging data suggests that when given early after spinal cord injury onset and in low-medium doses, gabapentin may have properties that promote recovery of neurological function. The objective of this trial is to assess the feasibility of conducting an efficacy trial in which gabapentin is started early after injury, is restricted in its dose, and is not used for pain management. Methods and analysis Forty-two people aged 18 years or older with any level and any severity of spinal cord injury induced by a trauma will be enrolled, randomized, and have the first dose of study medication by 120 h post-injury onset. Participants will be randomly assigned to one of three groups: 600, 1,800 mg/day gabapentin, or placebo. Study medication will be given for a 90-day duration. Blinded assessments will be obtained at 7 days post-injury (baseline), 30 days post-injury (interim), after the 90-day treatment duration/approximately 3 months post-injury (end of treatment), and at 6 months post-injury (end of study). The key analysis parameters will evaluate feasibility of recruitment of target population, delivery of drug treatment protocol, maintenance of blinding, and retention of participants. Discussion Outputs from this trial will inform research and clinical practice on the effects of manipulating gabapentin for non-pain management purposes in the acute setting and will guide the development of a properly powered efficacy trial of gabapentin as an intervention for neurorecovery in spinal cord injury. Ethics and dissemination The study was approved by the MetroHealth Institutional Review Board (IRB21-00609) and registered at clinicaltrials.gov prior to enrolling any participants. Dissemination will include peer-reviewed publications, presentations at professional conferences and in the community, and through other healthcare and public venues. Clinical trial registration www.ClinicalTrials.gov, identifier: NCT05302999; protocol version 1.1 approved 05/23/2022. Trial funding National Institute on Disability, Independent Living and Rehabilitation Research.
Collapse
Affiliation(s)
- James R. Wilson
- MetroHealth Rehabilitation Institute, MetroHealth System, Cleveland, OH, United States
- Department of Physical Medicine and Rehabilitation, Case Western Reserve University School of Medicine, Cleveland, OH, United States
| | - Samuel Doty
- Department of Neurological Surgery, Case Western Reserve University School of Medicine, Cleveland, OH, United States
| | - Jordan C. Petitt
- Department of Neurological Surgery, Case Western Reserve University School of Medicine, Cleveland, OH, United States
| | - Mohamed El-Abtah
- Department of Neurological Surgery, Case Western Reserve University School of Medicine, Cleveland, OH, United States
| | - John J. Francis
- Department of Neurological Surgery, Case Western Reserve University School of Medicine, Cleveland, OH, United States
| | - Megan G. Sharpe
- Department of Neurological Surgery, Case Western Reserve University School of Medicine, Cleveland, OH, United States
| | - Michael L. Kelly
- Department of Neurological Surgery, Case Western Reserve University School of Medicine, Cleveland, OH, United States
- MetroHealth Medical Center, MetroHealth System, Cleveland, OH, United States
| | - Kim D. Anderson
- MetroHealth Rehabilitation Institute, MetroHealth System, Cleveland, OH, United States
- Department of Physical Medicine and Rehabilitation, Case Western Reserve University School of Medicine, Cleveland, OH, United States
- *Correspondence: Kim D. Anderson
| |
Collapse
|
7
|
Oraee-Yazdani S, Akhlaghpasand M, Golmohammadi M, Hafizi M, Zomorrod MS, Kabir NM, Oraee-Yazdani M, Ashrafi F, Zali A, Soleimani M. Combining cell therapy with human autologous Schwann cell and bone marrow-derived mesenchymal stem cell in patients with subacute complete spinal cord injury: safety considerations and possible outcomes. Stem Cell Res Ther 2021; 12:445. [PMID: 34372939 PMCID: PMC8351425 DOI: 10.1186/s13287-021-02515-2] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2020] [Accepted: 07/12/2021] [Indexed: 11/22/2022] Open
Abstract
Background Cellular transplantations have promising effects on treating spinal cord injury (SCI) patients. Mesenchymal stem cells (MSCs) and Schwann cells (SCs), which have safety alongside their complementary characteristics, are suggested to be the two of the best candidates in SCI treatment. In this study, we assessed the safety and possible outcomes of intrathecal co-transplantation of autologous bone marrow MSC and SC in patients with subacute traumatic complete SCI. Methods Eleven patients with complete SCI (American Spinal Injury Association Impairment Scale (AIS); grade A) were enrolled in this study during the subacute period of injury. The patients received an intrathecal autologous combination of MSC and SC and were followed up for 12 months. We assessed the neurological changes by the American Spinal Injury Association’s (ASIA) sensory-motor scale, functional recovery by spinal cord independence measure (SCIM-III), and subjective changes along with adverse events (AE) with our checklist. Furthermore, electromyography (EMG), nerve conduction velocity (NCV), magnetic resonance imaging (MRI), and urodynamic study (UDS) were conducted for all the patients at the baseline, 6 months, and 1 year after the intervention. Results Light touch AIS score alterations were approximately the same as the pinprick changes (11.6 ± 13.1 and 12 ± 13, respectively) in 50% of the cervical and 63% of the lumbar-thoracic patients, and both were more than the motor score alterations (9.5 ± 3.3 in 75% of the cervical and 14% of the lumbar-thoracic patients). SCIM III total scores (21.2 ± 13.3) and all its sub-scores (“respiration and sphincter management” (15 ± 9.9), “mobility” (9.5 ± 13.3), and “self-care” (6 ± 1.4)) had statistically significant changes after cell injection. Our findings support that the most remarkable positive, subjective improvements were in trunk movement, equilibrium in standing/sitting position, the sensation of the bladder and rectal filling, and the ability of voluntary voiding. Our safety evaluation revealed no systemic complications, and radiological images showed no neoplastic overgrowth, syringomyelia, or pseudo-meningocele. Conclusion The present study showed that autologous SC and bone marrow-derived MSC transplantation at the subacute stage of SCI could reveal statistically significant improvement in sensory and neurological functions among the patients. It appears that using this combination of cells is safe and effective for clinical application to spinal cord regeneration during the subacute period.
Collapse
Affiliation(s)
- Saeed Oraee-Yazdani
- Functional Neurosurgery Research Center, Shohada Tajrish Comprehensive Neurosurgical Center of Excellence, Shahid Beheshti University of Medical Sciences, Tehran, 1988873554, Iran.
| | - Mohammadhosein Akhlaghpasand
- Functional Neurosurgery Research Center, Shohada Tajrish Comprehensive Neurosurgical Center of Excellence, Shahid Beheshti University of Medical Sciences, Tehran, 1988873554, Iran
| | - Maryam Golmohammadi
- Functional Neurosurgery Research Center, Shohada Tajrish Comprehensive Neurosurgical Center of Excellence, Shahid Beheshti University of Medical Sciences, Tehran, 1988873554, Iran
| | - Maryam Hafizi
- Stem Cell Technology Research Centre, Tehran, Iran.,Department of Research and Development, Sodour Ahrar Shargh Company, Tehran, Iran
| | - Mina Soufi Zomorrod
- Applied cell Sciences Department, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran
| | - Nima Mohseni Kabir
- Department of Neurosurgery, Imam Hossein Hospital, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Maryam Oraee-Yazdani
- Functional Neurosurgery Research Center, Shohada Tajrish Comprehensive Neurosurgical Center of Excellence, Shahid Beheshti University of Medical Sciences, Tehran, 1988873554, Iran
| | - Farzad Ashrafi
- Functional Neurosurgery Research Center, Shohada Tajrish Comprehensive Neurosurgical Center of Excellence, Shahid Beheshti University of Medical Sciences, Tehran, 1988873554, Iran
| | - Alireza Zali
- Functional Neurosurgery Research Center, Shohada Tajrish Comprehensive Neurosurgical Center of Excellence, Shahid Beheshti University of Medical Sciences, Tehran, 1988873554, Iran.
| | - Masoud Soleimani
- Department of Hematology, Tarbiat Modares University, Tehran, Iran.
| |
Collapse
|
8
|
Liu D, Shen H, Shen Y, Long G, He X, Zhao Y, Yang Z, Dai J, Li X. Dual-Cues Laden Scaffold Facilitates Neurovascular Regeneration and Motor Functional Recovery After Complete Spinal Cord Injury. Adv Healthc Mater 2021; 10:e2100089. [PMID: 33739626 DOI: 10.1002/adhm.202100089] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2021] [Revised: 02/24/2021] [Indexed: 12/26/2022]
Abstract
Complete transection spinal cord injury (SCI) severely disrupts the integrity of both neural circuits and the microvasculature system. Hence, fabricating a functional bio-scaffold that could coordinate axonal regeneration and vascular reconstruction in the lesion area may emerge as a new paradigm for complete SCI repair. In this study, a photosensitive hydrogel scaffold loaded with collagen-binding stromal cell-derived factor-1a and Taxol liposomes is capable of inducing migration of endothelial cells and promoting neurite outgrowth of neurons in vitro. In addition, when implanted into a rat T8 complete transection SCI model, the above dual-cues laden scaffold exhibits a synergistic effect on facilitating axon and vessel regeneration in the lesion area within 10 days after injury. Moreover, long-term therapeutic effects are also observed after dual-cues laden scaffold implantation, including revascularization, descending and propriospinal axonal regeneration, fibrotic scar reduction, electrophysiological recovery, and motor function improvement. In summary, the dual-cues laden scaffold has good clinical application potential for patients with severe SCI.
Collapse
Affiliation(s)
- Dingyang Liu
- Department of Neurosurgery Xiangya Hospital Central South University Changsha Hunan Province 410008 China
- Key Laboratory of Organ Injury Aging and Regenerative Medicine of Hunan Province Changsha Hunan Province 410008 China
- Department of Spine Surgery Xiangya Hospital Central South University Changsha Hunan Province 410008 China
| | - He Shen
- Key Laboratory for Nano‐Bio Interface Research Division of Nanobiomedicine Suzhou Institute of Nano‐Tech and Nano‐Bionics Chinese Academy of Sciences Suzhou 215123 China
| | - Yeyu Shen
- Department of Neurosurgery Xiangya Hospital Central South University Changsha Hunan Province 410008 China
- Key Laboratory of Organ Injury Aging and Regenerative Medicine of Hunan Province Changsha Hunan Province 410008 China
- Department of Spine Surgery Xiangya Hospital Central South University Changsha Hunan Province 410008 China
| | - Ge Long
- Department of Anesthesia The Third Xiangya Hospital Central South University Changsha Hunan Province 410008 China
| | - Xinghui He
- Department of Neurosurgery Xiangya Hospital Central South University Changsha Hunan Province 410008 China
- Key Laboratory of Organ Injury Aging and Regenerative Medicine of Hunan Province Changsha Hunan Province 410008 China
- Department of Spine Surgery Xiangya Hospital Central South University Changsha Hunan Province 410008 China
| | - Yannan Zhao
- State Key Laboratory of Molecular Developmental Biology Institute of Genetics and Developmental Biology Chinese Academy of Sciences Beijing 100101 China
| | - Zhiquan Yang
- Department of Neurosurgery Xiangya Hospital Central South University Changsha Hunan Province 410008 China
- Key Laboratory of Organ Injury Aging and Regenerative Medicine of Hunan Province Changsha Hunan Province 410008 China
- Department of Spine Surgery Xiangya Hospital Central South University Changsha Hunan Province 410008 China
| | - Jianwu Dai
- State Key Laboratory of Molecular Developmental Biology Institute of Genetics and Developmental Biology Chinese Academy of Sciences Beijing 100101 China
| | - Xing Li
- Department of Neurosurgery Xiangya Hospital Central South University Changsha Hunan Province 410008 China
- Key Laboratory of Organ Injury Aging and Regenerative Medicine of Hunan Province Changsha Hunan Province 410008 China
- Department of Spine Surgery Xiangya Hospital Central South University Changsha Hunan Province 410008 China
| |
Collapse
|
9
|
Spijkers XM, Pasteuning-Vuhman S, Dorleijn JC, Vulto P, Wevers NR, Pasterkamp RJ. A directional 3D neurite outgrowth model for studying motor axon biology and disease. Sci Rep 2021; 11:2080. [PMID: 33483540 PMCID: PMC7822896 DOI: 10.1038/s41598-021-81335-z] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2020] [Accepted: 01/04/2021] [Indexed: 01/30/2023] Open
Abstract
We report a method to generate a 3D motor neuron model with segregated and directed axonal outgrowth. iPSC-derived motor neurons are cultured in extracellular matrix gel in a microfluidic platform. Neurons extend their axons into an adjacent layer of gel, whereas dendrites and soma remain predominantly in the somal compartment, as verified by immunofluorescent staining. Axonal outgrowth could be precisely quantified and was shown to respond to the chemotherapeutic drug vincristine in a highly reproducible dose-dependent manner. The model was shown susceptible to excitotoxicity upon exposure with excess glutamate and showed formation of stress granules upon excess glutamate or sodium arsenite exposure, mimicking processes common in motor neuron diseases. Importantly, outgrowing axons could be attracted and repelled through a gradient of axonal guidance cues, such as semaphorins. The platform comprises 40 chips arranged underneath a microtiter plate providing both throughput and compatibility to standard laboratory equipment. The model will thus prove ideal for studying axonal biology and disease, drug discovery and regenerative medicine.
Collapse
Affiliation(s)
- Xandor M. Spijkers
- grid.474144.6MIMETAS BV, Organ-On-a-Chip Company, 2333 CH Leiden, The Netherlands ,grid.5477.10000000120346234Department of Translational Neuroscience, University Medical Center Utrecht Brain Center, Utrecht University, 3584 CG Utrecht, The Netherlands
| | - Svetlana Pasteuning-Vuhman
- grid.5477.10000000120346234Department of Translational Neuroscience, University Medical Center Utrecht Brain Center, Utrecht University, 3584 CG Utrecht, The Netherlands
| | - Jennifa C. Dorleijn
- grid.474144.6MIMETAS BV, Organ-On-a-Chip Company, 2333 CH Leiden, The Netherlands
| | - Paul Vulto
- grid.474144.6MIMETAS BV, Organ-On-a-Chip Company, 2333 CH Leiden, The Netherlands
| | - Nienke R. Wevers
- grid.474144.6MIMETAS BV, Organ-On-a-Chip Company, 2333 CH Leiden, The Netherlands ,grid.10419.3d0000000089452978Department of Cell and Chemical Biology, Leiden University Medical Centre, Einthovenweg 20, 2333 ZC Leiden, The Netherlands
| | - R. Jeroen Pasterkamp
- grid.5477.10000000120346234Department of Translational Neuroscience, University Medical Center Utrecht Brain Center, Utrecht University, 3584 CG Utrecht, The Netherlands
| |
Collapse
|
10
|
EA Improves the Motor Function in Rats with Spinal Cord Injury by Inhibiting Signal Transduction of Semaphorin3A and Upregulating of the Peripheral Nerve Networks. Neural Plast 2020; 2020:8859672. [PMID: 33273908 PMCID: PMC7700027 DOI: 10.1155/2020/8859672] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2020] [Revised: 09/22/2020] [Accepted: 10/31/2020] [Indexed: 11/18/2022] Open
Abstract
Peripheral nerve networks (PNNs) play a vital role in the neural recovery after spinal cord injury (SCI). Electroacupuncture (EA), as an alternative medicine, has been widely used in SCI and was proven to be effective on neural functional recovery. In this study, the interaction between PNNs and semaphrin3A (Sema3A) in the recovery of the motor function after SCI was observed, and the effect of EA on them was evaluated. After the establishment of the SCI animal model, we found that motor neurons in the ventral horn of the injured spinal cord segment decreased, Nissl bodies were blurry, and PNNs and Sema3A as well as its receptor neuropilin1 (NRP1) aggregated around the central tube of the gray matter of the spinal cord. When we knocked down the expression of Sema3A at the damage site, NRP1 also downregulated, importantly, PNNs concentration decreased, and tenascin-R (TN-R) and aggrecan were also reduced, while the Basso-Beattie-Bresnahan (BBB) motor function score dramatically increased. In addition, when conducting EA stimulation on Jiaji (EX-B2) acupoints, the highly upregulated Sema3A and NRP1 were reversed post-SCI, which can lessen the accumulation of PNNs around the central tube of the spinal cord gray matter, and simultaneously promote the recovery of motor function in rats. These results suggest that EA may further affect the plasticity of PNNs by regulating the Sema3A signal and promoting the recovery of the motor function post-SCI.
Collapse
|
11
|
Abbas WA, Ibrahim ME, El-Naggar M, Abass WA, Abdullah IH, Awad BI, Allam NK. Recent Advances in the Regenerative Approaches for Traumatic Spinal Cord Injury: Materials Perspective. ACS Biomater Sci Eng 2020; 6:6490-6509. [PMID: 33320628 DOI: 10.1021/acsbiomaterials.0c01074] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Spinal cord injury (SCI) is a devastating health condition that may lead to permanent disabilities and death. Understanding the pathophysiological perspectives of traumatic SCI is essential to define mechanisms that can help in designing recovery strategies. Since central nervous system tissues are notorious for their deficient ability to heal, efforts have been made to identify solutions to aid in restoration of the spinal cord tissues and thus its function. The two main approaches proposed to address this issue are neuroprotection and neuro-regeneration. Neuroprotection involves administering drugs to restore the injured microenvironment to normal after SCI. As for the neuro-regeneration approach, it focuses on axonal sprouting for functional recovery of the injured neural tissues and damaged axons. Despite the progress made in the field, neural regeneration treatment after SCI is still unsatisfactory owing to the disorganized way of axonal growth and extension. Nanomedicine and tissue engineering are considered promising therapeutic approaches that enhance axonal growth and directionality through implanting or injecting of the biomaterial scaffolds. One of these recent approaches is nanofibrous scaffolds that are used to provide physical support to maintain directional axonal growth in the lesion site. Furthermore, these preferable tissue-engineered substrates can afford axonal regeneration by mimicking the extracellular matrix of the neural tissues in terms of biological, chemical, and architectural characteristics. In this review, we discuss the regenerative approach using nanofibrous scaffolds with a focus on their fabrication methods and their properties that define their functionality performed to heal the neural tissue efficiently.
Collapse
Affiliation(s)
- Walaa A Abbas
- Energy Materials Laboratory, School of Sciences and Engineering, The American University in Cairo, New Cairo 11835, Egypt
| | - Maha E Ibrahim
- Department of Physical Medicine, Rheumatology and Rehabilitation, Faculty of Medicine, Suez Canal University, Ismailia, Egypt
| | - Manar El-Naggar
- Energy Materials Laboratory, School of Sciences and Engineering, The American University in Cairo, New Cairo 11835, Egypt
| | - Wessam A Abass
- Center of Sustainable Development, School of Sciences and Engineering, The American University in Cairo, New Cairo 11835, Egypt
| | - Ibrahim H Abdullah
- Energy Materials Laboratory, School of Sciences and Engineering, The American University in Cairo, New Cairo 11835, Egypt
| | - Basem I Awad
- Mansoura Experimental Research Center (MERC), Department of Neurological Surgery, School of Medicine, Mansoura University, Mansoura, Egypt
| | - Nageh K Allam
- Energy Materials Laboratory, School of Sciences and Engineering, The American University in Cairo, New Cairo 11835, Egypt
| |
Collapse
|
12
|
Warner FM, Cragg JJ, Jutzeler CR, Grassner L, Mach O, Maier DD, Mach B, Schwab JM, Kopp MA, Kramer JLK. Association of timing of gabapentinoid use with motor recovery after spinal cord injury. Neurology 2020; 95:e3412-e3419. [PMID: 32989101 DOI: 10.1212/wnl.0000000000010950] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2019] [Accepted: 08/12/2020] [Indexed: 01/25/2023] Open
Abstract
OBJECTIVE To explore the hypothesis that earlier administration of acute gabapentinoids is beneficial to motor recovery after spinal cord injury in humans. METHODS This is an observational study using a cohort from the European Multi-Centre Study about Spinal Cord Injury. Patient charts were reviewed to extract information regarding the administration and timing of gabapentinoid anticonvulsants. The primary outcome measure was motor scores, as measured by the International Standards for Neurological Classification of Spinal Cord Injury, collected longitudinally in the first year after injury. Sensory scores (light touch and pinprick) and functional measures (Spinal Cord Independence Measure) were secondary outcomes. Linear mixed effects regression models included a drug-by-time interaction to determine whether exposure to gabapentinoids altered recovery of muscle strength in the first year after injury. RESULTS A total of 201 participants were included in the study and had a median age of 46 and baseline motor score of 50. Participants were mostly men (85%) with sensory and motor complete injuries (50%). Seventy individuals (35%) were administered gabapentinoids within the first 30 days after injury, and presented with similar demographics. In the longitudinal model, the administration of gabapentinoids within 30 days after injury was associated with improved motor recovery when compared to those who did not receive gabapentinoids during this time (3.69 additional motor points from 4 to 48 weeks after injury; p = 0.03). This effect size increased as administration occurred earlier after injury (i.e., a benefit of 4.68 points when administered within 5 days). CONCLUSIONS This retrospective, observational study provided evidence of the beneficial effect of gabapentinoid anticonvulsants on motor recovery after spinal cord injury. More critically, it highlighted a potential time dependence, suggesting that earlier intervention is associated with better outcomes. CLASSIFICATION OF EVIDENCE This study provides Class IV evidence that gabapentinoids improve motor recovery for individuals with acute spinal cord injury.
Collapse
Affiliation(s)
- Freda M Warner
- From the School of Kinesiology (F.M.W., J.L.K.K.), International Collaboration on Repair Discoveries (ICORD) (F.M.W., J.J.C., J.L.K.K.), and Faculty of Pharmaceutical Sciences (J.J.C.), University of British Columbia, Canada; Department of Biosystems Science and Engineering (C.R.J.), ETH Zurich, Switzerland; Department of Neurosurgery (L.G.), Medical University Innsbruck; Institute of Molecular Regenerative Medicine (L.G.), Spinal Cord Injury and Tissue Regeneration Center Salzburg, Paracelsus Medical University, Austria; Spinal Cord Injury Center (L.G., O.M., D.D.M., B.M.), Trauma Center Murnau; Clinical and Experimental Spinal Cord Injury Research (Neuroparaplegiology) (J.M.S., M.A.K.), Department of Neurology and Experimental Neurology, Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health; and QUEST-Center for Transforming Biomedical Research (M.A.K.), Berlin Institute of Health, Germany. Dr. Kramer is currently affiliated with the Department of Anesthesiology, Pharmacology, and Therapeutics, Faculty of Medicine, University of British Columbia, Canada
| | - Jacquelyn J Cragg
- From the School of Kinesiology (F.M.W., J.L.K.K.), International Collaboration on Repair Discoveries (ICORD) (F.M.W., J.J.C., J.L.K.K.), and Faculty of Pharmaceutical Sciences (J.J.C.), University of British Columbia, Canada; Department of Biosystems Science and Engineering (C.R.J.), ETH Zurich, Switzerland; Department of Neurosurgery (L.G.), Medical University Innsbruck; Institute of Molecular Regenerative Medicine (L.G.), Spinal Cord Injury and Tissue Regeneration Center Salzburg, Paracelsus Medical University, Austria; Spinal Cord Injury Center (L.G., O.M., D.D.M., B.M.), Trauma Center Murnau; Clinical and Experimental Spinal Cord Injury Research (Neuroparaplegiology) (J.M.S., M.A.K.), Department of Neurology and Experimental Neurology, Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health; and QUEST-Center for Transforming Biomedical Research (M.A.K.), Berlin Institute of Health, Germany. Dr. Kramer is currently affiliated with the Department of Anesthesiology, Pharmacology, and Therapeutics, Faculty of Medicine, University of British Columbia, Canada
| | - Catherine R Jutzeler
- From the School of Kinesiology (F.M.W., J.L.K.K.), International Collaboration on Repair Discoveries (ICORD) (F.M.W., J.J.C., J.L.K.K.), and Faculty of Pharmaceutical Sciences (J.J.C.), University of British Columbia, Canada; Department of Biosystems Science and Engineering (C.R.J.), ETH Zurich, Switzerland; Department of Neurosurgery (L.G.), Medical University Innsbruck; Institute of Molecular Regenerative Medicine (L.G.), Spinal Cord Injury and Tissue Regeneration Center Salzburg, Paracelsus Medical University, Austria; Spinal Cord Injury Center (L.G., O.M., D.D.M., B.M.), Trauma Center Murnau; Clinical and Experimental Spinal Cord Injury Research (Neuroparaplegiology) (J.M.S., M.A.K.), Department of Neurology and Experimental Neurology, Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health; and QUEST-Center for Transforming Biomedical Research (M.A.K.), Berlin Institute of Health, Germany. Dr. Kramer is currently affiliated with the Department of Anesthesiology, Pharmacology, and Therapeutics, Faculty of Medicine, University of British Columbia, Canada
| | - Lukas Grassner
- From the School of Kinesiology (F.M.W., J.L.K.K.), International Collaboration on Repair Discoveries (ICORD) (F.M.W., J.J.C., J.L.K.K.), and Faculty of Pharmaceutical Sciences (J.J.C.), University of British Columbia, Canada; Department of Biosystems Science and Engineering (C.R.J.), ETH Zurich, Switzerland; Department of Neurosurgery (L.G.), Medical University Innsbruck; Institute of Molecular Regenerative Medicine (L.G.), Spinal Cord Injury and Tissue Regeneration Center Salzburg, Paracelsus Medical University, Austria; Spinal Cord Injury Center (L.G., O.M., D.D.M., B.M.), Trauma Center Murnau; Clinical and Experimental Spinal Cord Injury Research (Neuroparaplegiology) (J.M.S., M.A.K.), Department of Neurology and Experimental Neurology, Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health; and QUEST-Center for Transforming Biomedical Research (M.A.K.), Berlin Institute of Health, Germany. Dr. Kramer is currently affiliated with the Department of Anesthesiology, Pharmacology, and Therapeutics, Faculty of Medicine, University of British Columbia, Canada
| | - Orpheus Mach
- From the School of Kinesiology (F.M.W., J.L.K.K.), International Collaboration on Repair Discoveries (ICORD) (F.M.W., J.J.C., J.L.K.K.), and Faculty of Pharmaceutical Sciences (J.J.C.), University of British Columbia, Canada; Department of Biosystems Science and Engineering (C.R.J.), ETH Zurich, Switzerland; Department of Neurosurgery (L.G.), Medical University Innsbruck; Institute of Molecular Regenerative Medicine (L.G.), Spinal Cord Injury and Tissue Regeneration Center Salzburg, Paracelsus Medical University, Austria; Spinal Cord Injury Center (L.G., O.M., D.D.M., B.M.), Trauma Center Murnau; Clinical and Experimental Spinal Cord Injury Research (Neuroparaplegiology) (J.M.S., M.A.K.), Department of Neurology and Experimental Neurology, Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health; and QUEST-Center for Transforming Biomedical Research (M.A.K.), Berlin Institute of Health, Germany. Dr. Kramer is currently affiliated with the Department of Anesthesiology, Pharmacology, and Therapeutics, Faculty of Medicine, University of British Columbia, Canada
| | - Doris D Maier
- From the School of Kinesiology (F.M.W., J.L.K.K.), International Collaboration on Repair Discoveries (ICORD) (F.M.W., J.J.C., J.L.K.K.), and Faculty of Pharmaceutical Sciences (J.J.C.), University of British Columbia, Canada; Department of Biosystems Science and Engineering (C.R.J.), ETH Zurich, Switzerland; Department of Neurosurgery (L.G.), Medical University Innsbruck; Institute of Molecular Regenerative Medicine (L.G.), Spinal Cord Injury and Tissue Regeneration Center Salzburg, Paracelsus Medical University, Austria; Spinal Cord Injury Center (L.G., O.M., D.D.M., B.M.), Trauma Center Murnau; Clinical and Experimental Spinal Cord Injury Research (Neuroparaplegiology) (J.M.S., M.A.K.), Department of Neurology and Experimental Neurology, Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health; and QUEST-Center for Transforming Biomedical Research (M.A.K.), Berlin Institute of Health, Germany. Dr. Kramer is currently affiliated with the Department of Anesthesiology, Pharmacology, and Therapeutics, Faculty of Medicine, University of British Columbia, Canada
| | - Benedikt Mach
- From the School of Kinesiology (F.M.W., J.L.K.K.), International Collaboration on Repair Discoveries (ICORD) (F.M.W., J.J.C., J.L.K.K.), and Faculty of Pharmaceutical Sciences (J.J.C.), University of British Columbia, Canada; Department of Biosystems Science and Engineering (C.R.J.), ETH Zurich, Switzerland; Department of Neurosurgery (L.G.), Medical University Innsbruck; Institute of Molecular Regenerative Medicine (L.G.), Spinal Cord Injury and Tissue Regeneration Center Salzburg, Paracelsus Medical University, Austria; Spinal Cord Injury Center (L.G., O.M., D.D.M., B.M.), Trauma Center Murnau; Clinical and Experimental Spinal Cord Injury Research (Neuroparaplegiology) (J.M.S., M.A.K.), Department of Neurology and Experimental Neurology, Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health; and QUEST-Center for Transforming Biomedical Research (M.A.K.), Berlin Institute of Health, Germany. Dr. Kramer is currently affiliated with the Department of Anesthesiology, Pharmacology, and Therapeutics, Faculty of Medicine, University of British Columbia, Canada
| | - Jan M Schwab
- From the School of Kinesiology (F.M.W., J.L.K.K.), International Collaboration on Repair Discoveries (ICORD) (F.M.W., J.J.C., J.L.K.K.), and Faculty of Pharmaceutical Sciences (J.J.C.), University of British Columbia, Canada; Department of Biosystems Science and Engineering (C.R.J.), ETH Zurich, Switzerland; Department of Neurosurgery (L.G.), Medical University Innsbruck; Institute of Molecular Regenerative Medicine (L.G.), Spinal Cord Injury and Tissue Regeneration Center Salzburg, Paracelsus Medical University, Austria; Spinal Cord Injury Center (L.G., O.M., D.D.M., B.M.), Trauma Center Murnau; Clinical and Experimental Spinal Cord Injury Research (Neuroparaplegiology) (J.M.S., M.A.K.), Department of Neurology and Experimental Neurology, Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health; and QUEST-Center for Transforming Biomedical Research (M.A.K.), Berlin Institute of Health, Germany. Dr. Kramer is currently affiliated with the Department of Anesthesiology, Pharmacology, and Therapeutics, Faculty of Medicine, University of British Columbia, Canada
| | - Marcel A Kopp
- From the School of Kinesiology (F.M.W., J.L.K.K.), International Collaboration on Repair Discoveries (ICORD) (F.M.W., J.J.C., J.L.K.K.), and Faculty of Pharmaceutical Sciences (J.J.C.), University of British Columbia, Canada; Department of Biosystems Science and Engineering (C.R.J.), ETH Zurich, Switzerland; Department of Neurosurgery (L.G.), Medical University Innsbruck; Institute of Molecular Regenerative Medicine (L.G.), Spinal Cord Injury and Tissue Regeneration Center Salzburg, Paracelsus Medical University, Austria; Spinal Cord Injury Center (L.G., O.M., D.D.M., B.M.), Trauma Center Murnau; Clinical and Experimental Spinal Cord Injury Research (Neuroparaplegiology) (J.M.S., M.A.K.), Department of Neurology and Experimental Neurology, Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health; and QUEST-Center for Transforming Biomedical Research (M.A.K.), Berlin Institute of Health, Germany. Dr. Kramer is currently affiliated with the Department of Anesthesiology, Pharmacology, and Therapeutics, Faculty of Medicine, University of British Columbia, Canada
| | - John L K Kramer
- From the School of Kinesiology (F.M.W., J.L.K.K.), International Collaboration on Repair Discoveries (ICORD) (F.M.W., J.J.C., J.L.K.K.), and Faculty of Pharmaceutical Sciences (J.J.C.), University of British Columbia, Canada; Department of Biosystems Science and Engineering (C.R.J.), ETH Zurich, Switzerland; Department of Neurosurgery (L.G.), Medical University Innsbruck; Institute of Molecular Regenerative Medicine (L.G.), Spinal Cord Injury and Tissue Regeneration Center Salzburg, Paracelsus Medical University, Austria; Spinal Cord Injury Center (L.G., O.M., D.D.M., B.M.), Trauma Center Murnau; Clinical and Experimental Spinal Cord Injury Research (Neuroparaplegiology) (J.M.S., M.A.K.), Department of Neurology and Experimental Neurology, Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health; and QUEST-Center for Transforming Biomedical Research (M.A.K.), Berlin Institute of Health, Germany. Dr. Kramer is currently affiliated with the Department of Anesthesiology, Pharmacology, and Therapeutics, Faculty of Medicine, University of British Columbia, Canada.
| |
Collapse
|
13
|
Animal Models of Cerebral Changes Secondary to Spinal Cord Injury. World Neurosurg 2020; 145:244-250. [PMID: 32980567 DOI: 10.1016/j.wneu.2020.09.103] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2020] [Revised: 09/18/2020] [Accepted: 09/19/2020] [Indexed: 11/20/2022]
Abstract
Spinal cord injuries (SCIs) are difficult to treat. The first animal SCI model (featuring the dropping of a weight) was established by Allen in 1911, and other animal models have been developed since then. Most animal studies have focused only on the molecular features of SCIs, which remain disputed. Recently, it has become clear that SCI may trigger mental and cognitive disorders, however, and brain changes secondary to SCI are under investigation. No consensus on an optimal animal model for cerebral research has emerged. We discuss the appropriate SCI models for studying secondary brain changes.
Collapse
|
14
|
Li X, Zhang C, Haggerty AE, Yan J, Lan M, Seu M, Yang M, Marlow MM, Maldonado-Lasunción I, Cho B, Zhou Z, Chen L, Martin R, Nitobe Y, Yamane K, You H, Reddy S, Quan DP, Oudega M, Mao HQ. The effect of a nanofiber-hydrogel composite on neural tissue repair and regeneration in the contused spinal cord. Biomaterials 2020; 245:119978. [PMID: 32217415 PMCID: PMC8787820 DOI: 10.1016/j.biomaterials.2020.119978] [Citation(s) in RCA: 97] [Impact Index Per Article: 19.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2020] [Accepted: 03/15/2020] [Indexed: 01/16/2023]
Abstract
An injury to the spinal cord causes long-lasting loss of nervous tissue because endogenous nervous tissue repair and regeneration at the site of injury is limited. We engineered an injectable nanofiber-hydrogel composite (NHC) with interfacial bonding to provide mechanical strength and porosity and examined its effect on repair and neural tissue regeneration in an adult rat model of spinal cord contusion. At 28 days after treatment with NHC, the width of the contused spinal cord segment was 2-fold larger than in controls. With NHC treatment, tissue in the injury had a 2-fold higher M2/M1 macrophage ratio, 5-fold higher blood vessel density, 2.6-fold higher immature neuron presence, 2.4-fold higher axon density, and a similar glial scar presence compared with controls. Spared nervous tissue volume in the contused segment and hind limb function was similar between groups. Our findings indicated that NHC provided mechanical support to the contused spinal cord and supported pro-regenerative macrophage polarization, angiogenesis, axon growth, and neurogenesis in the injured tissue without any exogenous factors or cells. These results motivate further optimization of the NHC and delivery protocol to fully translate the potential of the unique properties of the NHC for treating spinal cord injury.
Collapse
Affiliation(s)
- Xiaowei Li
- Translational Tissue Engineering Center, Baltimore, MD 21205, USA; Department of Materials Science & Engineering, Baltimore, MD 21205, USA; Institute for NanoBioTechnology, Johns Hopkins University, Baltimore, MD 21205, USA
| | - Chi Zhang
- Translational Tissue Engineering Center, Baltimore, MD 21205, USA; Department of Materials Science & Engineering, Baltimore, MD 21205, USA; Institute for NanoBioTechnology, Johns Hopkins University, Baltimore, MD 21205, USA; School of Chemistry, Sun Yat-Sen University, Guangzhou, Guangdong 510275, PR China
| | - Agnes E Haggerty
- The Miami Project to Cure Paralysis, University of Miami, Miami, FL 33136, USA
| | - Jerry Yan
- Translational Tissue Engineering Center, Baltimore, MD 21205, USA; Institute for NanoBioTechnology, Johns Hopkins University, Baltimore, MD 21205, USA; Department of Biomedical Engineering, Johns Hopkins University, Baltimore, MD 21205, USA
| | - Michael Lan
- Translational Tissue Engineering Center, Baltimore, MD 21205, USA; Institute for NanoBioTechnology, Johns Hopkins University, Baltimore, MD 21205, USA; Department of Biomedical Engineering, Johns Hopkins University, Baltimore, MD 21205, USA
| | - Michelle Seu
- Translational Tissue Engineering Center, Baltimore, MD 21205, USA; Department of Plastic and Reconstructive Surgery, Johns Hopkins School of Medicine, Baltimore, MD 21287, USA
| | - Mingyu Yang
- Translational Tissue Engineering Center, Baltimore, MD 21205, USA; Department of Materials Science & Engineering, Baltimore, MD 21205, USA; Institute for NanoBioTechnology, Johns Hopkins University, Baltimore, MD 21205, USA
| | - Megan M Marlow
- The Miami Project to Cure Paralysis, University of Miami, Miami, FL 33136, USA
| | - Inés Maldonado-Lasunción
- The Miami Project to Cure Paralysis, University of Miami, Miami, FL 33136, USA; Department of Regeneration of Sensorimotor Systems, Netherlands Institute for Neuroscience, Institute of the Royal Netherlands Academy of Arts and Sciences, Amsterdam, Netherlands; Shirley Ryan AbilityLab, Chicago, IL 60611, USA; Department of Physical Therapy and Human Movements Sciences, Chicago, IL 60611, USA; Department of Physiology Northwestern University, Chicago, IL 60611, USA
| | - Brian Cho
- Translational Tissue Engineering Center, Baltimore, MD 21205, USA; Department of Plastic and Reconstructive Surgery, Johns Hopkins School of Medicine, Baltimore, MD 21287, USA
| | - Zhengbing Zhou
- Translational Tissue Engineering Center, Baltimore, MD 21205, USA; Department of Materials Science & Engineering, Baltimore, MD 21205, USA; Institute for NanoBioTechnology, Johns Hopkins University, Baltimore, MD 21205, USA
| | - Long Chen
- Translational Tissue Engineering Center, Baltimore, MD 21205, USA; Department of Materials Science & Engineering, Baltimore, MD 21205, USA; Institute for NanoBioTechnology, Johns Hopkins University, Baltimore, MD 21205, USA
| | - Russell Martin
- Translational Tissue Engineering Center, Baltimore, MD 21205, USA; Department of Materials Science & Engineering, Baltimore, MD 21205, USA; Institute for NanoBioTechnology, Johns Hopkins University, Baltimore, MD 21205, USA
| | - Yohshiro Nitobe
- The Miami Project to Cure Paralysis, University of Miami, Miami, FL 33136, USA; Department of Orthopedic Surgery, Hirosaki University Graduate School of Medicine, Hirosaki, Aomori, 036-8562, Japan
| | - Kentaro Yamane
- The Miami Project to Cure Paralysis, University of Miami, Miami, FL 33136, USA; Department of Orthopedic Surgery, Okayama University Graduate School of Medicine, Dentistry, and Pharmaceutical Science, Kitaku, Okayama, 700-8558, Japan
| | - Hua You
- Affiliated Cancer Hospital, Guangzhou Medical University, Guangzhou, Guangdong 510095, PR China
| | - Sashank Reddy
- Department of Plastic and Reconstructive Surgery, Johns Hopkins School of Medicine, Baltimore, MD 21287, USA
| | - Da-Ping Quan
- School of Chemistry, Sun Yat-Sen University, Guangzhou, Guangdong 510275, PR China.
| | - Martin Oudega
- Shirley Ryan AbilityLab, Chicago, IL 60611, USA; Department of Physical Therapy and Human Movements Sciences, Chicago, IL 60611, USA; Department of Physiology Northwestern University, Chicago, IL 60611, USA; Affiliated Cancer Hospital, Guangzhou Medical University, Guangzhou, Guangdong 510095, PR China; Edward Hines Jr. VA Hospital, Hines IL, 60141, USA.
| | - Hai-Quan Mao
- Translational Tissue Engineering Center, Baltimore, MD 21205, USA; Department of Materials Science & Engineering, Baltimore, MD 21205, USA; Institute for NanoBioTechnology, Johns Hopkins University, Baltimore, MD 21205, USA; Department of Biomedical Engineering, Johns Hopkins University, Baltimore, MD 21205, USA.
| |
Collapse
|
15
|
Regulation of autophagy in mesenchymal stem cells modulates therapeutic effects on spinal cord injury. Brain Res 2019; 1721:146321. [PMID: 31278935 DOI: 10.1016/j.brainres.2019.146321] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2019] [Revised: 06/20/2019] [Accepted: 07/02/2019] [Indexed: 02/06/2023]
Abstract
Transplantation with mesenchymal stem cells (MSCs) has shown beneficial effects in treating spinal cord injury. Autophagy is an evolutionarily conserved process of degradation and recycling of cellular components that plays an important role in tissue homeostasis and cellular survival. Whether regulating autophagy in MSCs may affect their therapeutic potential in spinal cord injury repair has not yet been determined. In this study, autophagy was inhibited in MSCs with lentiviruses expressing short hairpin RNA (shRNA) to knock down Becn-1 expression, and autophagy was upregulated in MSCs under nutrient starvation. These MSCs were then labelled with Hoechst and applied to spinal cord-injured rats to evaluate their therapeutic effects. After transplanting MSCs into rats with spinal cord injuries, functional recovery, immunohistochemistry, and remyelination analyses were performed. After inducing autophagy, the MSCs exhibited an accumulation of LC3-positive autophagosomes in the cytoplasm. The expression levels of neurotrophic factors, including vascular endothelial growth factor and brain derived neurotrophic factor, were significantly higher in autophagic MSCs than normal MSCs. The in vivo study showed that more labelled MSCs migrated to the lesion site after induction of autophagy. Inducing autophagy in MSCs promoted functional recovery after spinal cord injury, whereas functional recovery was weak after inhibiting autophagy in MSCs. In contrast to the autophagy inhibition group, transplanting autophagic MSCs exhibited a greater positive impact on axon regeneration, growth of serotonergic fibers, blood vessel regeneration, and myelination, indicating a multifactorial contribution to spinal cord injury repair. These results suggest that autophagy plays important roles in MSCs during spinal cord injury repair. Regulation of autophagy in MSCs before in vivo transplantation may be a potential therapeutic interventional strategy for spinal cord injury.
Collapse
|
16
|
Cell-seeded porous silk fibroin scaffolds promotes axonal regeneration and myelination in spinal cord injury rats. Biochem Biophys Res Commun 2019; 514:273-279. [DOI: 10.1016/j.bbrc.2019.04.137] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2019] [Accepted: 04/18/2019] [Indexed: 12/26/2022]
|
17
|
Hasanzadeh E, Ebrahimi-Barough S, Mirzaei E, Azami M, Tavangar SM, Mahmoodi N, Basiri A, Ai J. Preparation of fibrin gel scaffolds containing MWCNT/PU nanofibers for neural tissue engineering. J Biomed Mater Res A 2019; 107:802-814. [DOI: 10.1002/jbm.a.36596] [Citation(s) in RCA: 47] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2018] [Revised: 11/28/2018] [Accepted: 12/18/2018] [Indexed: 11/06/2022]
Affiliation(s)
- Elham Hasanzadeh
- Department of Tissue Engineering and Applied Cell Sciences, School of Advanced Technologies in Medicine; Tehran University of Medical Sciences; Tehran Iran
- Department of Tissue Engineering, School of Advanced Technologies in Medicine; Mazandaran University of Medical Sciences; Sari Iran
| | - Somayeh Ebrahimi-Barough
- Department of Tissue Engineering and Applied Cell Sciences, School of Advanced Technologies in Medicine; Tehran University of Medical Sciences; Tehran Iran
| | - Esmaeil Mirzaei
- Department of Medical Nanotechnology, School of Advanced Medical Sciences and Technologies; Shiraz University of Medical Sciences; Shiraz Iran
| | - Mahmoud Azami
- Department of Tissue Engineering and Applied Cell Sciences, School of Advanced Technologies in Medicine; Tehran University of Medical Sciences; Tehran Iran
| | - Seyed Mohammad Tavangar
- Department of Pathology; Shariati Hospital, Tehran University of Medical Sciences; Tehran Iran
| | - Narges Mahmoodi
- Sina Trauma and Surgery Research Center; Tehran University of Medical Sciences; Tehran Iran
| | - Arefeh Basiri
- Department of Tissue Engineering and Applied Cell Sciences, School of Advanced Technologies in Medicine; Tehran University of Medical Sciences; Tehran Iran
| | - Jafar Ai
- Department of Tissue Engineering and Applied Cell Sciences, School of Advanced Technologies in Medicine; Tehran University of Medical Sciences; Tehran Iran
| |
Collapse
|
18
|
Yang P, Chen A, Qin Y, Yin J, Cai X, Fan YJ, Li L, Huang HY. Buyang huanwu decoction combined with BMSCs transplantation promotes recovery after spinal cord injury by rescuing axotomized red nucleus neurons. JOURNAL OF ETHNOPHARMACOLOGY 2019; 228:123-131. [PMID: 30266421 DOI: 10.1016/j.jep.2018.09.028] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/18/2018] [Revised: 09/09/2018] [Accepted: 09/24/2018] [Indexed: 06/08/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Buyang huanwu decoction (BYHWD) is a classic recipe in traditional Chinese medicine (TCM) to supplement Qi and activate blood. It has been used to recover the neural function after the injury of central nervous system for hundreds of years in China. AIM OF THE STUDY This study investigated whether Buyang huanwu decoction (BYHWD) combined with bone marrow mesenchymal stem cells (BMSCs) transplantation had synergistic effect on neuroprotection of red nucleus neurons after spinal cord injury (SCI). MATERIALS AND METHODS Rubrospinal tract (RST) transection model was established and BMSCs were collected. The forelimb locomotor function was recorded using inclined plate test and spontaneous vertical exploration. cAMP level in red nucleus was detected with Enzyme-linked immunosorbent assay (ELISA). Morphology and number of red nucleus neurons was observed using Nissl's staining. Expression of cAMP-response element binding protein (CREB), ras homolog gene family member A (RhoA) and nerve growth factor (NGF) in red nucleus was detected using immunohistochemistry, qRT-PCR and Western-blotting. RESULTS The combination of BYHWD and BMSCs transplantation could improve the forelimb locomotor function significantly and give the red nucleus somas a better protection. Meanwhile, cAMP level, CREB and NGF increased, while RhoA decreased remarkably in the BYHWD+BMSCs group. CONCLUSIONS BYHWD combined with BMSCs transplantation had synergistic effect on neuroprotection of red nucleus neurons after SCI; the mechanism may be related to up-regulating cAMP level, activating the cAMP/CREB/RhoA signaling pathway, and promoting expression of NGF.
Collapse
Affiliation(s)
- Ping Yang
- Department of Psychiatry, Hunan Brain Hospital, NO.427, Middle Furong Road, Changsha, Hunan Province 410007, China
| | - An Chen
- Department of Anatomy, Hunan University of Chinese Medicine, NO.300, Xue shi Road, Changsha, Hunan Province 410208, China
| | - You Qin
- Institute of Chinese Materia Medica, Hunan Academy of Chinese Medicine, NO. 8, Yuehua Road, Changsha, Hunan Province 410013, China
| | - Jian Yin
- Department of Anatomy, Hunan University of Chinese Medicine, NO.300, Xue shi Road, Changsha, Hunan Province 410208, China
| | - Xiong Cai
- Provincial Key Laboratory of TCM Diagnostics, Hunan University of Chinese Medicine, NO.300, Xue shi Road, Changsha, Hunan Province 410208, China
| | - Yu-Jie Fan
- Department of Psychiatry, Hunan Brain Hospital, NO.427, Middle Furong Road, Changsha, Hunan Province 410007, China
| | - Liang Li
- Provincial Key Laboratory of TCM Diagnostics, Hunan University of Chinese Medicine, NO.300, Xue shi Road, Changsha, Hunan Province 410208, China.
| | - Hui-Yong Huang
- Provincial Key Laboratory of TCM Diagnostics, Hunan University of Chinese Medicine, NO.300, Xue shi Road, Changsha, Hunan Province 410208, China.
| |
Collapse
|
19
|
Li X, Liu D, Xiao Z, Zhao Y, Han S, Chen B, Dai J. Scaffold-facilitated locomotor improvement post complete spinal cord injury: Motor axon regeneration versus endogenous neuronal relay formation. Biomaterials 2019; 197:20-31. [PMID: 30639547 DOI: 10.1016/j.biomaterials.2019.01.012] [Citation(s) in RCA: 83] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2018] [Revised: 12/10/2018] [Accepted: 01/05/2019] [Indexed: 01/18/2023]
Abstract
Complete transected spinal cord injury (SCI) severely influences the quality of life and mortality rates of animals and patients. In the past decade, many simple and combinatorial therapeutic treatments have been tested in improving locomotor function in animals with this extraordinarily challenging SCI. The potential mechanism for promotion of locomotor function relies either on direct motor axon regeneration through the lesion gap or indirect neuronal relay bridging to functionally reconnect transected spinal stumps. In this review, we first compare the advantages and problems of complete transection SCI animal models with other prevailing SCI models used in motor axon regeneration research. Next, we enumerate some of the popular bio-scaffolds utilized in complete SCI repair in the last decade. Then, the current state of motor axon regeneration as well as its role on locomotor improvement of animals after complete SCI is discussed. Last, the current approach of directing endogenous neuronal relays formation to achieve motor function recovery by well-designed functional bio-scaffolds implantation in complete transected SCI animals is reviewed. Although facilitating neuronal relays formation by bio-scaffolds implantation appears to be more practical and feasible than directing motor axon regeneration in promoting locomotor outcome in animals after complete SCI, there are still challenges in neuronal relays formation, maintaining and debugging for spinal cord regenerative repair.
Collapse
Affiliation(s)
- Xing Li
- State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China; Key Laboratory of Organ Injury, Aging and Regenerative Medicine of Hunan Province, Xiangya Hospital, Central South University (CSU), Changsha, Hunan, 410008, China
| | - Dingyang Liu
- Department of Neurosurgery, Xiangya Hospital, Central South University, 87 Xiangya Road, Changsha 410008, Hunan Province, China
| | - Zhifeng Xiao
- State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China
| | - Yannan Zhao
- State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China
| | - Sufang Han
- State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China
| | - Bing Chen
- State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China
| | - Jianwu Dai
- State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China.
| |
Collapse
|
20
|
Li M, Wang Y, Zhang J, Cao Z, Wang S, Zheng W, Li Q, Zheng T, Wang X, Xu Q, Chen Z. Culture of pyramidal neural precursors, neural stem cells, and fibroblasts on various biomaterials. JOURNAL OF BIOMATERIALS SCIENCE-POLYMER EDITION 2018; 29:2168-2186. [DOI: 10.1080/09205063.2018.1528520] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
Affiliation(s)
- Mo Li
- Cell Therapy Center, Beijing Institute of Geriatrics, Xuanwu Hospital, Capital Medical University, and Key Laboratory of Neurodegeneration, Ministry of Education, Beijing, China
- Center of Neural Injury and Repair, Beijing Institute for Brain Disorders, Beijing, China
- Center of Parkinson's Disease, Beijing Institute for Brain Disorders, Beijing, China
| | - Ying Wang
- Center of Neural Injury and Repair, Beijing Institute for Brain Disorders, Beijing, China
- Department of Neurobiology, Capital Medical University, Beijing, China
| | - Jidi Zhang
- Center of Neural Injury and Repair, Beijing Institute for Brain Disorders, Beijing, China
- Department of Neurobiology, Capital Medical University, Beijing, China
| | - Zheng Cao
- School of Materials Science and Engineering, Tsinghua University, Beijing, China
| | - Shuo Wang
- School of Materials Science and Engineering, Tsinghua University, Beijing, China
| | - Wei Zheng
- Cell Therapy Center, Beijing Institute of Geriatrics, Xuanwu Hospital, Capital Medical University, and Key Laboratory of Neurodegeneration, Ministry of Education, Beijing, China
- Center of Neural Injury and Repair, Beijing Institute for Brain Disorders, Beijing, China
- Center of Parkinson's Disease, Beijing Institute for Brain Disorders, Beijing, China
| | - Qian Li
- Cell Therapy Center, Beijing Institute of Geriatrics, Xuanwu Hospital, Capital Medical University, and Key Laboratory of Neurodegeneration, Ministry of Education, Beijing, China
- Center of Neural Injury and Repair, Beijing Institute for Brain Disorders, Beijing, China
- Center of Parkinson's Disease, Beijing Institute for Brain Disorders, Beijing, China
| | - Tianqi Zheng
- Cell Therapy Center, Beijing Institute of Geriatrics, Xuanwu Hospital, Capital Medical University, and Key Laboratory of Neurodegeneration, Ministry of Education, Beijing, China
- Center of Neural Injury and Repair, Beijing Institute for Brain Disorders, Beijing, China
- Center of Parkinson's Disease, Beijing Institute for Brain Disorders, Beijing, China
| | - Xiumei Wang
- Institute for Regenerative Medicine and Biomimetic Materials, Department of Materials Science and Engineering, Tsinghua University, Beijing, China
| | - Qunyuan Xu
- Center of Neural Injury and Repair, Beijing Institute for Brain Disorders, Beijing, China
- Department of Neurobiology, Capital Medical University, Beijing, China
| | - Zhiguo Chen
- Cell Therapy Center, Beijing Institute of Geriatrics, Xuanwu Hospital, Capital Medical University, and Key Laboratory of Neurodegeneration, Ministry of Education, Beijing, China
- Center of Neural Injury and Repair, Beijing Institute for Brain Disorders, Beijing, China
- Center of Parkinson's Disease, Beijing Institute for Brain Disorders, Beijing, China
| |
Collapse
|
21
|
Ma F, Wang F, Li R, Zhu J. Application of drug delivery systems for the controlled delivery of growth factors to treat nervous system injury. Organogenesis 2018; 14:123-128. [PMID: 30148412 DOI: 10.1080/15476278.2018.1491183] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022] Open
Abstract
Nervous system injury represent the most common injury and was unique clinical challenge. Using of growth factors (GFs) for the treatment of nervous system injury showed effectiveness in halting its process. However, simple application of GFs could not achieve high efficacy because of its rapid diffusion into body fluids and lost from the lesion site. The drug delivery systems (DDSs) construction used to deliver GFs were investigated so that they could surmount its rapid diffusion and retain at the injury site. This study summarizes commonly used DDSs for sustained release of GFs that provide neuroprotection or restoration effects for nervous system injury.
Collapse
Affiliation(s)
- Fukai Ma
- a Department of Neurosurgery , Fudan University Huashan Hospital and National Key Laboratory of Medical Neurobiology, the Institutes of Brain Science, Shanghai Medical College, Fudan University , Shanghai , China
| | - Fan Wang
- a Department of Neurosurgery , Fudan University Huashan Hospital and National Key Laboratory of Medical Neurobiology, the Institutes of Brain Science, Shanghai Medical College, Fudan University , Shanghai , China.,b Department of Neurology , Guizhou Provincial People's Hospital , Guiyang , China
| | - Ronggang Li
- a Department of Neurosurgery , Fudan University Huashan Hospital and National Key Laboratory of Medical Neurobiology, the Institutes of Brain Science, Shanghai Medical College, Fudan University , Shanghai , China.,c Department of Neurosurgery , Shanghai Public Health Clinical Center, Fudan University , Shanghai , China
| | - Jianhong Zhu
- a Department of Neurosurgery , Fudan University Huashan Hospital and National Key Laboratory of Medical Neurobiology, the Institutes of Brain Science, Shanghai Medical College, Fudan University , Shanghai , China
| |
Collapse
|
22
|
Li J, Li X, Xiao Z, Dai J. [Review of the regeneration mechanism of complete spinal cord injury]. ZHONGGUO XIU FU CHONG JIAN WAI KE ZA ZHI = ZHONGGUO XIUFU CHONGJIAN WAIKE ZAZHI = CHINESE JOURNAL OF REPARATIVE AND RECONSTRUCTIVE SURGERY 2018; 32:641-649. [PMID: 29905039 DOI: 10.7507/1002-1892.201805069] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Spinal cord injury (SCI), especially the complete SCI, usually results in complete paralysis below the level of the injury and seriously affects the patient's quality of life. SCI repair is still a worldwide medical problem. In the last twenty years, Professor DAI Jianwu and his team pioneered complete SCI model by removing spinal tissue with varied lengths in rodents, canine, and non-human primates to verify therapeutic effect of different repair strategies. Moreover, they also started the first clinical study of functional collagen scaffold on patients with acute complete SCI on January 16th, 2015. This review mainly focusses on the possible mechanisms responsible for complete SCI. In common, recovery of some sensory and motor functions post complete SCI include the following three contributing reasons. ① Regeneration of long ascending and descending axons throughout the lesion site to re-connect the original targets; ② New neural circuits formed in the lesion site by newly generated neurons post injury, which effectively re-connect the transected stumps; ③ The combined effect of ① and ②. The numerous studies have confirmed that neural circuits rebuilt across the injury site by newborn neurons might be the main mechanisms for functional recovery of animals from rodents to dogs. In many SCI model, especially the complete spinal cord transection model, many studies have convincingly demonstrated that the quantity and length of regenerated long descending axons, particularly like CST fibers, are too few to across the lesion site that is millimeters in length to realize motor functional recovery. Hence, it is more feasible in guiding neuronal relays formation by bio-scaffolds implantation than directing long motor axons regeneration in improving motor function of animals with complete spinal cord transection. However, some other issues such as promoting more neuronal relays formation, debugging wrong connections, and maintaining adequate neural circuits for functional recovery are urgent problems to be addressed.
Collapse
Affiliation(s)
- Jiayin Li
- Institute of Genetics and Development Biology, Chinese Academy of Sciences, Beijing, 100101,P.R.China
| | - Xing Li
- Institute of Genetics and Development Biology, Chinese Academy of Sciences, Beijing, 100101,P.R.China
| | - Zhifeng Xiao
- Institute of Genetics and Development Biology, Chinese Academy of Sciences, Beijing, 100101,P.R.China
| | - Jianwu Dai
- Institute of Genetics and Development Biology, Chinese Academy of Sciences, Beijing, 100101,
| |
Collapse
|
23
|
Yao S, Yu S, Cao Z, Yang Y, Yu X, Mao HQ, Wang LN, Sun X, Zhao L, Wang X. Hierarchically aligned fibrin nanofiber hydrogel accelerated axonal regrowth and locomotor function recovery in rat spinal cord injury. Int J Nanomedicine 2018; 13:2883-2895. [PMID: 29844671 PMCID: PMC5961640 DOI: 10.2147/ijn.s159356] [Citation(s) in RCA: 71] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
BACKGROUND Designing novel biomaterials that incorporate or mimic the functions of extracellular matrix to deliver precise regulatory signals for tissue regeneration is the focus of current intensive research efforts in tissue engineering and regenerative medicine. METHODS AND RESULTS To mimic the natural environment of the spinal cord tissue, a three-dimensional hierarchically aligned fibrin hydrogel (AFG) with oriented topography and soft stiffness has been fabricated by electrospinning and a concurrent molecular self-assembling process. In this study, the AFG was implanted into a rat dorsal hemisected spinal cord injury model to bridge the lesion site. Host cells invaded promptly along the aligned fibrin hydrogels to form aligned tissue cables in the first week, and then were followed by axonal regrowth. At 4 weeks after the surgery, neurofilament (NF)-positive staining fibers were detected near the rostral end as well as the middle site of defect, which aligned along the tissue cables. Abundant NF- and GAP-43-positive staining indicated new axon regrowth in the oriented tissue cables, which penetrated throughout the lesion site in 8 weeks. Additionally, the abundant blood vessels marked with RECA-1 had reconstructed within the lesion site at 4 weeks after surgery. Basso-Beattie-Bresnahan scoring showed that the locomotor performance of the AFG group recovered much faster than that of blank control group or the random fibrin hydrogel (RFG) group from 2 weeks after surgery. Furthermore, diffusion tensor imaging tractography of MRI confirmed the optimal axon fiber reconstruction compared with the RFG and control groups. CONCLUSION Taken together, our results suggested that the AFG scaffold provided an inductive matrix for accelerating directional host cell invasion, vascular system reconstruction, and axonal regrowth, which could promote and support extensive aligned axonal regrowth and locomotor function recovery.
Collapse
Affiliation(s)
- Shenglian Yao
- School of Materials Science and Engineering, University of Science and Technology Beijing, Beijing, China
- Key Laboratory of Advanced Materials of Ministry of Education, School of Materials Science and Engineering, Tsinghua University, Beijing, China
| | - Shukui Yu
- Department of Otolaryngology-Head and Neck Surgery, Beijing Friendship Hospital, Capital Medical University, Beijing, China
| | - Zheng Cao
- Key Laboratory of Advanced Materials of Ministry of Education, School of Materials Science and Engineering, Tsinghua University, Beijing, China
| | - Yongdong Yang
- Key Laboratory of Advanced Materials of Ministry of Education, School of Materials Science and Engineering, Tsinghua University, Beijing, China
- Department of Orthopedics, Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing, China
| | - Xing Yu
- Department of Orthopedics, Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing, China
| | - Hai-Quan Mao
- Department of Materials Science and Engineering, Johns Hopkins University, Baltimore, MD, USA
| | - Lu-Ning Wang
- School of Materials Science and Engineering, University of Science and Technology Beijing, Beijing, China
| | - Xiaodan Sun
- Key Laboratory of Advanced Materials of Ministry of Education, School of Materials Science and Engineering, Tsinghua University, Beijing, China
| | - Lingyun Zhao
- Key Laboratory of Advanced Materials of Ministry of Education, School of Materials Science and Engineering, Tsinghua University, Beijing, China
| | - Xiumei Wang
- Key Laboratory of Advanced Materials of Ministry of Education, School of Materials Science and Engineering, Tsinghua University, Beijing, China
| |
Collapse
|
24
|
Luzzi S, Crovace AM, Lacitignola L, Valentini V, Francioso E, Rossi G, Invernici G, Galzio RJ, Crovace A. Engraftment, neuroglial transdifferentiation and behavioral recovery after complete spinal cord transection in rats. Surg Neurol Int 2018; 9:19. [PMID: 29497572 PMCID: PMC5806420 DOI: 10.4103/sni.sni_369_17] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2017] [Accepted: 11/13/2017] [Indexed: 12/26/2022] Open
Abstract
Background: Proof of the efficacy and safety of a xenogeneic mesenchymal stem cell (MSCs) transplant for spinal cord injury (SCI) may theoretically widen the spectrum of possible grafts for neuroregeneration. Methods: Twenty rats were submitted to complete spinal cord transection. Ovine bone marrow MSCs, retrovirally transfected with red fluorescent protein and not previously induced for neuroglial differentiation, were applied in 10 study rats (MSCG). Fibrin glue was injected in 10 control rats (FGG). All rats were evaluated on a weekly basis and scored using the Basso–Beattie–Bresnahan (BBB) locomotor scale for 10 weeks, when the collected data were statistically analyzed. The spinal cords were then harvested and analyzed with light microscopy, immunohistochemistry, and immunofluorescence. Results: Ovine MSCs culture showed positivity for Nestin. MSCG had a significant and durable recovery of motor functions (P <.001). Red fluorescence was found at the injury sites in MSCG. Positivity for Nestin, tubulin βIII, NG2 glia, neuron-specific enolase, vimentin, and 200 kD neurofilament were also found at the same sites. Conclusions: Xenogeneic ovine bone marrow MSCs proved capable of engrafting into the injured rat spinal cord. Transdifferentiation into a neuroglial phenotype was able to support partial functional recovery.
Collapse
Affiliation(s)
- Sabino Luzzi
- Department of Emergency and Organ Transplantation, University of Bari "Aldo Moro", Bari, Italy.,Department of Neurosurgery, San Salvatore City Hospital, L'Aquila, Italy
| | | | - Luca Lacitignola
- Department of Emergency and Organ Transplantation, University of Bari "Aldo Moro", Bari, Italy
| | - Valerio Valentini
- Department of Emergency and Organ Transplantation, University of Bari "Aldo Moro", Bari, Italy
| | - Edda Francioso
- Department of Emergency and Organ Transplantation, University of Bari "Aldo Moro", Bari, Italy
| | - Giacomo Rossi
- Animal Pathology Section, School of Biosciences and Veterinary Medicine, University of Camerino, Matelica, Italy
| | - Gloria Invernici
- Department of Neurology, Public Health and Disability, Fondazione IRCCS Istituto Neurologico Carlo Besta, Milan, Italy
| | - Renato Juan Galzio
- Department of Neurosurgery, Fondazione IRCCS Policlinico S. Matteo, Pavia, Italy
| | - Antonio Crovace
- Department of Emergency and Organ Transplantation, University of Bari "Aldo Moro", Bari, Italy
| |
Collapse
|
25
|
Li X, Dai J. Bridging the gap with functional collagen scaffolds: tuning endogenous neural stem cells for severe spinal cord injury repair. Biomater Sci 2018; 6:265-271. [DOI: 10.1039/c7bm00974g] [Citation(s) in RCA: 45] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Severe spinal cord injury (SCI) induces massive proliferation of spinal cord neural stem cells (NSCs), which are considered a promising cell source for therapeutic neural repair.
Collapse
Affiliation(s)
- Xing Li
- State Key Laboratory of Molecular Developmental Biology
- Institute of Genetics and Developmental Biology
- Chinese Academy of Sciences
- Beijing 100101
- China
| | - Jianwu Dai
- State Key Laboratory of Molecular Developmental Biology
- Institute of Genetics and Developmental Biology
- Chinese Academy of Sciences
- Beijing 100101
- China
| |
Collapse
|
26
|
Huang G, Li F, Zhao X, Ma Y, Li Y, Lin M, Jin G, Lu TJ, Genin GM, Xu F. Functional and Biomimetic Materials for Engineering of the Three-Dimensional Cell Microenvironment. Chem Rev 2017; 117:12764-12850. [PMID: 28991456 PMCID: PMC6494624 DOI: 10.1021/acs.chemrev.7b00094] [Citation(s) in RCA: 523] [Impact Index Per Article: 65.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
The cell microenvironment has emerged as a key determinant of cell behavior and function in development, physiology, and pathophysiology. The extracellular matrix (ECM) within the cell microenvironment serves not only as a structural foundation for cells but also as a source of three-dimensional (3D) biochemical and biophysical cues that trigger and regulate cell behaviors. Increasing evidence suggests that the 3D character of the microenvironment is required for development of many critical cell responses observed in vivo, fueling a surge in the development of functional and biomimetic materials for engineering the 3D cell microenvironment. Progress in the design of such materials has improved control of cell behaviors in 3D and advanced the fields of tissue regeneration, in vitro tissue models, large-scale cell differentiation, immunotherapy, and gene therapy. However, the field is still in its infancy, and discoveries about the nature of cell-microenvironment interactions continue to overturn much early progress in the field. Key challenges continue to be dissecting the roles of chemistry, structure, mechanics, and electrophysiology in the cell microenvironment, and understanding and harnessing the roles of periodicity and drift in these factors. This review encapsulates where recent advances appear to leave the ever-shifting state of the art, and it highlights areas in which substantial potential and uncertainty remain.
Collapse
Affiliation(s)
- Guoyou Huang
- MOE Key Laboratory of Biomedical Information
Engineering, School of Life Science and Technology, Xi’an Jiaotong
University, Xi’an 710049, People’s Republic of China
- Bioinspired Engineering and Biomechanics Center
(BEBC), Xi’an Jiaotong University, Xi’an 710049, People’s
Republic of China
| | - Fei Li
- Bioinspired Engineering and Biomechanics Center
(BEBC), Xi’an Jiaotong University, Xi’an 710049, People’s
Republic of China
- Department of Chemistry, School of Science,
Xi’an Jiaotong University, Xi’an 710049, People’s Republic
of China
| | - Xin Zhao
- Bioinspired Engineering and Biomechanics Center
(BEBC), Xi’an Jiaotong University, Xi’an 710049, People’s
Republic of China
- Interdisciplinary Division of Biomedical
Engineering, The Hong Kong Polytechnic University, Hung Hom, Hong Kong,
People’s Republic of China
| | - Yufei Ma
- MOE Key Laboratory of Biomedical Information
Engineering, School of Life Science and Technology, Xi’an Jiaotong
University, Xi’an 710049, People’s Republic of China
- Bioinspired Engineering and Biomechanics Center
(BEBC), Xi’an Jiaotong University, Xi’an 710049, People’s
Republic of China
| | - Yuhui Li
- MOE Key Laboratory of Biomedical Information
Engineering, School of Life Science and Technology, Xi’an Jiaotong
University, Xi’an 710049, People’s Republic of China
- Bioinspired Engineering and Biomechanics Center
(BEBC), Xi’an Jiaotong University, Xi’an 710049, People’s
Republic of China
| | - Min Lin
- MOE Key Laboratory of Biomedical Information
Engineering, School of Life Science and Technology, Xi’an Jiaotong
University, Xi’an 710049, People’s Republic of China
- Bioinspired Engineering and Biomechanics Center
(BEBC), Xi’an Jiaotong University, Xi’an 710049, People’s
Republic of China
| | - Guorui Jin
- MOE Key Laboratory of Biomedical Information
Engineering, School of Life Science and Technology, Xi’an Jiaotong
University, Xi’an 710049, People’s Republic of China
- Bioinspired Engineering and Biomechanics Center
(BEBC), Xi’an Jiaotong University, Xi’an 710049, People’s
Republic of China
| | - Tian Jian Lu
- Bioinspired Engineering and Biomechanics Center
(BEBC), Xi’an Jiaotong University, Xi’an 710049, People’s
Republic of China
- MOE Key Laboratory for Multifunctional Materials
and Structures, Xi’an Jiaotong University, Xi’an 710049,
People’s Republic of China
| | - Guy M. Genin
- MOE Key Laboratory of Biomedical Information
Engineering, School of Life Science and Technology, Xi’an Jiaotong
University, Xi’an 710049, People’s Republic of China
- Bioinspired Engineering and Biomechanics Center
(BEBC), Xi’an Jiaotong University, Xi’an 710049, People’s
Republic of China
- Department of Mechanical Engineering &
Materials Science, Washington University in St. Louis, St. Louis 63130, MO,
USA
- NSF Science and Technology Center for
Engineering MechanoBiology, Washington University in St. Louis, St. Louis 63130,
MO, USA
| | - Feng Xu
- MOE Key Laboratory of Biomedical Information
Engineering, School of Life Science and Technology, Xi’an Jiaotong
University, Xi’an 710049, People’s Republic of China
- Bioinspired Engineering and Biomechanics Center
(BEBC), Xi’an Jiaotong University, Xi’an 710049, People’s
Republic of China
| |
Collapse
|
27
|
Zhou Y, Wang Z, Li J, Li X, Xiao J. Fibroblast growth factors in the management of spinal cord injury. J Cell Mol Med 2017; 22:25-37. [PMID: 29063730 PMCID: PMC5742738 DOI: 10.1111/jcmm.13353] [Citation(s) in RCA: 53] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2017] [Accepted: 07/12/2017] [Indexed: 12/11/2022] Open
Abstract
Spinal cord injury (SCI) possesses a significant health and economic burden worldwide. Traumatic SCI is a devastating condition that evolves through two successive stages. Throughout each of these stages, disturbances in ionic homeostasis, local oedema, ischaemia, focal haemorrhage, free radicals stress and inflammatory response were observed. Although there are no fully restorative cures available for SCI patients, various molecular, cellular and rehabilitative therapies, such as limiting local inflammation, preventing secondary cell death and enhancing the plasticity of local circuits in the spinal cord, were described. Current preclinical studies have showed that fibroblast growth factors (FGFs) alone or combination therapies utilizing cell transplantation and biomaterial scaffolds are proven effective for treating SCI in animal models. More importantly, some studies further demonstrated a paucity of clinical transfer usage to promote functional recovery of numerous patients with SCI. In this review, we focus on the therapeutic capacity and pitfalls of the FGF family and its clinical application for treating SCI, including the signalling component of the FGF pathway and the role in the central nervous system, the pathophysiology of SCI and the targets for FGF treatment. We also discuss the challenges and potential for the clinical translation of FGF-based approaches into treatments for SCI.
Collapse
Affiliation(s)
- Yulong Zhou
- Department of Orthopaedics, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China.,Molecular Pharmacology Research Center, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Zhouguang Wang
- Molecular Pharmacology Research Center, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Jiawei Li
- Department of Orthopaedics, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China.,Molecular Pharmacology Research Center, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Xiaokun Li
- Molecular Pharmacology Research Center, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Jian Xiao
- Department of Orthopaedics, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China.,Molecular Pharmacology Research Center, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang, China
| |
Collapse
|
28
|
Russell LN, Lampe KJ. Oligodendrocyte Precursor Cell Viability, Proliferation, and Morphology is Dependent on Mesh Size and Storage Modulus in 3D Poly(ethylene glycol)-Based Hydrogels. ACS Biomater Sci Eng 2017; 3:3459-3468. [PMID: 33445383 DOI: 10.1021/acsbiomaterials.7b00374] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Oligodendrocytes in the central nervous system (CNS) are responsible for generating myelin, an electrically insulating layer around neuronal axons. When myelin is damaged, neurons are incapable of sustaining normal communications, which can manifest in patients as pain and loss of mobility and vision. A plethora of research has used biomaterials to promote neuronal regeneration, but despite the wide implications of a disrupted myelin sheath, very little is known about how biomaterial environments impact proliferation of oligodendrocyte precursor cells (OPCs) or their differentiation into myelinating oligodendrocytes. This work investigates how the storage modulus and mesh size of a polyethylene glycol (PEG)-based hydrogel, varied via two different mechanisms, directly affect the proliferation of two OPC lines encapsulated and cultured in 3D. Viability and proliferation of both OPC lines was dependent on hydrogel swelling and stiffness, where the concentration of ATP increased more in the more compliant gels. OPCs multiplied in the 3D hydrogels, creating significantly larger spheroids in the less cross-linked conditions. Stiffer, more highly cross-linked materials lead to greater expression of PDGFRα, an OPC receptor, indicating that fewer cells were committed to the oligodendrocyte lineage or had dedifferentiated in compliant materials. Laminin incorporation in the 3D matrix was found to have little effect on viability or proliferation. These findings provide valuable information on how mesh size and stiffness affect OPCs where more compliant materials favor proliferation of OPCs with less commitment to a mature oligodendrocyte lineage. Such information will be useful in the development of translational biomaterials to stimulate oligodendrocyte maturation for neural regeneration.
Collapse
Affiliation(s)
- Lauren N Russell
- Department of Chemical Engineering, University of Virginia, 102 Engineers' Way, Charlottesville, Virginia 22904, United States
| | - Kyle J Lampe
- Department of Chemical Engineering, University of Virginia, 102 Engineers' Way, Charlottesville, Virginia 22904, United States
| |
Collapse
|
29
|
Pires LR, Lopes CDF, Salvador D, Rocha DN, Pêgo AP. Ibuprofen-loaded fibrous patches-taming inhibition at the spinal cord injury site. JOURNAL OF MATERIALS SCIENCE. MATERIALS IN MEDICINE 2017; 28:157. [PMID: 28894995 DOI: 10.1007/s10856-017-5967-7] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/19/2017] [Accepted: 08/19/2017] [Indexed: 06/07/2023]
Abstract
It is now widely accepted that a therapeutic strategy for spinal cord injury (SCI) demands a multi-target approach. Here we propose the use of an easily implantable bilayer polymeric patch based on poly(trimethylene carbonate-co-ε-caprolactone) (P(TMC-CL)) that combines physical guidance cues provided by electrospun aligned fibres and the delivery of ibuprofen, as a mean to reduce the inhibitory environment at the lesion site by taming RhoA activation. Bilayer patches comprised a solvent cast film onto which electrospun aligned fibres have been deposited. Both layers were loaded with ibuprofen. In vitro release (37°C, in phosphate buffered saline) of the drug from the loaded scaffolds under sink condition was found to occur in the first 24 h. The released ibuprofen was shown to retain its bioactivity, as indicated by the reduction of RhoA activation when the neuronal-like cell line ND7/23 was challenged with lysophosphatidic acid. Ibuprofen-loaded P(TMC-CL) bilayer scaffolds were successfully implanted in vivo in a dorsal hemisection rat SCI model mediating the reduction of RhoA activation after 5 days of implantation in comparison to plain P(TMC-CL) scaffolds. Immunohistochemical analysis of the tissue shows βIII tubulin positive cells close to the ibuprofen-loaded patches further supporting the use of this strategy in the context of regeneration after a lesion in the spinal cord.
Collapse
Affiliation(s)
- Liliana R Pires
- INEB - Instituto de Engenharia Biomédica, Universidade do Porto, Rua Alfredo Allen 208, Porto, 4200-135, Portugal
- INL- International Iberian Nanotechnology Laboratory, Braga, Portugal
| | - Cátia D F Lopes
- INEB - Instituto de Engenharia Biomédica, Universidade do Porto, Rua Alfredo Allen 208, Porto, 4200-135, Portugal
- i3S - Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Porto, Portugal
| | - Daniela Salvador
- INEB - Instituto de Engenharia Biomédica, Universidade do Porto, Rua Alfredo Allen 208, Porto, 4200-135, Portugal
| | - Daniela N Rocha
- INEB - Instituto de Engenharia Biomédica, Universidade do Porto, Rua Alfredo Allen 208, Porto, 4200-135, Portugal
| | - Ana Paula Pêgo
- INEB - Instituto de Engenharia Biomédica, Universidade do Porto, Rua Alfredo Allen 208, Porto, 4200-135, Portugal.
- i3S - Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Porto, Portugal.
- Instituto de Ciências Biomédicas Abel Salazar, Universidade do Porto (ICBAS), Porto, Portugal.
- Faculdade de Engenharia da Universidade do Porto (FEUP), Porto, Portugal.
| |
Collapse
|
30
|
Yao S, Yang Y, Wang X, Wang L. Fabrication and characterization of aligned fibrin nanofiber hydrogel loaded with PLGA microspheres. Macromol Res 2017. [DOI: 10.1007/s13233-017-5121-x] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
|
31
|
Führmann T, Anandakumaran PN, Shoichet MS. Combinatorial Therapies After Spinal Cord Injury: How Can Biomaterials Help? Adv Healthc Mater 2017; 6. [PMID: 28247563 DOI: 10.1002/adhm.201601130] [Citation(s) in RCA: 129] [Impact Index Per Article: 16.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2016] [Revised: 12/05/2016] [Indexed: 12/31/2022]
Abstract
Traumatic spinal cord injury (SCI) results in an immediate loss of motor and sensory function below the injury site and is associated with a poor prognosis. The inhibitory environment that develops in response to the injury is mainly due to local expression of inhibitory factors, scarring and the formation of cystic cavitations, all of which limit the regenerative capacity of endogenous or transplanted cells. Strategies that demonstrate promising results induce a change in the microenvironment at- and around the lesion site to promote endogenous cell repair, including axonal regeneration or the integration of transplanted cells. To date, many of these strategies target only a single aspect of SCI; however, the multifaceted nature of SCI suggests that combinatorial strategies will likely be more effective. Biomaterials are a key component of combinatorial strategies, as they have the potential to deliver drugs locally over a prolonged period of time and aid in cell survival, integration and differentiation. Here we summarize the advantages and limitations of widely used strategies to promote recovery after injury and highlight recent research where biomaterials aided combinatorial strategies to overcome some of the barriers of spinal cord regeneration.
Collapse
Affiliation(s)
- Tobias Führmann
- The Donnelly Centre for Cellular and Biomolecular Research; 160 College Street, Room 514 Toronto ON M5S 3E1 Canada
- Department of Chemical Engineering and Applied Chemistry; 200 College Street Toronto ON M5S 3E5 Canada
| | - Priya N. Anandakumaran
- The Donnelly Centre for Cellular and Biomolecular Research; 160 College Street, Room 514 Toronto ON M5S 3E1 Canada
- Institute of Biomaterials and Biomedical Engineering; 164 College Street Toronto ON M5S 3G9 Canada
| | - Molly S. Shoichet
- The Donnelly Centre for Cellular and Biomolecular Research; 160 College Street, Room 514 Toronto ON M5S 3E1 Canada
- Department of Chemical Engineering and Applied Chemistry; 200 College Street Toronto ON M5S 3E5 Canada
- Institute of Biomaterials and Biomedical Engineering; 164 College Street Toronto ON M5S 3G9 Canada
- Department of Chemistry; University of Toronto; 80 St George St Toronto ON M5S 3H6 Canada
| |
Collapse
|
32
|
Formyl peptide receptors promotes neural differentiation in mouse neural stem cells by ROS generation and regulation of PI3K-AKT signaling. Sci Rep 2017; 7:206. [PMID: 28303030 PMCID: PMC5428260 DOI: 10.1038/s41598-017-00314-5] [Citation(s) in RCA: 49] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2016] [Accepted: 02/20/2017] [Indexed: 01/12/2023] Open
Abstract
This study aimed to determine whether formyl peptide receptors (FPRs) regulated the differentiation of neural stem cells (NSCs). FPRs promote the migration of NSCs both in vitro and in vivo. However, the role of FPRs during differentiation of NSCs is unknown. Analysis by Western blot showed significantly increased expression of FPR1 and FPR2 during differentiation of NSCs. The activation of FPRs promotes NSCs to differentiate into neurons with more primary neurites and branch points and longer neurites per cell. Meanwhile, this activation also inhibits the differentiation of NSC into astrocytes. This bidirectional effect can be inhibited by the FPRs-specific inhibitor. Moreover, it was found that the activation of FPRs increased the generation of reactive oxygen species (ROS) and phosphorylation of AKT in the NSCs, while N-acetylcysteine and LY294002 inhibited the FPRs-stimulated increase in ROS generation and AKT phosphorylation, and blocked the FPRs-stimulated neural differentiation into neurons. Therefore, FPRs-stimulated neural differentiation was mediated via ROS and PI3K-AKT signaling pathways. Collectively, the present findings provided a novel insight into the functional role of FPRs in neurogenesis, with important implications for its potential use as a candidate for treating brain or spinal cord injury.
Collapse
|
33
|
Caprile T, Montecinos H. Analyzing the role of extracellular matrix during nervous system development to advance new regenerative strategies. Neural Regen Res 2017; 12:566-567. [PMID: 28553328 PMCID: PMC5436346 DOI: 10.4103/1673-5374.205087] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
Affiliation(s)
- Teresa Caprile
- Axon Guidance Laboratory, Department of Cell Biology, Faculty of Biological Sciences, Universidad de Concepción, Casilla, Chile
| | - Hernán Montecinos
- Axon Guidance Laboratory, Department of Cell Biology, Faculty of Biological Sciences, Universidad de Concepción, Casilla, Chile
| |
Collapse
|
34
|
Ordikhani F, Sheth S, Zustiak SP. Polymeric particle-mediated molecular therapies to treat spinal cord injury. Int J Pharm 2017; 516:71-81. [DOI: 10.1016/j.ijpharm.2016.11.021] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2016] [Revised: 11/03/2016] [Accepted: 11/08/2016] [Indexed: 11/26/2022]
|
35
|
Viswanath A, Vanacker J, Germain L, Leprince JG, Diogenes A, Shakesheff KM, White LJ, des Rieux A. Extracellular matrix-derived hydrogels for dental stem cell delivery. J Biomed Mater Res A 2016; 105:319-328. [PMID: 27636889 DOI: 10.1002/jbm.a.35901] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2016] [Revised: 09/06/2016] [Accepted: 09/13/2016] [Indexed: 12/14/2022]
Abstract
Decellularized mammalian extracellular matrices (ECM) have been widely accepted as an ideal substrate for repair and remodelling of numerous tissues in clinical and pre-clinical studies. Recent studies have demonstrated the ability of ECM scaffolds derived from site-specific homologous tissues to direct cell differentiation. The present study investigated the suitability of hydrogels derived from different source tissues: bone, spinal cord and dentine, as suitable carriers to deliver human apical papilla derived mesenchymal stem cells (SCAP) for spinal cord regeneration. Bone, spinal cord, and dentine ECM hydrogels exhibited distinct structural, mechanical, and biological characteristics. All three hydrogels supported SCAP viability and proliferation. However, only spinal cord and bone derived hydrogels promoted the expression of neural lineage markers. The specific environment of ECM scaffolds significantly affected the differentiation of SCAP to a neural lineage, with stronger responses observed with spinal cord ECM hydrogels, suggesting that site-specific tissues are more likely to facilitate optimal stem cell behavior for constructive spinal cord regeneration. © 2016 Wiley Periodicals, Inc. J Biomed Mater Res Part A: 105A: 319-328, 2017.
Collapse
Affiliation(s)
- Aiswarya Viswanath
- Louvain Drug Research Institute, Advanced Drug Delivery and Biomaterials Unit, Université Catholique de Louvain, Brussels, Belgium.,School of Pharmacy, University of Nottingham, Nottingham, NG7 2RD, UK
| | - Julie Vanacker
- Louvain Drug Research Institute, Advanced Drug Delivery and Biomaterials Unit, Université Catholique de Louvain, Brussels, Belgium
| | - Loïc Germain
- Louvain Drug Research Institute, Advanced Drug Delivery and Biomaterials Unit, Université Catholique de Louvain, Brussels, Belgium
| | - Julian G Leprince
- Louvain Drug Research Institute, Advanced Drug Delivery and Biomaterials Unit, Université Catholique de Louvain, Brussels, Belgium
| | - Anibal Diogenes
- Department of Endodontics, University of Texas Health Science Center at San Antonio, San Antonio-TX, USA
| | | | - Lisa J White
- School of Pharmacy, University of Nottingham, Nottingham, NG7 2RD, UK
| | - Anne des Rieux
- Louvain Drug Research Institute, Advanced Drug Delivery and Biomaterials Unit, Université Catholique de Louvain, Brussels, Belgium.,Université Catholique de Louvain, Institute of Condensed Matter and Nanosciences, 1348 Louvain-la-Neuve, Belgium
| |
Collapse
|
36
|
Kilinc D, Dennis CL, Lee GU. Bio-Nano-Magnetic Materials for Localized Mechanochemical Stimulation of Cell Growth and Death. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2016; 28:5672-80. [PMID: 26780501 PMCID: PMC5536250 DOI: 10.1002/adma.201504845] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/01/2015] [Revised: 11/12/2015] [Indexed: 05/16/2023]
Abstract
Magnetic nanoparticles are promising new tools for therapeutic applications, such as magnetic nanoparticle hyperthermia therapy and targeted drug delivery. Recent in vitro studies have demonstrated that a force application with magnetic tweezers can also affect cell fate, suggesting a therapeutic potential for magnetically modulated mechanical stimulation. The magnetic properties of nanoparticles that induce physical responses and the subtle responses that result from mechanically induced membrane damage and/or intracellular signaling are evaluated. Magnetic particles with various physical, geometric, and magnetic properties and specific functionalization can now be used to apply mechanical force to specific regions of cells, which permit the modulation of cellular behavior through the use of spatially and time controlled magnetic fields. On one hand, mechanochemical stimulation has been used to direct the outgrowth on neuronal growth cones, indicating a therapeutic potential for neural repair. On the other hand, it has been used to kill cancer cells that preferentially express specific receptors. Advances made in the synthesis and characterization of magnetic nanomaterials and a better understanding of cellular mechanotransduction mechanisms may support the translation of mechanochemical stimulation into the clinic as an emerging therapeutic approach.
Collapse
Affiliation(s)
- Devrim Kilinc
- Bionanosciences Lab, School of Chemistry and Chemical Biology, UCD
Conway Institute of Biomolecular and Biomedical Research, University College Dublin,
Belfield, Dublin 4, Ireland
| | - Cindi L. Dennis
- Material Measurement Laboratory, National Institute of Standards and
Technology, 100 Bureau Drive, Gaithersburg, MD 20899–8552, USA
| | - Gil U. Lee
- Bionanosciences Lab, School of Chemistry and Chemical Biology, UCD
Conway Institute of Biomolecular and Biomedical Research, University College Dublin,
Belfield, Dublin 4, Ireland
| |
Collapse
|
37
|
A drug delivery hydrogel system based on activin B for Parkinson's disease. Biomaterials 2016; 102:72-86. [PMID: 27322960 DOI: 10.1016/j.biomaterials.2016.06.016] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2016] [Revised: 05/27/2016] [Accepted: 06/05/2016] [Indexed: 01/01/2023]
Abstract
Parkinson's disease (PD) is one of the most common neurodegenerative diseases. Activins are members of the superfamily of transforming growth factors and have many potential neuroprotective effects. Herein, at the first place, we verified activin B's neuroprotective role in a PD model, and revealed that activin B's fast release has limited function in the PD therapy. To this end, we developed a multi-functional crosslinker based thermosensitive injectable hydrogels to deliver activin B, and stereotactically injected the activin B-loaded hydrogel into the striatum of a mouse model of PD. The histological evaluation showed that activin B can be detected even 5 weeks post-surgery in PD mice implanted with activin B-loaded hydrogels, and activin B-loaded hydrogels can significantly increase the density of tyrosine hydroxylase positive (TH(+)) nerve fibers and reduce inflammatory responses. The behavioral evaluation demonstrated that activin B-loaded hydrogels significantly improved the performance of the mice in the PD model. Meanwhile, we found that hydrogels can slightly induce the activation of microglia cells and astrocytes, while cannot induce apoptosis in the striatum. Overall, our data demonstrated that the developed activin B-loaded hydrogels provide sustained release of activin B for over 5 weeks and contribute to substantial cellular protection and behavioral improvement, suggesting their potential as a therapeutic strategy for PD.
Collapse
|
38
|
Ge L, Liu K, Liu Z, Lu M. Co-transplantation of autologous OM-MSCs and OM-OECs: a novel approach for spinal cord injury. Rev Neurosci 2016; 27:259-70. [PMID: 26574889 DOI: 10.1515/revneuro-2015-0030] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2015] [Accepted: 10/09/2015] [Indexed: 11/15/2022]
Abstract
AbstractSpinal cord injury (SCI) is a disastrous injury that leads to motor and sensory dysfunctions in patients. In recent years, co-transplantation has become an increasingly used therapeutic treatment for patients with SCI. Both mesenchymal stem cells (MSCs) and olfactory-ensheathing cells (OECs) have been adopted to ameliorate SCI, with promising outcomes. Remarkable effects on the rehabilitation of patients with SCI have been achieved using MSCs. Olfactory mucosa (OM) MSCs from human OM are one of the most ideal cell resources for auto-transplantation in clinical application owing to their a high proliferation rate and multipotent capability. In addition, OECs derived from OM have been used to improve functional recovery of SCI and resulted in promising functional recovery in years. Accordingly, co-transplantation of OM-MSCs coupled with OM-OECs has been adopted to improve the recovery of SCI. Here we reviewed the reported applications of OM-MSCs and OM-OECs for SCI treatment and proposed that a novel combined strategy using both autologous OM-MSCs and OM-OECs would achieve a better approach for the treatment of SCI.
Collapse
Affiliation(s)
| | | | - Zhonghua Liu
- 2College of Life Sciences, Hunan Normal University, Changsha 410008, P.R. China
| | - Ming Lu
- 1Department of Neurosurgery, Second Affiliated Hospital of Hunan Normal University (163 Hospital of PLA), Changsha 410003, P.R. China
| |
Collapse
|
39
|
Gomes-Osman J, Cortes M, Guest J, Pascual-Leone A. A Systematic Review of Experimental Strategies Aimed at Improving Motor Function after Acute and Chronic Spinal Cord Injury. J Neurotrauma 2016; 33:425-38. [PMID: 26415105 DOI: 10.1089/neu.2014.3812] [Citation(s) in RCA: 61] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
While various approaches have been proposed in clinical trials aimed at improving motor function after spinal cord injury in humans, there is still limited information regarding the scope, methodological quality, and evidence associated with single-intervention and multi-intervention approaches. A systematic review performed using the PubMed search engine and the key words "spinal cord injury motor recovery" identified 1973 records, of which 39 were selected (18 from the search records and 21 from reference list inspection). Study phase ( clinicaltrials.org criteria) and methodological quality (Cochrane criteria) were assessed. Studies included proposed a broad range of single-intervention (encompassing cell therapies, pharmacology, electrical stimulation, rehabilitation) (encompassing cell therapies, pharmacology, electrical stimulation, rehabilitation) and multi-intervention approaches (that combined more than one strategy). The highest evidence level was for Phase III studies supporting the role of multi-intervention approaches that contained a rehabilitation component. Quality appraisal revealed that the percentage of selected studies classified with high risk of bias by Cochrane criteria was as follows: random sequence generation = 64%; allocation concealment = 77%; blinding of participants and personnel = 69%; blinding of outcome assessment = 64%; attrition = 44%; selective reporting = 44%. The current literature contains a high proportion of studies with a limited ability to measure efficacy in a valid manner because of low methodological strength in all items of the Cochrane risk of bias assessment. Recommendations to decrease bias are discussed and include increased methodological rigor in the study design and recruitment of study participants, and the use of electrophysiological and imaging measures that can assess functional integrity of the spinal cord (and may be sufficiently sensitive to detect changes that occur in response to therapeutic interventions).
Collapse
Affiliation(s)
- Joyce Gomes-Osman
- 1 Berenson-Allen Center for Noninvasive Brain Stimulation, Department of Neurology, Beth Israel Deaconess Medical Center , Harvard Medical School, Boston, Massachusetts
| | - Mar Cortes
- 2 Non-Invasive Brain Stimulation and Human Motor Control Laboratory, Burke Medical Research Institute , Weill Cornell Medical College, White Plains, New York
| | - James Guest
- 3 Department of Neurological Surgery, The Miami Project to Cure Paralysis, Lois Pope LIFE Centre, Miller School of Medicine , Miami, Florida
| | - Alvaro Pascual-Leone
- 1 Berenson-Allen Center for Noninvasive Brain Stimulation, Department of Neurology, Beth Israel Deaconess Medical Center , Harvard Medical School, Boston, Massachusetts
| |
Collapse
|
40
|
Functionalized collagen scaffold implantation and cAMP administration collectively facilitate spinal cord regeneration. Acta Biomater 2016; 30:233-245. [PMID: 26593786 DOI: 10.1016/j.actbio.2015.11.023] [Citation(s) in RCA: 53] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2015] [Revised: 11/03/2015] [Accepted: 11/14/2015] [Indexed: 01/05/2023]
Abstract
Previous studies have demonstrated that several mechanisms, including numerous inhibitory molecules, weak neurotrophic stimulation and deficient intrinsic regenerative responses, collectively contribute to the failure of mature spinal cord axon regeneration. Thus, combinatorial therapies targeting multiple mechanisms have attracted much attention. In the present study, a porous collagen scaffold was used to support neuronal attachment and bridge axonal regeneration. The scaffold was specifically functionalized using neutralizing proteins (CBD-EphA4LBD, CBD-PlexinB1LBD and NEP1-40) and collagen-binding neurotrophic factors (CBD-BDNF and CBD-NT3) to simultaneously antagonize myelin inhibitory molecules (ephrinB3, Sema4D and Nogo) and exert neurotrophic protection and stimulation. Cerebellar granular neurons cultured on the functionalized collagen scaffold promoted neurite outgrowth in the presence of myelin. Furthermore, a full combinatorial treatment comprising functionalized scaffold implantation and cAMP administration was developed to evaluate the synergistic repair ability in a rat T10 complete removal spinal cord injury model. The results showed that full combinatorial therapy exhibited the greatest advantage in reducing the volume of cavitation, facilitating axonal regeneration, and promoting neuronal generation. The newborn neurons generated in the lesion area could form the neuronal relay and enhance the locomotion recovery after severe spinal cord injury. STATEMENT OF SIGNIFICANCE A porous collagen scaffold was specifically functionalized with neutralizing proteins and neurotrophic factors to antagonize the myelin inhibitory molecules and exert neurotrophic protection and stimulation for spinal cord regeneration. Cerebellar granular neurons seeded on the functionalized collagen scaffold showed enhanced neurite outgrowth ability in vitro. The functionalized scaffold implantation combined with cAMP administration exhibited synergistic repair ability for rat T10 complete spinal cord transection injury.
Collapse
|
41
|
Pires LR, Pêgo AP. Bridging the lesion-engineering a permissive substrate for nerve regeneration. Regen Biomater 2015; 2:203-14. [PMID: 26816642 PMCID: PMC4669012 DOI: 10.1093/rb/rbv012] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2015] [Revised: 07/21/2015] [Accepted: 06/30/2015] [Indexed: 01/30/2023] Open
Abstract
Biomaterial-based strategies to restore connectivity after lesion at the spinal cord are focused on bridging the lesion and providing an favourable substrate and a path for axonal re-growth. Following spinal cord injury (SCI) a hostile environment for neuronal cell growth is established by the activation of multiple inhibitory mechanisms that hamper regeneration to occur. Implantable scaffolds can provide mechanical support and physical guidance for axon re-growth and, at the same time, contribute to alleviate the hostile environment by the in situ delivery of therapeutic molecules and/or relevant cells. Basic research on SCI has been contributing with the description of inhibitory mechanisms for regeneration as well as identifying drugs/molecules that can target inhibition. This knowledge is the background for the development of combined strategies with biomaterials. Additionally, scaffold design is significantly evolving. From the early simple hollow conduits, scaffolds with complex architectures that can modulate cell fate are currently being tested. A number of promising pre-clinical studies combining scaffolds, cells, drugs and/or nucleic acids are reported in the open literature. Overall, it is considered that to address the multi-factorial inhibitory environment of a SCI, a multifaceted therapeutic approach is imperative. The progress in the identification of molecules that target inhibition after SCI and its combination with scaffolds and/or cells are described and discussed in this review.
Collapse
Affiliation(s)
- Liliana R. Pires
- INEB—Instituto de Engenharia Biomédica, Universidade do Porto, Rua do Campo Alegre 823, 4150-180 Porto, Portugal
- Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Portugal
- Faculdade de Engenharia—Universidade do Porto (FEUP), Porto, Portugal and
| | - Ana P. Pêgo
- INEB—Instituto de Engenharia Biomédica, Universidade do Porto, Rua do Campo Alegre 823, 4150-180 Porto, Portugal
- Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Portugal
- Faculdade de Engenharia—Universidade do Porto (FEUP), Porto, Portugal and
- Instituto de Ciências Biomédicas Abel Salazar (ICBAS), Universidade do Porto, Porto, Portugal
| |
Collapse
|
42
|
Li X, Han J, Zhao Y, Ding W, Wei J, Han S, Shang X, Wang B, Chen B, Xiao Z, Dai J. Functionalized Collagen Scaffold Neutralizing the Myelin-Inhibitory Molecules Promoted Neurites Outgrowth in Vitro and Facilitated Spinal Cord Regeneration in Vivo. ACS APPLIED MATERIALS & INTERFACES 2015; 7:13960-13971. [PMID: 26034998 DOI: 10.1021/acsami.5b03879] [Citation(s) in RCA: 52] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
Research has demonstrated that many myelin-associated inhibitory molecules jointly contribute to the failure of adult spinal cord regeneration. Therapies comprehensively targeting the multiple inhibitory nature of the injured spinal cord are being concerned. Here, two collagen-binding proteins, CBD-EphA4LBD and CBD-PlexinB1LBD, were constructed, respectively, to neutralize the axon guidance molecules ephrinB3 and sema4D that inhibit the regeneration of nerve fibers. The two neutralizing proteins have proven their ability to specifically bind collagen and to continuously release from collagen scaffolds. They could also promote neurites outgrowth of cerebellar granular neurons and dorsal root ganglion neurons in vitro. Subsequently, the functionalized collagen scaffolds by physically absorbing NEP1-40 and immobilizing CBD-EphA4LBD and CBD-PlexinB1LBD were transplanted into a rat T10 complete spinal cord transection model. Our results showed that rats that received the treatment of transplanting the functionalized collagen scaffold exhibited great advantage on axonal regeneration and locomotion recovery after spinal cord injury.
Collapse
Affiliation(s)
- Xing Li
- †State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China
- §University of Chinese Academy of Sciences, Beijing 100190, China
| | - Jin Han
- †State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China
| | - Yannan Zhao
- †State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China
| | - Wenyong Ding
- ‡Department of Biochemistry, Dalian Medical University, Dalian 116044, China
| | - Jianshu Wei
- †State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China
| | - Sufang Han
- †State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China
| | - Xianping Shang
- ‡Department of Biochemistry, Dalian Medical University, Dalian 116044, China
| | - Bin Wang
- †State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China
| | - Bing Chen
- †State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China
| | - Zhifeng Xiao
- †State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China
| | - Jianwu Dai
- †State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China
| |
Collapse
|
43
|
Hydrogels and Cell Based Therapies in Spinal Cord Injury Regeneration. Stem Cells Int 2015; 2015:948040. [PMID: 26124844 PMCID: PMC4466497 DOI: 10.1155/2015/948040] [Citation(s) in RCA: 111] [Impact Index Per Article: 11.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2014] [Accepted: 12/14/2014] [Indexed: 01/01/2023] Open
Abstract
Spinal cord injury (SCI) is a central nervous system- (CNS-) related disorder for which there is yet no successful treatment. Within the past several years, cell-based therapies have been explored for SCI repair, including the use of pluripotent human stem cells, and a number of adult-derived stem and mature cells such as mesenchymal stem cells, olfactory ensheathing cells, and Schwann cells. Although promising, cell transplantation is often overturned by the poor cell survival in the treatment of spinal cord injuries. Alternatively, the therapeutic role of different cells has been used in tissue engineering approaches by engrafting cells with biomaterials. The latter have the advantages of physically mimicking the CNS tissue, while promoting a more permissive environment for cell survival, growth, and differentiation. The roles of both cell- and biomaterial-based therapies as single therapeutic approaches for SCI repair will be discussed in this review. Moreover, as the multifactorial inhibitory environment of a SCI suggests that combinatorial approaches would be more effective, the importance of using biomaterials as cell carriers will be herein highlighted, as well as the recent advances and achievements of these promising tools for neural tissue regeneration.
Collapse
|
44
|
Wang H, Lin XF, Wang LR, Lin YQ, Wang JT, Liu WY, Zhu GQ, Braddock M, Zhong M, Zheng MH. Decellularization technology in CNS tissue repair. Expert Rev Neurother 2015; 15:493-500. [PMID: 25817399 DOI: 10.1586/14737175.2015.1030735] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
Decellularization methodologies have been successfully used in a variety of tissue engineering and regenerative technologies and methods of decellularization have been developed for target tissues and organs of interest. The technology to promote regeneration and functional recovery in the CNS, including brain and spinal cord, has, however, made slow progress mainly because the intrinsic regenerative potential of the CNS is regarded as low. To date, currently available therapies have been unable to provide significant functional recovery and successful therapies, which could provide functional restoration to the injured brain and spinal cord are controversial. In this review, the authors provide a critical analysis, comparing the advantages and limitations of the major decellularization methods and considering the effects of these methods upon the biologic scaffold material. The authors also review studies that supplement decellularized grafts with exogenous factors, such as stem cells and growth factors, to both promote and enhance regeneration through decellularized allografts.
Collapse
Affiliation(s)
- Hui Wang
- Department of Neurosurgery, the First Affiliated Hospital of Wenzhou Medical University, Wenzhou 325000, China
| | | | | | | | | | | | | | | | | | | |
Collapse
|
45
|
Abstract
ABSTRACT Restoration of lost neuronal function after spinal cord injury still remains a considerable challenge for current medicine. Over the last decade, regenerative medicine has recorded rapid and promising advancements in stem cell research, genetic engineering and the progression of new sophisticated biomaterials as well as nanotechnology. This advancement has also been reflected in neural tissue engineering, where, along with the development of a new generation of well-designed biopolymer scaffolds, multifactorial therapeutic strategies are being validated in order to determine the greatest possible repair efficacy of the complex CNS pathophysiology. Much attention is currently focused on the designing of multifunctional polymer scaffolds as systems for targeted drug or gene delivery, electrical stimulation or as substrates creating a special micro-environment, promoting the growth and desired differentiation of various cell lines. In this review, the latest advances in biomaterial technology together with various combinatorial strategies designed to treat spinal cord injury treatment are summarized and discussed.
Collapse
|
46
|
McCormick AM, Maddipatla MVSN, Shi S, Chamsaz EA, Yokoyama H, Joy A, Leipzig ND. Micropatterned coumarin polyester thin films direct neurite orientation. ACS APPLIED MATERIALS & INTERFACES 2014; 6:19655-19667. [PMID: 25347606 DOI: 10.1021/am5044328] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
Guidance and migration of cells in the nervous system is imperative for proper development, maturation, and regeneration. In the peripheral nervous system (PNS), it is challenging for axons to bridge critical-sized injury defects to achieve repair and the central nervous system (CNS) has a very limited ability to regenerate after injury because of its innate injury response. The photoreactivity of the coumarin polyester used in this study enables efficient micropatterning using a custom digital micromirror device (DMD) and has been previously shown to be biodegradable, making these thin films ideal for cell guidance substrates with potential for future in vivo applications. With DMD, we fabricated coumarin polyester thin films into 10×20 μm and 15×50 μm micropatterns with depths ranging from 15 to 20 nm to enhance nervous system cell alignment. Adult primary neurons, oligodendrocytes, and astrocytes were isolated from rat brain tissue and seeded onto the polymer surfaces. After 24 h, cell type and neurite alignment were analyzed using phase contrast and fluorescence imaging. There was a significant difference (p<0.0001) in cell process distribution for both emergence angle (from the body of the cell) and orientation angle (at the tip of the growth cone) confirming alignment on patterned surfaces compared to control substrates (unpatterned polymer and glass surfaces). The expected frequency distribution for parallel alignment (≤15°) is 14% and the two micropatterned groups ranged from 42 to 49% alignment for emergence and orientation angle measurements, where the control groups range from 12 to 22% for parallel alignment. Despite depths being 15 to 20 nm, cell processes could sense these topographical changes and preferred to align to certain features of the micropatterns like the plateau/channel interface. As a result this initial study in utilizing these new DMD micropatterned coumarin polyester thin films has proven beneficial as an axon guidance platform for future nervous system regenerative strategies.
Collapse
Affiliation(s)
- Aleesha M McCormick
- Chemical and Biomolecular Engineering and ‡Department of Polymer Science, The University of Akron , Akron, Ohio 44325, United States
| | | | | | | | | | | | | |
Collapse
|
47
|
Kilinc D, Blasiak A, O'Mahony JJ, Lee GU. Low piconewton towing of CNS axons against diffusing and surface-bound repellents requires the inhibition of motor protein-associated pathways. Sci Rep 2014; 4:7128. [PMID: 25417891 PMCID: PMC4241520 DOI: 10.1038/srep07128] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2014] [Accepted: 11/03/2014] [Indexed: 12/24/2022] Open
Abstract
Growth cones, dynamic structures at axon tips, integrate chemical and physical stimuli and translate them into coordinated axon behaviour, e.g., elongation or turning. External force application to growth cones directs and enhances axon elongation in vitro; however, direct mechanical stimulation is rarely combined with chemotactic stimulation. We describe a microfluidic device that exposes isolated cortical axons to gradients of diffusing and substrate-bound molecules, and permits the simultaneous application of piconewton (pN) forces to multiple individual growth cones via magnetic tweezers. Axons treated with Y-27632, a RhoA kinase inhibitor, were successfully towed against Semaphorin 3A gradients, which repel untreated axons, with less than 12 pN acting on a small number of neural cell adhesion molecules. Treatment with Y-27632 or monastrol, a kinesin-5 inhibitor, promoted axon towing on substrates coated with chondroitin sulfate proteoglycans, potent axon repellents. Thus, modulating key molecular pathways that regulate contractile stress generation in axons counteracts the effects of repellent molecules and promotes tension-induced growth. The demonstration of parallel towing of axons towards inhibitory environments with minute forces suggests that mechanochemical stimulation may be a promising therapeutic approach for the repair of the damaged central nervous system, where regenerating axons face repellent factors over-expressed in the glial scar.
Collapse
Affiliation(s)
- Devrim Kilinc
- UCD Nanomedicine Centre, School of Chemistry and Chemical Biology, University College Dublin, Belfield, Dublin 4, Ireland
| | - Agata Blasiak
- UCD Nanomedicine Centre, School of Chemistry and Chemical Biology, University College Dublin, Belfield, Dublin 4, Ireland
| | - James J O'Mahony
- UCD Nanomedicine Centre, School of Chemistry and Chemical Biology, University College Dublin, Belfield, Dublin 4, Ireland
| | - Gil U Lee
- UCD Nanomedicine Centre, School of Chemistry and Chemical Biology, University College Dublin, Belfield, Dublin 4, Ireland
| |
Collapse
|
48
|
Cherry JF, Bennett NK, Schachner M, Moghe PV. Engineered N-cadherin and L1 biomimetic substrates concertedly promote neuronal differentiation, neurite extension and neuroprotection of human neural stem cells. Acta Biomater 2014; 10:4113-26. [PMID: 24914828 DOI: 10.1016/j.actbio.2014.06.001] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2014] [Revised: 04/26/2014] [Accepted: 06/01/2014] [Indexed: 02/05/2023]
Abstract
We investigated the design of neurotrophic biomaterial constructs for human neural stem cells, guided by neural developmental cues of N-cadherin and L1 adhesion molecules. Polymer substrates fabricated either as two-dimensional (2-D) films or three-dimensional (3-D) microfibrous scaffolds were functionalized with fusion chimeras of N-cadherin-Fc alone and in combination with L1-Fc, and the effects on differentiation, neurite extension and survival of H9 human-embryonic-stem-cell-derived neural stem cells (H9-NSCs) were quantified. Combinations of N-cadherin and L1-Fc co-operatively enhanced neuronal differentiation profiles, indicating the critical nature of the two complementary developmental cues. Notably, substrates presenting low levels of N-cadherin-Fc concentrations, combined with proportionately higher L1-Fc concentration, most enhanced neurite outgrowth and the degree of MAP2+ and neurofilament-M+ H9-NSCs. Low N-cadherin-Fc alone promoted improved cell survival following oxidative stress, compared to higher concentrations of N-cadherin-Fc alone or combinations with L1-Fc. Pharmacological and antibody blockage studies revealed that substrates presenting low levels of N-cadherin are functionally competent so long as they elicit a threshold signal mediated by homophilic N-cadherin and fibroblast growth factor signaling. Overall, these studies highlight the ability of optimal combinations of N-cadherin and L1 to recapitulate a "neurotrophic" microenvironment that enhances human neural stem cell differentiation and neurite outgrowth. Additionally, 3-D fibrous scaffolds presenting low N-cadherin-Fc further enhanced the survival of H9-NSCs compared to equivalent 2-D films. This indicates that similar biofunctionalization approaches based on N-cadherin and L1 can be translated to 3-D "transplantable" scaffolds with enhanced neurotrophic behaviors. Thus, the insights from this study have fundamental and translational impacts for neural-stem-cell-based regenerative medicine.
Collapse
Affiliation(s)
- Jocie F Cherry
- Department of Biomedical Engineering, Rutgers University, 599 Taylor Road, Piscataway, NJ 08854, USA
| | - Neal K Bennett
- Department of Biomedical Engineering, Rutgers University, 599 Taylor Road, Piscataway, NJ 08854, USA
| | - Melitta Schachner
- W.M. Keck Center for Collaborative Neuroscience, Department of Cell Biology and Neuroscience, Rutgers University, 599 Taylor Road, Piscataway, NJ 08854, USA; Center for Neuroscience, Shantou University Medical College, 22 Xin Ling Road, Shantou 515041, People's Republic of China
| | - Prabhas V Moghe
- Department of Biomedical Engineering, Rutgers University, 599 Taylor Road, Piscataway, NJ 08854, USA; Department of Chemical and Biochemical Engineering, Rutgers University, 599 Taylor Road, Piscataway, NJ 08854, USA.
| |
Collapse
|
49
|
AAVshRNA-mediated suppression of PTEN in adult rats in combination with salmon fibrin administration enables regenerative growth of corticospinal axons and enhances recovery of voluntary motor function after cervical spinal cord injury. J Neurosci 2014; 34:9951-62. [PMID: 25057197 DOI: 10.1523/jneurosci.1996-14.2014] [Citation(s) in RCA: 86] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Abstract
Conditional genetic deletion of phosphatase and tensin homolog (PTEN) in the sensorimotor cortex of neonatal mice enables regeneration of corticospinal tract (CST) axons after spinal cord injury (SCI). The present study addresses three questions: (1) whether PTEN knockdown in adult rats by nongenetic techniques enables CST regeneration, (2) whether interventions to enable CST regeneration enhance recovery of voluntary motor function, and (3) whether delivery of salmon fibrin into the injury site further enhances CST regeneration and motor recovery. Adult rats were trained in a staircase-reaching task and then received either intracortical injections of AAVshPTEN to delete PTEN or a control vector expressing shRNA for luciferase (AAVshLuc). Rats then received cervical dorsal hemisection injuries and salmon fibrin was injected into the injury site in half the rats, yielding four groups (AAVshPTEN, AAVshLuc, AAVshPTEN + fibrin, and AAVshLuc + fibrin). Forepaw function was assessed for 10 weeks after injury and CST axons were traced by injecting biotin-conjugated dextran amine into the sensorimotor cortex. Rats that received AAVshPTEN alone did not exhibit improved motor function, whereas rats that received AAVshPTEN and salmon fibrin had significantly higher forelimb-reaching scores. Tract tracing revealed that CST axons extended farther caudally in the group that received AAVshPTEN and salmon fibrin versus other groups. There were no significant differences in lesion size between the groups. Together, these data suggest that the combination of PTEN deletion and salmon fibrin injection into the lesion can significantly improve voluntary motor function after SCI by enabling regenerative growth of CST axons.
Collapse
|
50
|
Carriers in cell-based therapies for neurological disorders. Int J Mol Sci 2014; 15:10669-723. [PMID: 24933636 PMCID: PMC4100175 DOI: 10.3390/ijms150610669] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2014] [Revised: 05/19/2014] [Accepted: 05/30/2014] [Indexed: 02/07/2023] Open
Abstract
There is a pressing need for long-term neuroprotective and neuroregenerative therapies to promote full function recovery of injuries in the human nervous system resulting from trauma, stroke or degenerative diseases. Although cell-based therapies are promising in supporting repair and regeneration, direct introduction to the injury site is plagued by problems such as low transplanted cell survival rate, limited graft integration, immunorejection, and tumor formation. Neural tissue engineering offers an integrative and multifaceted approach to tackle these complex neurological disorders. Synergistic therapeutic effects can be obtained from combining customized biomaterial scaffolds with cell-based therapies. Current scaffold-facilitated cell transplantation strategies aim to achieve structural and functional rescue via offering a three-dimensional permissive and instructive environment for sustainable neuroactive factor production for prolonged periods and/or cell replacement at the target site. In this review, we intend to highlight important considerations in biomaterial selection and to review major biodegradable or non-biodegradable scaffolds used for cell transplantation to the central and peripheral nervous system in preclinical and clinical trials. Expanded knowledge in biomaterial properties and their prolonged interaction with transplanted and host cells have greatly expanded the possibilities for designing suitable carrier systems and the potential of cell therapies in the nervous system.
Collapse
|