1
|
Xu M, Wang X, Zhang Y, Ji N, Wang Q, Zhao T, Zhou C, Jia C. Profiling of the Proteins Interacting with Amyloid Beta Peptides in Clinical Samples by PACTS-TPP. JOURNAL OF THE AMERICAN SOCIETY FOR MASS SPECTROMETRY 2024; 35:1310-1319. [PMID: 38780475 DOI: 10.1021/jasms.4c00083] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/25/2024]
Abstract
The accumulation of amyloid beta (Aβ1-42) results in neurotoxicity and is strongly related to neurodegenerative disorders, especially Alzheimer's disease (AD), but the underlying molecular mechanism is still poorly understood. Therefore, there is an urgent need for researchers to discover the proteins that interact with Aβ1-42 to determine the molecular basis. Previously, we developed peptide-ligand-induced changes in the abundance of proTeinS (PACTS)-assisted thermal proteome profiling (TPP) to identify proteins that interact with peptide ligands. In the present study, we applied this technique to analyze clinical samples to identify Aβ1-42-interacting proteins. We detected 115 proteins that interact with Aβ1-42 in human frontal lobe tissue. Pathway enrichment analysis revealed that the differentially expressed proteins were involved mainly in neurodegenerative diseases. Further orthogonal validation revealed that Aβ1-42 interacted with the AD-associated protein mitogen-activated protein kinase 3 (MAPK3), and knockdown of the Aβ1-42 amyloid precursor protein (APP) inhibited the MAPK signaling pathway, suggesting potential functional roles for Aβ1-42 in interacting with MAPK3. Overall, this study demonstrated the application of the PACTS-TPP in clinical samples and provided a valuable data source for research on neurodegenerative diseases.
Collapse
Affiliation(s)
- Mengting Xu
- State Key Laboratory of Medical Proteomics, National Center for Protein Sciences-Beijing, Beijing Proteome Research Center, Beijing Institute of Lifeomics, Beijing, 102206, China
- School of Basic Medical Sciences, Anhui Medical University, Hefei, Anhui 230032, China
| | - Xiankun Wang
- State Key Laboratory of Medical Proteomics, National Center for Protein Sciences-Beijing, Beijing Proteome Research Center, Beijing Institute of Lifeomics, Beijing, 102206, China
| | - Yang Zhang
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, 100070, China
- China National Clinical Research Center for Neurological Diseases, Beijing, 100070, China
| | - Nan Ji
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, 100070, China
- China National Clinical Research Center for Neurological Diseases, Beijing, 100070, China
- Beijing Advanced Innovation Center for Big Data-Based Precision Medicine, Beihang University, Beijing, 100070, China
| | - Qianqian Wang
- State Key Laboratory of Medical Proteomics, National Center for Protein Sciences-Beijing, Beijing Proteome Research Center, Beijing Institute of Lifeomics, Beijing, 102206, China
| | - Ting Zhao
- State Key Laboratory of Medical Proteomics, National Center for Protein Sciences-Beijing, Beijing Proteome Research Center, Beijing Institute of Lifeomics, Beijing, 102206, China
| | - Congli Zhou
- State Key Laboratory of Medical Proteomics, National Center for Protein Sciences-Beijing, Beijing Proteome Research Center, Beijing Institute of Lifeomics, Beijing, 102206, China
| | - Chenxi Jia
- State Key Laboratory of Medical Proteomics, National Center for Protein Sciences-Beijing, Beijing Proteome Research Center, Beijing Institute of Lifeomics, Beijing, 102206, China
| |
Collapse
|
2
|
Fan G, Liu M, Liu J, Huang Y, Mu W. Traditional Chinese medicines treat ischemic stroke and their main bioactive constituents and mechanisms. Phytother Res 2024; 38:411-453. [PMID: 38051175 DOI: 10.1002/ptr.8033] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2023] [Revised: 09/12/2023] [Accepted: 09/24/2023] [Indexed: 12/07/2023]
Abstract
Ischemic stroke (IS) remains one of the leading causes of death and disability in humans. Unfortunately, none of the treatments effectively provide functional benefits to patients with IS, although many do so by targeting different aspects of the ischemic cascade response. The advantages of traditional Chinese medicine (TCM) in preventing and treating IS are obvious in terms of early treatment and global coordination. The efficacy of TCM and its bioactive constituents has been scientifically proven over the past decades. Based on clinical trials, this article provides a review of commonly used TCM patent medicines and herbal decoctions indicated for IS. In addition, this paper also reviews the mechanisms of bioactive constituents in TCM for the treatment of IS in recent years, both domestically and internationally. A comprehensive review of preclinical and clinical studies will hopefully provide new ideas to address the threat of IS.
Collapse
Affiliation(s)
- Genhao Fan
- Tianjin University of Chinese Medicine, Tianjin, China
- Clinical Pharmacology Department, Second Affiliated Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Menglin Liu
- Tianjin University of Chinese Medicine, Tianjin, China
| | - Jia Liu
- Clinical Pharmacology Department, Second Affiliated Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Yuhong Huang
- Clinical Pharmacology Department, Second Affiliated Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Wei Mu
- Clinical Pharmacology Department, Second Affiliated Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin, China
| |
Collapse
|
3
|
Huang S, Lv Y, Wang JZ, Ye MZ, Lu RJ, Chen L, Xie J, Gao F, Zhou XL. Metabolite Profiling of Talatisamine in Heart Tissue After Oral Administration and Analysis of Cardiac Bioactivities. PLANTA MEDICA 2023; 89:674-682. [PMID: 36202094 DOI: 10.1055/a-1956-7542] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/26/2023]
Abstract
The lateral roots of the Aconitum carmichaelii ("Fuzi") have been used for centuries as a cardiotonic in China. The diterpenoid alkaloid talatisamine (TA) is a major bioactive component of Fuzi, but the identity and bioactivities of the TA metabolites have not been examined in detail. In this study, metabolite profiling of TA was performed in rat heart by UPLC-MS following oral administration. Metabolites were identified by comparing protonated molecules, fragmentation patterns, and chromatographic behaviors with those of standard compounds. Metabolites of TA were then prepared and tested for cardiotonic activity on isolated frog hearts. The metabolite cammaconine, a C19 diterpenoid alkaloid with a hydroxyl group at C-18, exhibited substantial cardiotonic activity during frog heart perfusion. To further investigate the structure-cardiac effect relationships, a series of C19-diterpenoid alkaloids with 18-OH were prepared. Eight tested compounds (5: -12: ) demonstrated measurable cardioactivity, of which compound 5: with an N-methyl group and compound 7: with a methoxy at C-16 showed stronger effects on ventricular contraction than the other compounds. Thus, 18-OH is a critical structural feature determining cardiotonic activity, and efficacy is improved by the presence of N-methyl or methoxy at C-16. Preliminary mechanistic studies suggested that the cardiotonic effect of compound 5: is mediated by enhanced cellular calcium influx. Metabolites of TA with these structural features may be useful therapeutics to prevent heart failure.
Collapse
Affiliation(s)
- Shuai Huang
- School of Life Science and Engineering Southwest Jiaotong University, Chengdu, Sichuan, P. R. China
- Yibin Institute of Southwest Jiaotong University, Yibin, Sichuan, P. R. China
| | - Yang Lv
- School of Life Science and Engineering Southwest Jiaotong University, Chengdu, Sichuan, P. R. China
| | - Jian-Zhu Wang
- School of Life Science and Engineering Southwest Jiaotong University, Chengdu, Sichuan, P. R. China
| | - Mei-Zhen Ye
- School of Life Science and Engineering Southwest Jiaotong University, Chengdu, Sichuan, P. R. China
| | - Rui-Jie Lu
- School of Life Science and Engineering Southwest Jiaotong University, Chengdu, Sichuan, P. R. China
| | - Lin Chen
- School of Life Science and Engineering Southwest Jiaotong University, Chengdu, Sichuan, P. R. China
| | - Jiang Xie
- The Affiliated Hospital of Southwest Jiaotong University, The Third People's Hospital of Chengdu, Chengdu, Sichuan, P. R. China
| | - Feng Gao
- School of Life Science and Engineering Southwest Jiaotong University, Chengdu, Sichuan, P. R. China
| | - Xian-Li Zhou
- School of Life Science and Engineering Southwest Jiaotong University, Chengdu, Sichuan, P. R. China
- The Affiliated Hospital of Southwest Jiaotong University, The Third People's Hospital of Chengdu, Chengdu, Sichuan, P. R. China
| |
Collapse
|
4
|
Huang S, Huang H, Xie J, Wang F, Fan S, Yang M, Zheng C, Han L, Zhang D. The latest research progress on the prevention of storage pests by natural products: Species, mechanisms, and sources of inspiration. ARAB J CHEM 2022. [DOI: 10.1016/j.arabjc.2022.104189] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
|
5
|
Zhou X, Yang HB, Luo YY, Xu JB, Liu Y, Gao F, Huang S, Chen L. Two new C18-diterpenoid alkaloids from Aconitum leucostomum Worosch. Chem Biodivers 2022; 19:e202200483. [PMID: 36094326 DOI: 10.1002/cbdv.202200483] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2022] [Accepted: 09/08/2022] [Indexed: 11/10/2022]
Abstract
Two new lappaconitine-type C18-diterpenoid alkaloids, named as leucostosines C (1) and D (2), together with six known compounds (3-8), were isolated from the roots of Aconitum leucostomum Worosch. Their structures were elucidated by various spectroscopic analyses, including IR, HR-ESI-MS, NMR spectra and X-ray experiments. Leucostosine C is the first diterpenoid alkaloid bearing the 7-amino group. The isolated compounds were tested for the acetylcholinesterase (AChE) inhibitory effect and neuroprotective activity, none of them showed significant activities.
Collapse
Affiliation(s)
- Xianli Zhou
- Southwest Jiaotong University, school of life science and engineering, No.111,North Section 1,Erhuan Road, 610031, chengdu, CHINA
| | - Hong-Bo Yang
- Southwest Jiaotong University, School of Life Science and Engineering, No. 111, Section 1, North 2nd Ring Road, chengdu, CHINA
| | - Yan-Yan Luo
- Southwest Jiaotong University, School of Life Science and Engineering, No. 111, Section 1, North 2nd Ring Road, chengdu, CHINA
| | - Jin-Bu Xu
- Southwest Jiaotong University, School of Life Science and Engineering, No. 111, Section 1, North 2nd Ring Road, chengdu, CHINA
| | - Yue Liu
- Southwest Jiaotong University, School of Life Science and Engineering, No. 111, Section 1, North 2nd Ring Road, chengdu, CHINA
| | - Feng Gao
- Southwest Jiaotong University, School of Life Science and Engineering, No. 111, Section 1, North 2nd Ring Road, chengdu, CHINA
| | - Shuai Huang
- Southwest Jiaotong University, School of Life Science and Engineering, No. 111, Section 1, North 2nd Ring Road, chengdu, CHINA
| | - Lin Chen
- Southwest Jiaotong University, School of Life Science and Engineering, No. 111, Section 1, North 2nd Ring Road, chengdu, CHINA
| |
Collapse
|
6
|
Lee J, Bae Y, Kim NJ, Lim S, Kim YM, Kim J, Chin YW. Anti-rheumatic, and analgesic effects by the parent tuberous roots of Aconitum jaluense in adjuvant induced arthritis rats. JOURNAL OF ETHNOPHARMACOLOGY 2022; 289:114518. [PMID: 34637968 DOI: 10.1016/j.jep.2021.114518] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/05/2021] [Revised: 08/06/2021] [Accepted: 08/09/2021] [Indexed: 06/13/2023]
Abstract
AIM OF THE STUDY The aim of this study was to test the anti-rheumatic effects of A. jaluense tubers in acute and chronic arthritis rats, and to assign its ingredients through UHPLC-TOF/MS. MATERIALS AND METHODS Subcutaneous injection of carrageenan for acute arthritis and complete Freund's adjuvant (CFA) for chronic arthritis was carried out in the hind paw of SD rats. The paw volume was measured by a plethysmometer thermal hyperalgesia was tested using a thermal plantar tester, and mechanical hyperalgesia was evaluated by ankle flexion evoked vocalizations. The expression of c-Fos in the brain hippocampus was measured with the avidin-biotin-peroxidase technique. The ingredients were assigned by UHPLC-TOF/MS, chromatography was performed by UHPLC system with DAD detector and BEH C18 column, and spectroscopy was conducted by ESI-MS system. RESULTS AND DISCUSSION The 80% ethanoic extract of A. jaluense tubers showed an acute anti-inflammatory effect by suppressing the edema volume in the hind paw of carrageenan-stimulated rats. In addition, A. jaluense tubers exerted an anti-rheumatic activity by reducing the secondary swelling volume from an immunological reaction in the left hind paw of CFA-induced chronic arthritis rats. Additionally, oral treatment with the 80% ethanoic extract -showed potent analgesic effects in the arthritis rats by recovering the paw withdrawal latency stimulated by the thermal hyperalgesia and by reducing the vocalization scores evoked by ankle flexion on both hind paws. Moreover, its treatment also indicated an anti-psychiatric effect by controlling the c-Fos protein expression of the brain hippocampus in CFA-stimulated arthritis rats. These results suggested that these therapeutic effects were exhibited by less toxic mono-esterified diterpenoid alkaloids (MDAs), and nontoxic non-esterified diterpenoid alkaloids (NDAs). CONCLUSION A. jaluense tubers may act as viable therapeutic or preventive candidates for acute and chronic arthritis, particularly, for immune-inflammatory rheumatoid arthritis to suppress the pain and psychiatric condition.
Collapse
Affiliation(s)
- JiSuk Lee
- College of Pharmacy and Research Institute of Pharmaceutical Sciences, Seoul National University, Seoul, 08826, South Korea.
| | - YoungChul Bae
- Research Group of Pain and Neuroscience, East-West Medical Research Institute, WHO Collaborating Center, Kyung Hee University, Seoul, 02447, South Korea
| | - Nam Jae Kim
- Research Group of Pain and Neuroscience, East-West Medical Research Institute, WHO Collaborating Center, Kyung Hee University, Seoul, 02447, South Korea
| | - Sabina Lim
- Research Group of Pain and Neuroscience, East-West Medical Research Institute, WHO Collaborating Center, Kyung Hee University, Seoul, 02447, South Korea.
| | - Young-Mi Kim
- College of Pharmacy and Research Institute of Pharmaceutical Sciences, Seoul National University, Seoul, 08826, South Korea
| | - Jinwoong Kim
- College of Pharmacy and Research Institute of Pharmaceutical Sciences, Seoul National University, Seoul, 08826, South Korea.
| | - Young-Won Chin
- College of Pharmacy and Research Institute of Pharmaceutical Sciences, Seoul National University, Seoul, 08826, South Korea.
| |
Collapse
|
7
|
Wong A, Fastuca NJ, Mak VW, Kerkovius JK, Stevenson SM, Reisman SE. Total Syntheses of the C 19 Diterpenoid Alkaloids (-)-Talatisamine, (-)-Liljestrandisine, and (-)-Liljestrandinine by a Fragment Coupling Approach. ACS CENTRAL SCIENCE 2021; 7:1311-1316. [PMID: 34471676 PMCID: PMC8393236 DOI: 10.1021/acscentsci.1c00540] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/05/2021] [Indexed: 05/04/2023]
Abstract
The C19 diterpenoid alkaloids (C19 DTAs) are a large family of natural products, many of which modulate the activity of ion channels in vivo and are therefore of interest for the study of neurological and cardiovascular diseases. The complex architectures of these molecules continue to challenge the state-of-the art in chemical synthesis, particularly with respect to efficient assembly of their polcyclic ring systems. Here, we report the total syntheses of (-)-talatisamine, (-)-liljestrandisine, and (-)-liljestrandinine, three aconitine-type C19 DTAs, using a fragment coupling strategy. Key to this approach is a 1,2-addition/semipinacol rearrangement sequence which efficiently joins two complex fragments and sets an all-carbon quaternary center.
Collapse
Affiliation(s)
- Alice
R. Wong
- The Warren and Katharine
Schlinger Laboratory for Chemistry and Chemical Engineering, Division
of Chemistry and Chemical Engineering, California
Institute of Technology, 1200 E. California Boulevard, Pasadena, California 91125, United States
| | - Nicholas J. Fastuca
- The Warren and Katharine
Schlinger Laboratory for Chemistry and Chemical Engineering, Division
of Chemistry and Chemical Engineering, California
Institute of Technology, 1200 E. California Boulevard, Pasadena, California 91125, United States
| | - Victor W. Mak
- The Warren and Katharine
Schlinger Laboratory for Chemistry and Chemical Engineering, Division
of Chemistry and Chemical Engineering, California
Institute of Technology, 1200 E. California Boulevard, Pasadena, California 91125, United States
| | - Jeffrey K. Kerkovius
- The Warren and Katharine
Schlinger Laboratory for Chemistry and Chemical Engineering, Division
of Chemistry and Chemical Engineering, California
Institute of Technology, 1200 E. California Boulevard, Pasadena, California 91125, United States
| | - Susan M. Stevenson
- The Warren and Katharine
Schlinger Laboratory for Chemistry and Chemical Engineering, Division
of Chemistry and Chemical Engineering, California
Institute of Technology, 1200 E. California Boulevard, Pasadena, California 91125, United States
| | - Sarah E. Reisman
- The Warren and Katharine
Schlinger Laboratory for Chemistry and Chemical Engineering, Division
of Chemistry and Chemical Engineering, California
Institute of Technology, 1200 E. California Boulevard, Pasadena, California 91125, United States
| |
Collapse
|
8
|
Wan LX, Zhang JF, Zhen YQ, Zhang L, Li X, Gao F, Zhou XL. Isolation, Structure Elucidation, Semi-Synthesis, and Structural Modification of C 19-Diterpenoid Alkaloids from Aconitum apetalum and Their Neuroprotective Activities. JOURNAL OF NATURAL PRODUCTS 2021; 84:1067-1077. [PMID: 33666437 DOI: 10.1021/acs.jnatprod.0c01111] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Five new aconitine-type C19-diterpenoid alkaloids, apetalrines A-E (1-5), were isolated from Aconitum apetalum. Their structures were determined by analysis of 1D and 2D NMR, IR, and HRESIMS data. Semisynthesis of apetalrine B (2) from its parent compound aconorine was achieved to confirm the structure proposed. Twenty derivatives of 2 (11a-11l, 12a, 12b, 12d, 12e, 12j, 12k, 12m, 12n) were synthesized via a unified approach relying on simple coupling reactions. The evaluation of neuroprotective effects of compounds (1-5, 11b, 11c, 11f-11i, 12a, 12b, 12d, 12e, 12k, 12m, 12n) with low cytotoxicity revealed compound 2 to exhibit good neuroprotective effects in H2O2-treated SH-SY5Y cells at a concentration of 50 μM. A series of studies using flow cytometry, staining, and Western blotting on 2 indicated that its neuroprotective effects may arise from inhibiting cell apoptosis.
Collapse
Affiliation(s)
- Lin-Xi Wan
- School of Life Science and Engineering, Southwest Jiaotong University, Chengdu 610031, People's Republic of China
| | - Ji-Fa Zhang
- School of Life Science and Engineering, Southwest Jiaotong University, Chengdu 610031, People's Republic of China
| | - Yong-Qi Zhen
- School of Life Science and Engineering, Southwest Jiaotong University, Chengdu 610031, People's Republic of China
| | - Lan Zhang
- School of Life Science and Engineering, Southwest Jiaotong University, Chengdu 610031, People's Republic of China
| | - Xiaohuan Li
- School of Life Science and Engineering, Southwest Jiaotong University, Chengdu 610031, People's Republic of China
| | - Feng Gao
- School of Life Science and Engineering, Southwest Jiaotong University, Chengdu 610031, People's Republic of China
| | - Xian-Li Zhou
- School of Life Science and Engineering, Southwest Jiaotong University, Chengdu 610031, People's Republic of China
| |
Collapse
|
9
|
Shimakawa T, Hagiwara K, Inoue M. Total Synthesis of Talatisamine: Exploration of Convergent Synthetic Strategies. BULLETIN OF THE CHEMICAL SOCIETY OF JAPAN 2021. [DOI: 10.1246/bcsj.20200400] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Affiliation(s)
- Tsukasa Shimakawa
- Graduate School of Pharmaceutical Sciences, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
| | - Koichi Hagiwara
- Graduate School of Pharmaceutical Sciences, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
| | - Masayuki Inoue
- Graduate School of Pharmaceutical Sciences, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
| |
Collapse
|
10
|
Jiang GY, Qin LL, Gao F, Huang S, Zhou XL. Fifteen new diterpenoid alkaloids from the roots of Aconitum kirinense Nakai. Fitoterapia 2020; 141:104477. [PMID: 31927015 DOI: 10.1016/j.fitote.2020.104477] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2019] [Revised: 01/08/2020] [Accepted: 01/08/2020] [Indexed: 01/17/2023]
Abstract
Extensive phytochemical investigation from the roots of Aconitum kirinense Nakai led to the identification of fifteen new compounds, including four ranaconitine type C18-diterpenoid alkaloids (kirisines A-D, 1-4), one lappaconitine type C18-diterpenoid alkaloid (kirisine E, 5), seven denudatine type C20-diterpenoid alkaloids (kirisines F-L, 6-12), and three napelline type C20-diterpenoid alkaloids (kirisines M-O, 13-15), together with 25 known ones. Their structures were elucidated by extensive spectroscopic analyses. Among them, compounds 1 and 2 are rare diterpenoid alkaloid with 9,14-methylenedioxy group, and the latter also has a rare chloro-substituent. The diterpenoid alkaloids isolated were C18, C19 and C20-category, which might provide further clues for understanding the chemotaxonomic significance of this plant. The isolated compounds were tested for neuroprotective activity and acetylcholinesterase inhibitory activity. Compounds 7, 18, 30 and 40 which exhibited moderate activity at 80 μM against acetylcholinesterase.
Collapse
Affiliation(s)
- Guang-You Jiang
- Laboratory of Chemistry and Biodiversity, School of Life Science and Engineering, Southwest Jiaotong University, Chengdu 610031, People's Republic of China
| | - Li-Li Qin
- Laboratory of Chemistry and Biodiversity, School of Life Science and Engineering, Southwest Jiaotong University, Chengdu 610031, People's Republic of China
| | - Feng Gao
- Laboratory of Chemistry and Biodiversity, School of Life Science and Engineering, Southwest Jiaotong University, Chengdu 610031, People's Republic of China
| | - Shuai Huang
- Laboratory of Chemistry and Biodiversity, School of Life Science and Engineering, Southwest Jiaotong University, Chengdu 610031, People's Republic of China
| | - Xian-Li Zhou
- Laboratory of Chemistry and Biodiversity, School of Life Science and Engineering, Southwest Jiaotong University, Chengdu 610031, People's Republic of China.
| |
Collapse
|
11
|
Kamakura D, Todoroki H, Urabe D, Hagiwara K, Inoue M. Total Synthesis of Talatisamine. Angew Chem Int Ed Engl 2019. [DOI: 10.1002/ange.201912737] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Affiliation(s)
- Daiki Kamakura
- Graduate School of Pharmaceutical Sciences The University of Tokyo 7-3-1 Hongo Bunkyo-ku Tokyo 113-0033 Japan
| | - Hidenori Todoroki
- Graduate School of Pharmaceutical Sciences The University of Tokyo 7-3-1 Hongo Bunkyo-ku Tokyo 113-0033 Japan
| | - Daisuke Urabe
- Faculty of Engineering Toyama Prefectural University 5180 Kurokawa, Imizu-shi Toyama 939-0398 Japan
| | - Koichi Hagiwara
- Graduate School of Pharmaceutical Sciences The University of Tokyo 7-3-1 Hongo Bunkyo-ku Tokyo 113-0033 Japan
| | - Masayuki Inoue
- Graduate School of Pharmaceutical Sciences The University of Tokyo 7-3-1 Hongo Bunkyo-ku Tokyo 113-0033 Japan
| |
Collapse
|
12
|
Kamakura D, Todoroki H, Urabe D, Hagiwara K, Inoue M. Total Synthesis of Talatisamine. Angew Chem Int Ed Engl 2019; 59:479-486. [PMID: 31677324 DOI: 10.1002/anie.201912737] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2019] [Indexed: 12/15/2022]
Abstract
Talatisamine (1) is a member of the C19 -diterpenoid alkaloid family, and exhibits K+ channel inhibitory and antiarrhythmic activities. The formidable synthetic challenge that 1 presents is due to its highly oxidized and intricately fused hexacyclic 6/7/5/6/6/5-membered-ring structure (ABCDEF-ring) with 12 contiguous stereocenters. Here we report an efficient synthetic route to 1 by the assembly of two structurally simple fragments, chiral 6/6-membered AE-ring 7 and aromatic 6-membered D-ring 6. AE-ring 7 was constructed from 2-cyclohexenone (8) through fusing an N-ethylpiperidine ring by a double Mannich reaction. After coupling 6 with 7, an oxidative dearomatization/Diels-Alder reaction sequence generated fused pentacycle 4 b. The newly formed 6/6-membered ring system was then stereospecifically reorganized into the 7/5-membered BC-ring of 3 via a Wagner-Meerwein rearrangement. Finally, Hg(OAc)2 induced an oxidative aza-Prins cyclization of 2, thereby forging the remaining 5-membered F-ring. The total synthesis of 1 was thus accomplished by optimizing and orchestrating 33 transformations from 8.
Collapse
Affiliation(s)
- Daiki Kamakura
- Graduate School of Pharmaceutical Sciences, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-0033, Japan
| | - Hidenori Todoroki
- Graduate School of Pharmaceutical Sciences, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-0033, Japan
| | - Daisuke Urabe
- Faculty of Engineering, Toyama Prefectural University, 5180 Kurokawa, Imizu-shi, Toyama, 939-0398, Japan
| | - Koichi Hagiwara
- Graduate School of Pharmaceutical Sciences, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-0033, Japan
| | - Masayuki Inoue
- Graduate School of Pharmaceutical Sciences, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-0033, Japan
| |
Collapse
|
13
|
Chen M, Chen Y, Wang X, Zhou Y. Quantitative determination of talatisamine and its pharmacokinetics and bioavailability in mouse plasma by UPLC-MS/MS. J Chromatogr B Analyt Technol Biomed Life Sci 2019; 1124:180-187. [PMID: 31207562 DOI: 10.1016/j.jchromb.2019.06.015] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2019] [Revised: 05/17/2019] [Accepted: 06/07/2019] [Indexed: 11/17/2022]
Abstract
Talatisamine, as the efficacy ingredient of Aconitum, was known as a novel specific blocker for the delayed rectifier K+ channels in rat hippocampal neurons. In this study, a rapid, selective and reproducible UPLC-MS/MS separation method was established and fully validated for the quantitative determination of talatisamine levels in ICR (Institute of Cancer Research) mouse blood. A total of 24 healthy male ICR mice were divided into four groups that was administered talatisamine via intravenous at a dose of 1 mg/kg and oral administration of three doses (2, 4, 8 mg/kg). All blood samples were protein precipitate by using acetonitrile with an internal standard (IS) deltaline. The effective chromatographic separation was carried out through an UPLC BEH C18 analytical column (2.1 mm × 50 mm, 1.7 μm) with an initial mobile phase that consisted of acetonitrile and 10 mmol/L ammonium acetate aqueous solution (containing 0.1% formic acid) with a gradient elution pumped at a flow rate of 0.4 mL/min. Also, an electrospray ionization (ESI) was applied to quantify the talatisamine in the positive ions mode. The method validation demonstrated good linearity over the range of 1-1000 ng/mL (r2 ≥ 0.9993) for talatisamine in mouse blood with a lower limit of quantification (LLOQ) at 1 ng/mL. The accuracy values of the method were within 89.4% to 113.3%, and the matrix effects were between 103.2% and 106.3%. The mean extraction recoveries for talatisamine obtained from four concentrations of QC blood samples were exceeded 71.7%, and the relative standard deviation (RSD) both of intra- and inter-day precision values for replicate quality control samples did not exceed 15% respectively for all analytes during the assay validation. This method was successfully applied to the evaluation of the pharmacokinetic of talatisamine, regardless of intragastric or intravenous administration in mice. Based on the pharmacokinetics data, the bioavailability of talatisamine in mice was >65.0% after oral administration, exhibiting an excellent oral absorption.
Collapse
Affiliation(s)
- Mengchun Chen
- The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou 325027, Zhejiang, China
| | - Yijie Chen
- The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou 325027, Zhejiang, China
| | - Xianqin Wang
- Analytical and Testing Centre, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou 325035, China.
| | - Yunfang Zhou
- The Laboratory of Clinical Pharmacy, The People's Hospital of Lishui, Lishui 323000, China.
| |
Collapse
|
14
|
Yan W, Zhang M, Yu Y, Yi X, Guo T, Hu H, Sun Q, Chen M, Xiong H, Chen L. Blockade of voltage-gated potassium channels ameliorates diabetes-associated cognitive dysfunction in vivo and in vitro. Exp Neurol 2019; 320:112988. [PMID: 31254519 DOI: 10.1016/j.expneurol.2019.112988] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2018] [Revised: 03/29/2019] [Accepted: 06/25/2019] [Indexed: 12/12/2022]
Abstract
The voltage-gated potassium (Kv) channel blockers tetraethylammonium (TEA) and 4-aminopyridine (4-AP) have shown beneficial effects on some neurological disorders. But their involvements in diabetes-associated cognitive dysfunction are still unknown. The present study aims to investigate whether the blockade of Kv channels by TEA and 4-AP alleviate cognitive decline in diabetes. In vivo, the effects of TEA and 4-AP (5 mg/kg body weight per day, 1 mg/kg body weight per day intraperitoneal injected for 4 weeks, respectively) were investigated in streptozotocin-induced C57BL/6 diabetic mice. In vitro study, we investigated the effects of TEA and 4-AP on the high glucose (HG) -stimulated primary cortical neurons. The results showed that TEA and 4-AP ameliorated the cognitive decline of diabetic mice in the Morris water maze test, improved the ultrastructure of pancreatic β cells, hippocampal neurons and synapses, decreased oxidative stress, modulated apoptosis-related proteins, and activated phosphatidylinositol 3-kinase (PI3K)/ Protein kinase-B (PKB or Akt) signaling pathway. In the HG-stimulated primary cultured cortical neurons, TEA and 4-AP increased the cell viability, decreased oxidative stress; prevented apoptosis and activated PI3K/Akt signaling pathway. Additionally, the PI3K inhibitor LY294002 partially abolished the effects of TEA and 4-AP. These findings indicate that the blockade of Kv channels by TEA and 4-AP ameliorates the diabetes-associated cognitive dysfunction via PI3K/Akt pathway, suggesting that targeting Kv channels could be a promising strategy for the treatments of cognitive impairments in diabetes.
Collapse
Affiliation(s)
- Wenhui Yan
- Department of Pharmacology, School of Basic Medical Sciences, Xi'an Jiaotong University Health Science Center, Xi'an 710061, Shaanxi, China
| | - Meng Zhang
- Department of Pharmacology, School of Basic Medical Sciences, Xi'an Jiaotong University Health Science Center, Xi'an 710061, Shaanxi, China
| | - Ye Yu
- Department of Pharmacology, School of Basic Medical Sciences, Xi'an Jiaotong University Health Science Center, Xi'an 710061, Shaanxi, China
| | - Xinyao Yi
- Department of Pharmacology, School of Basic Medical Sciences, Xi'an Jiaotong University Health Science Center, Xi'an 710061, Shaanxi, China
| | - Tingli Guo
- Department of Pharmacology, School of Basic Medical Sciences, Xi'an Jiaotong University Health Science Center, Xi'an 710061, Shaanxi, China
| | - Hao Hu
- Department of Pharmacology, School of Basic Medical Sciences, Xi'an Jiaotong University Health Science Center, Xi'an 710061, Shaanxi, China
| | - Qiang Sun
- Department of Pharmacology, School of Basic Medical Sciences, Xi'an Jiaotong University Health Science Center, Xi'an 710061, Shaanxi, China
| | - Mingxia Chen
- Electron Microscopy Room, Xi'an Jiaotong University Health Science Center, Xi'an 710061, Shaanxi, China
| | - Huangui Xiong
- Neurophysiology Laboratory, Department of Pharmacology and Experimental Neuroscience, University of Nebraska Medical Center, Omaha, NE 68198-5880, USA.
| | - Lina Chen
- Department of Pharmacology, School of Basic Medical Sciences, Xi'an Jiaotong University Health Science Center, Xi'an 710061, Shaanxi, China; Key Laboratory of Environment and Genes Related to Diseases (Xi'an Jiaotong University), Ministry of Education, Xi'an 710061, Shaanxi, China.
| |
Collapse
|
15
|
Tamagno E, Guglielmotto M, Monteleone D, Manassero G, Vasciaveo V, Tabaton M. The Unexpected Role of Aβ1-42 Monomers in the Pathogenesis of Alzheimer's Disease. J Alzheimers Dis 2018; 62:1241-1245. [PMID: 29103036 PMCID: PMC5870015 DOI: 10.3233/jad-170581] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
Amyloid-β (Aβ) has been proposed as a biomarker and a drug target for the therapy of Alzheimer's disease (AD). The neurotoxic entity and relevance of each conformational form of Aβ to AD pathology is still under debate; Aβ oligomers are considered the major killer form of the peptide whereas monomers have been proposed to be involved in physiological process. Here we reviewed some different effects mediated by monomers and oligomers on mechanisms involved in AD pathogenesis such as autophagy and tau aggregation. Data reported in this review demonstrate that Aβ monomers could have a major role in sustaining the pathogenesis of AD and that AD therapy should be focused not only in the removal of oligomers but also of monomers.
Collapse
Affiliation(s)
- Elena Tamagno
- Department of Neuroscience, University of Torino, Torino, Italy,Neuroscience Institute of Cavalieri Ottolenghi Foundation (NICO), University of Torino, Torino, Italy
| | - Michela Guglielmotto
- Department of Neuroscience, University of Torino, Torino, Italy,Neuroscience Institute of Cavalieri Ottolenghi Foundation (NICO), University of Torino, Torino, Italy
| | - Debora Monteleone
- Department of Neuroscience, University of Torino, Torino, Italy,Neuroscience Institute of Cavalieri Ottolenghi Foundation (NICO), University of Torino, Torino, Italy
| | - Giusi Manassero
- Department of Neuroscience, University of Torino, Torino, Italy,Neuroscience Institute of Cavalieri Ottolenghi Foundation (NICO), University of Torino, Torino, Italy
| | - Valeria Vasciaveo
- Department of Neuroscience, University of Torino, Torino, Italy,Neuroscience Institute of Cavalieri Ottolenghi Foundation (NICO), University of Torino, Torino, Italy
| | - Massimo Tabaton
- Department of Internal Medicine and Medical Specialties (DIMI), Unit of Geriatric Medicine, University of Genova, Genova, Italy,Correspondence to: Dr. Massimo Tabaton, Department of Internal Medicine and Medical Specialities (DIMI) Viale Benedetto XV, 6,16132, Genova, Italy. Tel./Fax: +390103537064; E-mail:
| |
Collapse
|
16
|
Establishment of one-step approach to detoxification of hypertoxic aconite based on the evaluation of alkaloids contents and quality. Chin J Nat Med 2017; 15:49-61. [PMID: 28259253 DOI: 10.1016/s1875-5364(17)30008-0] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2016] [Indexed: 02/07/2023]
Abstract
Aconite is a valuable drug and also a toxic material, which can be used only after detoxification processing. Although traditional processing methods can achieve detoxification effect as desired, there are some obvious drawbacks, including a significant loss of alkaloids and poor quality consistency. It is thus necessary to develop a new detoxification approach. In the present study, we designed a novel one-step detoxification approach by quickly drying fresh-cut aconite particles. In order to evaluate the technical advantages, the contents of mesaconitine, aconitine, hypaconitine, benzoylmesaconine, benzoylaconine, benzoylhypaconine, neoline, fuziline, songorine, and talatisamine were determined using HPLC and UHPLC/Q-TOF-MS. Multivariate analysis methods, such as Clustering analysis and Principle component analysis, were applied to determine the quality differences between samples. Our results showed that traditional processes could reduce toxicity as desired, but also led to more than 85.2% alkaloids loss. However, our novel one-step method was capable of achieving virtually the same detoxification effect, with only an approximately 30% alkaloids loss. Cluster analysis and Principal component analysis analyses suggested that Shengfupian and the novel products were significantly different from various traditional products. Acute toxicity testing showed that the novel products achieved a good detoxification effect, with its maximum tolerated dose being equivalent to 20 times of adult dosage. And cardiac effect testing also showed that the activity of the novel products was stronger than that of traditional products. Moreover, particles specification greatly improved the quality consistency of the novel products, which was immensely superior to the traditional products. These results would help guide the rational optimization of aconite processing technologies, providing better drugs for clinical treatment.
Collapse
|
17
|
Zhang DK, Han X, Li RY, Niu M, Dong Q, Yang M, Wang JB, Xiao XH. Investigation of the chemical markers for experiential quality evaluation of crude aconite by UHPLC-Q-TOF-MS. J Sep Sci 2016; 39:4281-4289. [DOI: 10.1002/jssc.201600567] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2016] [Revised: 09/04/2016] [Accepted: 09/06/2016] [Indexed: 01/22/2023]
Affiliation(s)
- Ding-kun Zhang
- China Military Institute of Chinese Medicine; Beijing PR China
- Chengdu University of Traditional Chinese Medicine; Chengdu PR China
| | - Xue Han
- China Military Institute of Chinese Medicine; Beijing PR China
- Chengdu University of Traditional Chinese Medicine; Chengdu PR China
| | - Rui-yu Li
- China Military Institute of Chinese Medicine; Beijing PR China
- Chengdu University of Traditional Chinese Medicine; Chengdu PR China
| | - Ming Niu
- China Military Institute of Chinese Medicine; Beijing PR China
| | - Qin Dong
- China Military Institute of Chinese Medicine; Beijing PR China
- Chengdu University of Traditional Chinese Medicine; Chengdu PR China
| | - Ming Yang
- Jiangxi University of Traditional Chinese Medicine; Nanchang PR China
| | - Jia-bo Wang
- China Military Institute of Chinese Medicine; Beijing PR China
- State Key Laboratory Breeding Base of Systematic Research; Development and Utilization of Chinese Medicine Resources; Chengdu PR China
| | | |
Collapse
|
18
|
Tabuchi T, Urabe D, Inoue M. Construction of the Fused Pentacycle of Talatisamine via a Combination of Radical and Cationic Cyclizations. J Org Chem 2016; 81:10204-10213. [DOI: 10.1021/acs.joc.6b01011] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Affiliation(s)
- Toshiki Tabuchi
- Graduate School of Pharmaceutical
Sciences, The University of Tokyo 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
| | - Daisuke Urabe
- Graduate School of Pharmaceutical
Sciences, The University of Tokyo 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
| | - Masayuki Inoue
- Graduate School of Pharmaceutical
Sciences, The University of Tokyo 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
| |
Collapse
|
19
|
Haghdoost-Yazdi H, Piri H, Faraji A, Fraidouni N, Dargahi T, Mahmudi M, Alipour Heidari M. Pretreatment with potassium channel blockers of 4-aminopyridine and tetraethylammonium attenuates behavioural symptoms of Parkinsonism induced by intrastriatal injection of 6-hydroxydopamine; the role of lipid peroxidation. Neurol Res 2016; 38:294-300. [DOI: 10.1080/01616412.2015.1114290] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
20
|
Tang H, Chen QF, Liu XY, Zhang H, Chen DL, Wang FP. Novel analogues of diterpenoid alkaloids from ring distortion of talatisamine, a potassium ion channel blocker. Tetrahedron 2016. [DOI: 10.1016/j.tet.2016.01.030] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|
21
|
Chen X, Cao Y, Zhang H, Zhu Z, Liu M, Liu H, Ding X, Hong Z, Li W, Lv D, Wang L, Zhuo X, Zhang J, Xie XQ, Chai Y. Comparative normal/failing rat myocardium cell membrane chromatographic analysis system for screening specific components that counteract doxorubicin-induced heart failure from Acontium carmichaeli. Anal Chem 2014; 86:4748-57. [PMID: 24731167 PMCID: PMC4033634 DOI: 10.1021/ac500287e] [Citation(s) in RCA: 82] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
![]()
Cell membrane chromatography (CMC)
derived from pathological tissues
is ideal for screening specific components acting on specific diseases
from complex medicines owing to the maximum simulation of in vivo drug-receptor interactions. However, there are no
pathological tissue-derived CMC models that have ever been developed,
as well as no visualized affinity comparison of potential active components
between normal and pathological CMC columns. In this study, a novel
comparative normal/failing rat myocardium CMC analysis system based
on online column selection and comprehensive two-dimensional (2D)
chromatography/monolithic column/time-of-flight mass spectrometry
was developed for parallel comparison of the chromatographic behaviors
on both normal and pathological CMC columns, as well as rapid screening
of the specific therapeutic agents that counteract doxorubicin (DOX)-induced
heart failure from Acontium carmichaeli (Fuzi). In
total, 16 potential active alkaloid components with similar structures
in Fuzi were retained on both normal and failing myocardium CMC models.
Most of them had obvious decreases of affinities on failing myocardium
CMC compared with normal CMC model except for four components, talatizamine
(TALA), 14-acetyl-TALA, hetisine, and 14-benzoylneoline. One compound
TALA with the highest affinity was isolated for further in
vitro pharmacodynamic validation and target identification
to validate the screen results. Voltage-dependent K+ channel
was confirmed as a binding target of TALA and 14-acetyl-TALA with
high affinities. The online high throughput comparative CMC analysis
method is suitable for screening specific active components from herbal
medicines by increasing the specificity of screened results and can
also be applied to other biological chromatography models.
Collapse
Affiliation(s)
- Xiaofei Chen
- Department of Pharmaceutical Analysis, School of Pharmacy, Second Military Medical University , No. 325 Guohe Road, Shanghai 200433, PR China
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|