1
|
Guida P, Michiels M, Redgrave P, Luque D, Obeso I. An fMRI meta-analysis of the role of the striatum in everyday-life vs laboratory-developed habits. Neurosci Biobehav Rev 2022; 141:104826. [PMID: 35963543 DOI: 10.1016/j.neubiorev.2022.104826] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2022] [Revised: 07/17/2022] [Accepted: 08/09/2022] [Indexed: 11/30/2022]
Abstract
The dorsolateral striatum plays a critical role in the acquisition and expression of stimulus-response habits that are learned in experimental laboratories. Here, we use meta-analytic procedures to contrast the neural circuits activated by laboratory-acquired habits with those activated by stimulus-response behaviours acquired in everyday-life. We confirmed that newly learned habits rely more on the anterior putamen with activation extending into caudate and nucleus accumbens. Motor and associative components of everyday-life habits were identified. We found that motor-dominant stimulus-response associations developed outside the laboratory primarily engaged posterior dorsal putamen, supplementary motor area (SMA) and cerebellum. Importantly, associative components were also represented in the posterior putamen. Thus, common neural representations for both naturalistic and laboratory-based habits were found in the left posterior and right anterior putamen. These findings suggest a partial common striatal substrate for habitual actions that are performed predominantly by stimulus-response associations represented in the posterior striatum. The overlapping neural substrates for laboratory and everyday-life habits supports the use of both methods for the analysis of habitual behaviour.
Collapse
Affiliation(s)
- Pasqualina Guida
- HM CINAC, Centro Integral de Neurociencias AC. Hospital Universitario HM Puerta del Sur, HM Hospitales, Madrid, Spain; CIBERNED, Instituto de Salud Carlos III, Madrid, Spain; Ph.D. Program in Neuroscience, Universidad Autónoma de Madrid Cajal Institute, Madrid 28029, Spain
| | - Mario Michiels
- HM CINAC, Centro Integral de Neurociencias AC. Hospital Universitario HM Puerta del Sur, HM Hospitales, Madrid, Spain; CIBERNED, Instituto de Salud Carlos III, Madrid, Spain; Ph.D. Program in Neuroscience, Universidad Autónoma de Madrid Cajal Institute, Madrid 28029, Spain
| | - Peter Redgrave
- Department of Psychology, University of Sheffield, Sheffield S10 2TN, UK
| | - David Luque
- Departamento de Psicología Básica, Universidad Autónoma de Madrid, Madrid, Spain; Departamento de Psicología Básica, Universidad de Málaga, Madrid, Spain
| | - Ignacio Obeso
- HM CINAC, Centro Integral de Neurociencias AC. Hospital Universitario HM Puerta del Sur, HM Hospitales, Madrid, Spain; CIBERNED, Instituto de Salud Carlos III, Madrid, Spain; Psychobiology department, Complutense University of Madrid, Madrid, Spain.
| |
Collapse
|
2
|
Kliger Amrani A, Zion Golumbic E. Memory-Paced Tapping to Auditory Rhythms: Effects of Rate, Speech, and Motor Engagement. JOURNAL OF SPEECH, LANGUAGE, AND HEARING RESEARCH : JSLHR 2022; 65:923-939. [PMID: 35133867 DOI: 10.1044/2021_jslhr-21-00406] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
PURPOSE Humans have a near-automatic tendency to entrain their motor actions to rhythms in the environment. Entrainment has been hypothesized to play an important role in processing naturalistic stimuli, such as speech and music, which have intrinsically rhythmic properties. Here, we studied two facets of entraining one's rhythmic motor actions to an external stimulus: (a) synchronized finger tapping to auditory rhythmic stimuli and (b) memory-paced reproduction of a previously heard rhythm. METHOD Using modifications of the Synchronization-Continuation tapping paradigm, we studied how these two rhythmic behaviors were affected by different stimulus and task features. We tested synchronization and memory-paced tapping for a broad range of rates, from stimulus onset asynchrony of subsecond to suprasecond, both for strictly isochronous tone sequences and for rhythmic speech stimuli (counting from 1 to 10), which are more ecological yet less isochronous. We also asked what role motor engagement plays in forming a stable internal representation for rhythms and guiding memory-paced tapping. RESULTS AND CONCLUSIONS Our results show that individuals can flexibly synchronize their motor actions to a very broad range of rhythms. However, this flexibility does not extend to memory-paced tapping, which is accurate only in a narrower range of rates, around ~1.5 Hz. This pattern suggests that intrinsic rhythmic defaults in the auditory and/or motor system influence the internal representation of rhythms, in the absence of an external pacemaker. Interestingly, memory-paced tapping for speech rhythms and simple tone sequences shared similar "optimal rates," although with reduced accuracy, suggesting that internal constraints on rhythmic entrainment generalize to more ecological stimuli. Last, we found that actively synchronizing to tones versus passively listening to them led to more accurate memory-paced tapping performance, which emphasizes the importance of action-perception interactions in forming stable entrainment to external rhythms.
Collapse
Affiliation(s)
- Anat Kliger Amrani
- The Leslie and Susan Gonda Multidisciplinary Brain Research Center, Bar-Ilan University, Ramat Gan, Israel
| | - Elana Zion Golumbic
- The Leslie and Susan Gonda Multidisciplinary Brain Research Center, Bar-Ilan University, Ramat Gan, Israel
| |
Collapse
|
3
|
Default mode and dorsal attention network involvement in visually guided motor sequence learning. Cortex 2021; 146:89-105. [PMID: 34844195 DOI: 10.1016/j.cortex.2021.10.006] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2021] [Revised: 08/21/2021] [Accepted: 10/26/2021] [Indexed: 01/08/2023]
Abstract
Motor sequence learning (MSL) paradigms are often used to investigate the neural processes underlying the acquisition of complex motor skills. Behavioral and neuroimaging studies have indicated an early stage in which spatial learning is prominent and a late stage of automatized performance after multiple training periods. Functional magnetic resonance imaging (fMRI) studies yielded both decreased and increased activations of the sensorimotor and association areas. However, task-negative and task-positive intrinsic connectivity networks (ICNs), the default mode (DMN) and dorsal attention (DAN) networks involved in governing attention demands during various task conditions were not specifically addressed in most studies. In the present fMRI study, a visually guided MSL (VMSL) task was used for bringing roles of visuospatial and motor attention into foreground in order to investigate the role of attention-related ICNs in MSL. Seventeen healthy, right-handed participants completed training and test sessions of VMSL during fMRI on the 1st day. Then, after daily training for three consecutive days outside the scanner, they were re-tested during the 5th day's scanning session. When test session after early learning period was compared with training session, activation decrease was observed in the occipito-temporal fusiform cortex, while task-related suppression of DMN was reduced. Reduced deactivation after early learning was correlated with decreased error rates. After late learning stage we observed activation decreases in bilateral superior parietal lobules of task-positive DAN, dorsal precunei, and cerebellum. Reduced activity in left posterior parietal and right cerebellar regions were correlated with gains in speed, error rate, respectively. This dissociation in activity changes of DMN and DAN related areas suggests that DAN shows high contribution during both early and late MSL stages, possibly due to attention requirement for automatization of spatial and temporal aspects of motor sequence. In contrast, spatial learning occurring during early MSL stage was sufficient for releasing DMN resources.
Collapse
|
4
|
Kliger Amrani A, Zion Golumbic E. Spontaneous and stimulus-driven rhythmic behaviors in ADHD adults and controls. Neuropsychologia 2020; 146:107544. [PMID: 32598965 DOI: 10.1016/j.neuropsychologia.2020.107544] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2019] [Revised: 05/27/2020] [Accepted: 06/21/2020] [Indexed: 10/24/2022]
Abstract
Many aspects of human behavior are inherently rhythmic, requiring production of rhythmic motor actions as well as synchronizing to rhythms in the environment. It is well-established that individuals with ADHD exhibit deficits in temporal estimation and timing functions, which may impact their ability to accurately produce and interact with rhythmic stimuli. In the current study we seek to understand the specific aspects of rhythmic behavior that are implicated in ADHD. We specifically ask whether they are attributed to imprecision in the internal generation of rhythms or to reduced acuity in rhythm perception. We also test key predictions of the Preferred Period Hypothesis, which suggests that both perceptual and motor rhythmic behaviors are biased towards a specific personal 'default' tempo. To this end, we tested several aspects of rhythmic behavior and the correspondence between them, including spontaneous motor tempo (SMT), preferred auditory perceptual tempo (PPT) and synchronization-continuations tapping in a broad range of rhythms, from sub-second to supra-second intervals. Moreover, we evaluate the intra-subject consistency of rhythmic preferences, as a means for testing the reality and reliability of personal 'default-rhythms'. We used a modified operational definition for assessing SMT and PPT, instructing participants to tap or calibrate the rhythms most comfortable for them to count along with, to avoid subjective interpretations of the task. Our results shed new light on the specific aspect of rhythmic deficits implicated in ADHD adults. We find that individuals with ADHD are primarily challenged in producing and maintaining isochronous self-generated motor rhythms, during both spontaneous and memory-paced tapping. However, they nonetheless exhibit good flexibility for synchronizing to a broad range of external rhythms, suggesting that auditory-motor entrainment for simple rhythms is preserved in ADHD, and that the presence of an external pacer allows overcoming their inherent difficulty in self-generating isochronous motor rhythms. In addition, both groups showed optimal memory-paced tapping for rhythms near their 'counting-based' SMT and PPT, which were slightly faster in the ADHD group. This is in line with the predictions of the Preferred Period Hypothesis, indicating that at least for this well-defined rhythmic behavior (i.e., counting), individuals tend to prefer similar time-scales in both motor production and perceptual evaluation.
Collapse
|
5
|
Koshimori Y, Strafella AP, Valli M, Sharma V, Cho SS, Houle S, Thaut MH. Motor Synchronization to Rhythmic Auditory Stimulation (RAS) Attenuates Dopaminergic Responses in Ventral Striatum in Young Healthy Adults: [ 11C]-(+)-PHNO PET Study. Front Neurosci 2019; 13:106. [PMID: 30837831 PMCID: PMC6382688 DOI: 10.3389/fnins.2019.00106] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2018] [Accepted: 01/29/2019] [Indexed: 01/04/2023] Open
Abstract
Auditory-motor entrainment using rhythmic auditory stimulation (RAS) has been shown to improve motor control in healthy persons and persons with neurologic motor disorders such as Parkinson's disease and stroke. Neuroimaging studies have shown the modulation of corticostriatal activity in response to RAS. However, the underlying neurochemical mechanisms for auditory-motor entrainment are unknown. The current study aimed to investigate RAS-induced dopamine (DA) responses in basal ganglia (BG) during finger tapping tasks combined with [11C]-(+)-PHNO-PET in eight right-handed young healthy participants. Each participant underwent two PET scans with and without RAS. Binding potential relative to the non-displaceable compartment (BPND) values were derived using the simplified reference tissue method. The task performance was measured using absolute tapping period error and its standard deviation. We found that the presence of RAS significantly improved the task performance compared to the absence of RAS, demonstrated by reductions in the absolute tapping period error (p = 0.007) and its variability (p = 0.006). We also found that (1) the presence of RAS reduced the BG BPND variability (p = 0.013) and (2) the absence of RAS resulted in a greater DA response in the left ventral striatum (VS) compared to the presence of RAS (p = 0.003), These suggest that the absence of external cueing may require more DA response in the left VS associated with more motivational and sustained attentional efforts to perform the task. Additionally, we demonstrated significant age effects on D2/3 R availability in BG: increasing age was associated with reduced D2/3 R availability in the left putamen without RAS (p = 0.026) as well as in the right VS with RAS (p = 0.02). This is the first study to demonstrate the relationships among RAS, DA response/D2/3 R availability, motor responses and age, providing the groundwork for future studies to explore mechanisms for auditory-motor entrainment in healthy elderly and patients with dopamine-based movement disorders.
Collapse
Affiliation(s)
- Yuko Koshimori
- Music and Health Research Collaboratory, Faculty of Music, University of Toronto, Toronto, ON, Canada
- Research Imaging Centre, Campbell Family Mental Health Research Institute, Centre for Addiction and Mental Health, University of Toronto, Toronto, ON, Canada
| | - Antonio P. Strafella
- Research Imaging Centre, Campbell Family Mental Health Research Institute, Centre for Addiction and Mental Health, University of Toronto, Toronto, ON, Canada
- Division of Brain, Imaging and Behaviour – Systems Neuroscience, Krembil Research Institute, University Health Network, University of Toronto, Toronto, ON, Canada
- Morton and Gloria Shulman Movement Disorders Clinic and The Edmond J. Safra Program in Parkinson’s Disease, Neurology Division, Department of Medicine, Toronto Western Hospital, University Health Network, University of Toronto, Toronto, ON, Canada
| | - Mikaeel Valli
- Research Imaging Centre, Campbell Family Mental Health Research Institute, Centre for Addiction and Mental Health, University of Toronto, Toronto, ON, Canada
- Division of Brain, Imaging and Behaviour – Systems Neuroscience, Krembil Research Institute, University Health Network, University of Toronto, Toronto, ON, Canada
| | - Vivek Sharma
- Music and Health Research Collaboratory, Faculty of Music, University of Toronto, Toronto, ON, Canada
- Baycrest Health Sciences, Rotman Research Institute, Toronto, ON, Canada
| | - Sang-soo Cho
- Research Imaging Centre, Campbell Family Mental Health Research Institute, Centre for Addiction and Mental Health, University of Toronto, Toronto, ON, Canada
- Division of Brain, Imaging and Behaviour – Systems Neuroscience, Krembil Research Institute, University Health Network, University of Toronto, Toronto, ON, Canada
| | - Sylvain Houle
- Research Imaging Centre, Campbell Family Mental Health Research Institute, Centre for Addiction and Mental Health, University of Toronto, Toronto, ON, Canada
| | - Michael H. Thaut
- Music and Health Research Collaboratory, Faculty of Music, University of Toronto, Toronto, ON, Canada
- Research Imaging Centre, Campbell Family Mental Health Research Institute, Centre for Addiction and Mental Health, University of Toronto, Toronto, ON, Canada
| |
Collapse
|
6
|
Herold F, Aye N, Hamacher D, Schega L. Towards the Neuromotor Control Processes of Steady-State and Speed-Matched Treadmill and Overground Walking. Brain Topogr 2019; 32:472-476. [PMID: 30680671 DOI: 10.1007/s10548-019-00699-8] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2018] [Accepted: 01/17/2019] [Indexed: 10/27/2022]
Abstract
The neuromotor control of walking relies on a network of subcortical and cortical structures. While kinematic differences between treadmill and overground walking are extensively studied, the neuromotor control processes are still relatively unknown. Hence, this study aims to investigate cortical activation during steady-state treadmill and overground walking using functional near-infrared spectroscopy, inertial measurement units and a heart rate monitor. We observed a higher concentration of oxygenated hemoglobin in prefrontal cortices, premotor cortices and supplementary motor areas during treadmill walking. Therefore, our results suggest that treadmill walking requires higher demands on cortical neuromotor control.
Collapse
Affiliation(s)
- Fabian Herold
- German Center for Neurodegenerative Diseases, Neuroprotection Lab, Leipziger Straße 44, 39120, Magdeburg, Germany
| | - Norman Aye
- Institute III, Department of Sport Science, Otto von Guericke University Magdeburg, Zschokkestraße 32, 39104, Magdeburg, Germany
| | - Dennis Hamacher
- Institute III, Department of Sport Science, Otto von Guericke University Magdeburg, Zschokkestraße 32, 39104, Magdeburg, Germany.
| | - Lutz Schega
- Institute III, Department of Sport Science, Otto von Guericke University Magdeburg, Zschokkestraße 32, 39104, Magdeburg, Germany
| |
Collapse
|
7
|
Toyomura A, Yokosawa K, Shimojo A, Fujii T, Kuriki S. Turning a cylindrical treadmill with feet: An MR-compatible device for assessment of the neural correlates of lower-limb movement. J Neurosci Methods 2018; 307:14-22. [PMID: 29924979 DOI: 10.1016/j.jneumeth.2018.06.006] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2018] [Revised: 05/24/2018] [Accepted: 06/12/2018] [Indexed: 10/28/2022]
Abstract
BACKGROUND Locomotion, which is one of the most basic motor functions, is critical for performing various daily-life activities. Despite its essential function, assessment of brain activity during lower-limb movement is still limited because of the constraints of existing brain imaging methods. NEW METHOD Here, we describe an MR-compatible, cylindrical treadmill device that allows participants to perform stepping movements on an MRI scanner table. The device was constructed from wood and all of the parts were handmade by the authors. RESULTS We confirmed the MR-compatibility of the device by evaluating the temporal signal-to-noise ratio of 64 voxels of a phantom during scanning. Brain activity was measured while twenty participants turned the treadmill with feet in sync with metronome sounds. The rotary speed of the cylinder was encoded by optical fibers. The post/pre-central gyrus and cerebellum showed significant activity during the movements, which was comparable to the activity patterns reported in previous studies. Head movement on the y- and z-axes was influenced more by lower-limb movement than was head movement on the x-axis. Among the 60 runs (3 runs × 20 participants), head movement during two of the runs (3.3%) was excessive due to the lower-limb movement. COMPARISON WITH EXISTING METHODS Compared to MR-compatible devices proposed in the previous studies, the advantage of this device may be simple structure and replicability to realize stepping movement with a supine position. CONCLUSIONS Collectively, our results suggest that the treadmill device is useful for evaluating lower-limb-related neural activity.
Collapse
Affiliation(s)
- Akira Toyomura
- Graduate School of Health Sciences, Gunma University, 3-39-22 Showa-machi, Maebashi, Gunma 371-8514, Japan; Research and Education Center for Brain Science, Hokkaido University, Kita 15, Nishi 7 Kita-ku, Sapporo 060-8638, Japan.
| | - Koichi Yokosawa
- Faculty of Health Sciences, Hokkaido University, Kita 12, Nishi 5 Kita-ku, Sapporo 060-0812, Japan
| | - Atsushi Shimojo
- Department of Pediatrics, Faculty of Medicine and Graduate School of Medicine, Hokkaido University, Kita 15, Nishi 7 Kita-ku, Sapporo 060-8638, Japan
| | - Tetsunoshin Fujii
- Department of Psychology, Graduate School of Letters, Hokkaido University, Kita 10, Nishi 7 Kita-ku, Sapporo 060-0810, Japan
| | - Shinya Kuriki
- Faculty of Health Sciences, Hokkaido University, Kita 12, Nishi 5 Kita-ku, Sapporo 060-0812, Japan
| |
Collapse
|
8
|
Nieuwhof F, Bloem BR, Reelick MF, Aarts E, Maidan I, Mirelman A, Hausdorff JM, Toni I, Helmich RC. Impaired dual tasking in Parkinson’s disease is associated with reduced focusing of cortico-striatal activity. Brain 2017; 140:1384-1398. [DOI: 10.1093/brain/awx042] [Citation(s) in RCA: 65] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2016] [Accepted: 01/14/2017] [Indexed: 12/12/2022] Open
Affiliation(s)
- Freek Nieuwhof
- Donders Institute for Brain, Cognition and Behaviour, Centre for Cognitive Neuroimaging, Radboud University, Nijmegen, The Netherlands
- Radboud university medical center, Departments of Geriatric Medicine, Neurology and Parkinson’s disease Center Nijmegen (ParC), Nijmegen, The Netherlands
| | - Bastiaan R Bloem
- Donders Institute for Brain, Cognition and Behaviour, Centre for Cognitive Neuroimaging, Radboud University, Nijmegen, The Netherlands
- Radboud university medical center, Departments of Geriatric Medicine, Neurology and Parkinson’s disease Center Nijmegen (ParC), Nijmegen, The Netherlands
| | - Miriam F Reelick
- Radboud university medical center, Departments of Geriatric Medicine, Neurology and Parkinson’s disease Center Nijmegen (ParC), Nijmegen, The Netherlands
| | - Esther Aarts
- Donders Institute for Brain, Cognition and Behaviour, Centre for Cognitive Neuroimaging, Radboud University, Nijmegen, The Netherlands
| | - Inbal Maidan
- Center for the study of Movement, Cognition and Mobility, Neurological Institute, Tel Aviv Sourasky Medical Center, Tel Aviv, Israel
| | - Anat Mirelman
- Center for the study of Movement, Cognition and Mobility, Neurological Institute, Tel Aviv Sourasky Medical Center, Tel Aviv, Israel
- Department of Neurology, Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Jeffrey M Hausdorff
- Center for the study of Movement, Cognition and Mobility, Neurological Institute, Tel Aviv Sourasky Medical Center, Tel Aviv, Israel
- Department of Physical Therapy, Sackler Faculty of Medicine, and Sagol School of Neuroscience, Tel Aviv University, Tel Aviv, Israel
| | - Ivan Toni
- Donders Institute for Brain, Cognition and Behaviour, Centre for Cognitive Neuroimaging, Radboud University, Nijmegen, The Netherlands
| | - Rick C Helmich
- Donders Institute for Brain, Cognition and Behaviour, Centre for Cognitive Neuroimaging, Radboud University, Nijmegen, The Netherlands
- Radboud university medical center, Departments of Geriatric Medicine, Neurology and Parkinson’s disease Center Nijmegen (ParC), Nijmegen, The Netherlands
| |
Collapse
|
9
|
Cohen RG, Nutt JG, Horak FB. Recovery from Multiple APAs Delays Gait Initiation in Parkinson's Disease. Front Hum Neurosci 2017; 11:60. [PMID: 28261073 PMCID: PMC5306380 DOI: 10.3389/fnhum.2017.00060] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2016] [Accepted: 01/30/2017] [Indexed: 12/03/2022] Open
Abstract
Background: Freezing of gait in Parkinson’s disease (PD) has been linked with deficits in inhibitory control, but causal mechanisms are not established. Freezing at gait initiation (start hesitation) is often accompanied by multiple anticipatory postural adjustments (APAs). If inhibition deficits contribute to freezing by interfering with ability to inhibit initial weight shifts in the wrong direction, then PD subjects should experience more episodes of multiple APAs than healthy controls (HCs) do. If inhibition deficits contribute to freezing by interfering with ability to release a previously inhibited step following multiple APAs, then step onset following multiple APAs should be delayed more in people with PD than in HCs. Methods: Older adults with PD and HC subjects rapidly initiated stepping in response to a light cue in blocks of simple (SRT) and choice (CRT) conditions. We recorded kinematics and ground reaction forces, and we administered the Stroop task to assess inhibitory control. Results: Multiple APAs were more common in CRT than SRT conditions but were equally common in HC and PD subjects. Step onsets were delayed in both conditions and further delayed in trials with multiple APAs, except for HC subjects in SRT trials. Poor Stroop performance correlated with many multiple APAs, late step onset, and rearward position of center of mass (COM) at cue presentation. Forward motion of the COM during the APA was higher in trials with multiple APAs than in trials with single APAs, especially in CRT trials and in PD subjects without self-reported freezing. Conclusion: Start hesitation is not caused by multiple APAs per se, but may be associated with difficulty recovering from multiple APAs, due to difficulty releasing a previously inhibited step.
Collapse
Affiliation(s)
- Rajal G Cohen
- Department of Psychology and Communication Studies, University of Idaho, Moscow ID, USA
| | - John G Nutt
- Department of Neurology, Oregon Health and Science University, Portland OR, USA
| | - Fay B Horak
- Department of Neurology, Oregon Health and Science University, PortlandOR, USA; Research Department, Veterans Affairs Portland Health Care System, PortlandOR, USA
| |
Collapse
|
10
|
Toyomura A, Yokosawa K, Kuriki S. Fluctuation of Lower Limb Movement in the MRI Bore: Different Contributions of the Cortical and Subcortical Locomotor Regions. ADVANCED BIOMEDICAL ENGINEERING 2017. [DOI: 10.14326/abe.6.15] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022] Open
Affiliation(s)
- Akira Toyomura
- Graduate School of Health Sciences, Gunma University
- Research and Education Center for Brain Science, Hokkaido University
| | - Koichi Yokosawa
- Research and Education Center for Brain Science, Hokkaido University
- Faculty of Health Sciences, Hokkaido University
| | | |
Collapse
|
11
|
Schaefer RS. Auditory rhythmic cueing in movement rehabilitation: findings and possible mechanisms. Philos Trans R Soc Lond B Biol Sci 2015; 369:20130402. [PMID: 25385780 DOI: 10.1098/rstb.2013.0402] [Citation(s) in RCA: 71] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Moving to music is intuitive and spontaneous, and music is widely used to support movement, most commonly during exercise. Auditory cues are increasingly also used in the rehabilitation of disordered movement, by aligning actions to sounds such as a metronome or music. Here, the effect of rhythmic auditory cueing on movement is discussed and representative findings of cued movement rehabilitation are considered for several movement disorders, specifically post-stroke motor impairment, Parkinson's disease and Huntington's disease. There are multiple explanations for the efficacy of cued movement practice. Potentially relevant, non-mutually exclusive mechanisms include the acceleration of learning; qualitatively different motor learning owing to an auditory context; effects of increased temporal skills through rhythmic practices and motivational aspects of musical rhythm. Further considerations of rehabilitation paradigm efficacy focus on specific movement disorders, intervention methods and complexity of the auditory cues. Although clinical interventions using rhythmic auditory cueing do not show consistently positive results, it is argued that internal mechanisms of temporal prediction and tracking are crucial, and further research may inform rehabilitation practice to increase intervention efficacy.
Collapse
Affiliation(s)
- Rebecca S Schaefer
- SAGE Center for the Study of the Mind, University of California, Santa Barbara, CA 93106-9660, USA
| |
Collapse
|
12
|
Effect of an 8-week practice of externally triggered speech on basal ganglia activity of stuttering and fluent speakers. Neuroimage 2015; 109:458-68. [DOI: 10.1016/j.neuroimage.2015.01.024] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2014] [Revised: 11/11/2014] [Accepted: 01/07/2015] [Indexed: 12/13/2022] Open
|
13
|
Jaeger L, Marchal-Crespo L, Wolf P, Riener R, Michels L, Kollias S. Brain activation associated with active and passive lower limb stepping. Front Hum Neurosci 2014; 8:828. [PMID: 25389396 PMCID: PMC4211402 DOI: 10.3389/fnhum.2014.00828] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2014] [Accepted: 09/29/2014] [Indexed: 11/14/2022] Open
Abstract
Reports about standardized and repeatable experimental procedures investigating supraspinal activation in patients with gait disorders are scarce in current neuro-imaging literature. Well-designed and executed tasks are important to gain insight into the effects of gait-rehabilitation on sensorimotor centers of the brain. The present study aims to demonstrate the feasibility of a novel imaging paradigm, combining the magnetic resonance (MR)-compatible stepping robot (MARCOS) with sparse sampling functional magnetic resonance imaging (fMRI) to measure task-related BOLD signal changes and to delineate the supraspinal contribution specific to active and passive stepping. Twenty-four healthy participants underwent fMRI during active and passive, periodic, bilateral, multi-joint, lower limb flexion and extension akin to human gait. Active and passive stepping engaged several cortical and subcortical areas of the sensorimotor network, with higher relative activation of those areas during active movement. Our results indicate that the combination of MARCOS and sparse sampling fMRI is feasible for the detection of lower limb motor related supraspinal activation. Activation of the anterior cingulate and medial frontal areas suggests motor response inhibition during passive movement in healthy participants. Our results are of relevance for understanding the neural mechanisms underlying gait in the healthy.
Collapse
Affiliation(s)
- Lukas Jaeger
- Sensory-Motor Systems Lab, Department of Health Sciences and Technology, Eidgenössische Technische Hochschule Zürich Zürich, Switzerland ; Medical Faculty, University of Zurich Zurich, Switzerland ; Clinic of Neuroradiology, University Hospital of Zurich Zurich, Switzerland
| | - Laura Marchal-Crespo
- Sensory-Motor Systems Lab, Department of Health Sciences and Technology, Eidgenössische Technische Hochschule Zürich Zürich, Switzerland ; Medical Faculty, University of Zurich Zurich, Switzerland
| | - Peter Wolf
- Sensory-Motor Systems Lab, Department of Health Sciences and Technology, Eidgenössische Technische Hochschule Zürich Zürich, Switzerland ; Medical Faculty, University of Zurich Zurich, Switzerland
| | - Robert Riener
- Sensory-Motor Systems Lab, Department of Health Sciences and Technology, Eidgenössische Technische Hochschule Zürich Zürich, Switzerland ; Medical Faculty, University of Zurich Zurich, Switzerland
| | - Lars Michels
- Clinic of Neuroradiology, University Hospital of Zurich Zurich, Switzerland ; Center of MR-Research, University Children's Hospital Zurich, Switzerland
| | - Spyros Kollias
- Clinic of Neuroradiology, University Hospital of Zurich Zurich, Switzerland
| |
Collapse
|
14
|
Schaefer RS, Morcom AM, Roberts N, Overy K. Moving to music: effects of heard and imagined musical cues on movement-related brain activity. Front Hum Neurosci 2014; 8:774. [PMID: 25309407 PMCID: PMC4176038 DOI: 10.3389/fnhum.2014.00774] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2014] [Accepted: 09/11/2014] [Indexed: 11/14/2022] Open
Abstract
Music is commonly used to facilitate or support movement, and increasingly used in movement rehabilitation. Additionally, there is some evidence to suggest that music imagery, which is reported to lead to brain signatures similar to music perception, may also assist movement. However, it is not yet known whether either imagined or musical cueing changes the way in which the motor system of the human brain is activated during simple movements. Here, functional magnetic resonance imaging was used to compare neural activity during wrist flexions performed to either heard or imagined music with self-pacing of the same movement without any cueing. Focusing specifically on the motor network of the brain, analyses were performed within a mask of BA4, BA6, the basal ganglia (putamen, caudate, and pallidum), the motor nuclei of the thalamus, and the whole cerebellum. Results revealed that moving to music compared with self-paced movement resulted in significantly increased activation in left cerebellum VI. Moving to imagined music led to significantly more activation in pre-supplementary motor area (pre-SMA) and right globus pallidus, relative to self-paced movement. When the music and imagery cueing conditions were contrasted directly, movements in the music condition showed significantly more activity in left hemisphere cerebellum VII and right hemisphere and vermis of cerebellum IX, while the imagery condition revealed more significant activity in pre-SMA. These results suggest that cueing movement with actual or imagined music impacts upon engagement of motor network regions during the movement, and suggest that heard and imagined cues can modulate movement in subtly different ways. These results may have implications for the applicability of auditory cueing in movement rehabilitation for different patient populations.
Collapse
Affiliation(s)
- Rebecca S Schaefer
- SAGE Center for the Study of the Mind, University of California , Santa Barbara, CA , USA
| | - Alexa M Morcom
- School of Philosophy, Psychology and Language Sciences, University of Edinburgh , Edinburgh , UK
| | - Neil Roberts
- Clinical Research Imaging Centre (CRIC), Queen's Medical Research Institute, University of Edinburgh , Edinburgh , UK
| | - Katie Overy
- Institute for Music in Human and Social Development, Reid School of Music, Edinburgh College of Art, University of Edinburgh , Edinburgh , UK ; Don Wright Faculty of Music, Department of Music Education, University of Western Ontario , London, ON , Canada
| |
Collapse
|
15
|
Martinez M, Villagra F, Loayza F, Vidorreta M, Arrondo G, Luis E, Diaz J, Echeverria M, Fernandez-Seara MA, Pastor MA. MRI-compatible device for examining brain activation related to stepping. IEEE TRANSACTIONS ON MEDICAL IMAGING 2014; 33:1044-1053. [PMID: 24770910 DOI: 10.1109/tmi.2014.2301493] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/03/2023]
Abstract
Repetitive and alternating lower limb movements are a specific component of human gait. Due to technical challenges, the neural mechanisms underlying such movements have not been previously studied with functional magnetic resonance imaging. In this study, we present a novel treadmill device employed to investigate the kinematics and the brain activation patterns involved in alternating and repetitive movements of the lower limbs. Once inside the scanner, 19 healthy subjects were guided by two visual cues and instructed to perform a motor task which involved repetitive and alternating movements of both lower limbs while selecting their individual comfortable amplitude on the treadmill. The device facilitated the performance of coordinated stepping while registering the concurrent lower-limb displacements, which allowed us to quantify some movement primary kinematic features such as amplitude and frequency. During stepping, significant blood oxygen level dependent signal increases were observed bilaterally in primary and secondary sensorimotor cortex, the supplementary motor area, premotor cortex, prefrontal cortex, superior and inferior parietal lobules, putamen and cerebellum, regions that are known to be involved in lower limb motor control. Brain activations related to individual adjustments during motor performance were identified in a right lateralized network including striatal, extrastriatal, and fronto-parietal areas.
Collapse
|
16
|
Johannsen L, Li KZH, Chechlacz M, Bibi A, Kourtzi Z, Wing AM. Functional neuroimaging of the interference between working memory and the control of periodic ankle movement timing. Neuropsychologia 2013; 51:2142-53. [PMID: 23876923 PMCID: PMC4410789 DOI: 10.1016/j.neuropsychologia.2013.07.009] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2012] [Revised: 07/07/2013] [Accepted: 07/12/2013] [Indexed: 11/15/2022]
Abstract
Background Limited information processing capacity in the brain necessitates task prioritisation and subsequent adaptive behavioural strategies for the dual-task coordination of locomotion with severe concurrent cognitive loading. Commonly observed strategies include prioritisation of gait at the cost of reduced performance in the cognitive task. Alternatively alterations of gait parameters such as gait velocity have been reported presumably to free processing capacity for the benefit of performance in the cognitive task. The aim of this study was to describe the neuroanatomical correlates of adaptive behavioural strategies in cognitive-motor dual-tasking when the competition for information processing capacity is severe and may exceed individuals’ capacity limitations. Methods During an fMRI experiment, 12 young adults performed slow continuous, auditorily paced bilateral anti-phase ankle dorsi-plantarflexion movements as an element of normal gait at .5 Hz in single and dual task modes. The secondary task involved a visual, alphabetic N-back task with presentation rate jittered around .7 Hz. The N-back task, which randomly occurred in 0-back or 2-back form, was modified into a silent counting task to avoid confounding motor responses at the cost of slightly increasing the task′s general coordinative complexity. Participants’ ankle movements were recorded using an optoelectronic motion capture system to derive kinematic parameters representing the stability of the movement timing and synchronization. Participants were instructed to perform both tasks as accurately as possible. Results Increased processing complexity in the dual-task 2-back condition led to significant changes in movement parameters such as the average inter-response interval, the coefficient of variation of absolute asynchrony and the standard deviation of peak angular velocity. A regions-of-interest analysis indicated correlations between these parameters and local activations within the left inferior frontal gyrus (IFG) such that lower IFG activations coincided with performance decrements. Conclusions Dual-task interference effects show that the production of periodically timed ankle movements, taken as modelling elements of the normal gait cycle, draws on higher-level cognitive resources involved in working memory. The interference effect predominantly concerns the timing accuracy of the ankle movements. Reduced activations within regions of the left IFG, and in some respect also within the superior parietal lobule, were identified as one factor affecting the timing of periodic ankle movements resulting in involuntary ‘hastening’ during severe dual-task working memory load. This ‘hastening’ phenomenon may be an expression of re-automated locomotor control when higher-order cognitive processing capacity can no longer be allocated to the movements due to the demands of the cognitive task. The results of our study also propose the left IFG as a target region to improve performance during dual-task walking by techniques for non-invasive brain stimulation. Neural correlates of involuntary ‘hastening’ of movements during cognitive-motor dual-tasking. Role of left inferior frontal gyrus and left superior parietal lobe in the temporal regulation of dual-task bilateral movements. Dissociation between left-hemisphere parietal involvement in external timing of bilateral movements and right hemisphere parietal involvement in interlimb coordination.
Collapse
Affiliation(s)
- Leif Johannsen
- Department of Sport and Health Sciences, Technische Universität München, Munich, Germany; School of Psychology, University of Birmingham, Birmingham, United Kingdom.
| | | | | | | | | | | |
Collapse
|