1
|
Haugland KG, Olberg A, Lande A, Kjelstrup KB, Brun VH. Hippocampal growth hormone modulates relational memory and the dendritic spine density in CA1. ACTA ACUST UNITED AC 2020; 27:33-44. [PMID: 31949035 PMCID: PMC6970428 DOI: 10.1101/lm.050229.119] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2019] [Accepted: 10/29/2019] [Indexed: 11/24/2022]
Abstract
Growth hormone (GH) deficiency is associated with cognitive decline which occur both in normal aging and in endocrine disorders. Several brain areas express receptors for GH although their functional role is unclear. To determine how GH affects the capacity for learning and memory by specific actions in one of the key areas, the hippocampus, we injected recombinant adeno-associated viruses (rAAVs) in male rats to express green fluorescent protein (GFP) combined with either GH, antagonizing GH (aGH), or no hormone, in the dorsal CA1. We found that aGH disrupted memory in the Morris water maze task, and that aGH treated animals needed more training to relearn a novel goal location. In a one-trial spontaneous location recognition test, the GH treated rats had better memory performance for object locations than the two other groups. Histological examinations revealed that GH increased the dendritic spine density on apical dendrites of CA1, while aGH reduced the spine density. GH increased the relative amount of immature spines, while aGH decreased the same amount. Our results imply that GH is a neuromodulator with strong influence over hippocampal plasticity and relational memory by mechanisms involving modulation of dendritic spines. The findings are significant to the increasing aging population and GH deficiency patients.
Collapse
Affiliation(s)
- Kamilla G Haugland
- Department of Clinical Medicine, University in Tromsø-The Arctic University of Norway, 9019 Tromsø, Norway
| | - Anniken Olberg
- Department of Clinical Medicine, University in Tromsø-The Arctic University of Norway, 9019 Tromsø, Norway
| | - Andreas Lande
- Department of Clinical Medicine, University in Tromsø-The Arctic University of Norway, 9019 Tromsø, Norway
| | - Kirsten B Kjelstrup
- Department of Clinical Medicine, University in Tromsø-The Arctic University of Norway, 9019 Tromsø, Norway.,University Hospital of North Norway, 9019 Tromsø, Norway
| | - Vegard H Brun
- Department of Clinical Medicine, University in Tromsø-The Arctic University of Norway, 9019 Tromsø, Norway.,University Hospital of North Norway, 9019 Tromsø, Norway
| |
Collapse
|
2
|
Brolin E, Zelleroth S, Jonsson A, Hallberg M, Grönbladh A, Nyberg F. Chronic administration of morphine using mini-osmotic pumps affects spatial memory in the male rat. Pharmacol Biochem Behav 2018; 167:1-8. [DOI: 10.1016/j.pbb.2018.01.007] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/28/2017] [Revised: 12/19/2017] [Accepted: 01/31/2018] [Indexed: 11/30/2022]
|
3
|
Zhang F, Li J, Na S, Wu J, Yang Z, Xie X, Wan Y, Li K, Yue J. The Involvement of PPARs in the Selective Regulation of Brain CYP2D by Growth Hormone. Neuroscience 2018; 379:115-125. [PMID: 29555426 DOI: 10.1016/j.neuroscience.2018.03.009] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2017] [Revised: 03/06/2018] [Accepted: 03/08/2018] [Indexed: 10/17/2022]
Abstract
Brain CYP2D is responsible for the synthesis of endogenous neurotransmitters such as dopamine and serotonin. This study is to investigate the effects of cerebral CYP2D on mouse behavior and the mechanism whereby growth hormone regulates brain CYP2D. The inhibition of cerebellar CYP2D significantly affected the spatial learning and exploratory behavior of mice. CYP2D expression was lower in the brain in GHR-/- mice than that in WT mice; however, hepatic CYP2D levels were similar. Brain PPARα expression in male GHR-/- mice were markedly higher than those in WT mice, while brain PPARγ levels were decreased or unchanged in different regions. However, both hepatic PPARα and PPARγ in male GHR-/- mice were markedly higher than those in WT mice. Pulsatile GH decreased the PPARα mRNA level and increased the mRNA levels of CYP2D6 and PPARγ in SH-SY5Y cells. A luciferase assay showed that PPARγ activated the CYP2D6 gene promoter while PPARα inhibited its function. Pulsatile GH decreased the binding of PPARα to the CYP2D6 promoter by 40% and promoted the binding of PPARγ to the CYP2D6 promoter by approximately 60%. The male GH secretory pattern altered PPAR expression and the binding of PPARs to the CYP2D promoter, leading to the elevation of brain CYP2D in a tissue-specific manner. Growth hormone may alter the learning and memory functions in patients receiving GH replacement therapy via brain CYP2D.
Collapse
Affiliation(s)
- Furong Zhang
- Department of Pharmacology, Wuhan University School of Basic Medical Sciences, Wuhan 430071, China
| | - Jie Li
- Department of Pharmacology, Wuhan University School of Basic Medical Sciences, Wuhan 430071, China
| | - Shufang Na
- Department of Pharmacology, Wuhan University School of Basic Medical Sciences, Wuhan 430071, China
| | - Juan Wu
- Department of Pharmacology, Wuhan University School of Basic Medical Sciences, Wuhan 430071, China
| | - Zheqiong Yang
- Department of Pharmacology, Wuhan University School of Basic Medical Sciences, Wuhan 430071, China
| | - Xianfei Xie
- Department of Pharmacology, Wuhan University School of Basic Medical Sciences, Wuhan 430071, China
| | - Yu Wan
- Department of Physiology, School of Basic Medical Sciences, Wuhan University, Wuhan 430071, China
| | - Ke Li
- Demonstration Center for Experimental Basic Medicine Education, Wuhan University, Wuhan 430071, China
| | - Jiang Yue
- Department of Pharmacology, Wuhan University School of Basic Medical Sciences, Wuhan 430071, China; Hubei Province Key Laboratory of Allergy and Immunology, Wuhan 430060, China.
| |
Collapse
|
4
|
The mRNA expression of insulin-like growth factor-1 (Igf1) is decreased in the rat frontal cortex following gamma-hydroxybutyrate (GHB) administration. Neurosci Lett 2017; 646:15-20. [PMID: 28249788 DOI: 10.1016/j.neulet.2017.02.053] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2016] [Revised: 02/13/2017] [Accepted: 02/21/2017] [Indexed: 11/21/2022]
Abstract
In recent years, growth hormone (GH), together with its secondary mediators insulin-like growth factor-1 (IGF-1) and insulin-like growth factor-2 (IGF-2), have been highlighted for their beneficial effects in the central nervous system (CNS), in particular as cognitive enhancers. Cognitive processes, such as learning and memory, are known to be impaired in individuals suffering from substance abuse. In the present study, we investigated the effect of gamma-hydroxybuturate (GHB), an illicit drug used for its sedating and euphoric properties, on genes associated with the somatotrophic axis in regions of the brain important for cognitive function. Sprague Dawley rats (n=36) were divided into three groups and administered either saline, GHB 50mg/kg or GHB 300mg/kg orally for seven days. The levels of Ghr, Igf1 and Igf2 gene transcripts were analyzed using qPCR in brain regions involved in cognition and dependence. The levels of IGF-1 in blood plasma were also determined using ELISA. The results demonstrated a significant down-regulation of Igf1 mRNA expression in the frontal cortex in high-dose treated rats. Moreover, a significant correlation between Igf1 and Ghr mRNA expression was found in the hippocampus, the frontal cortex, and the caudate putamen, indicating local regulation of the GH/IGF-1 axis. To summarize, the current study concludes that chronic GHB treatment influences gene expression of Ghr and Igf1 in brain regions involved in cognitive function.
Collapse
|
5
|
Erus G, Battapady H, Zhang T, Lovato J, Miller ME, Williamson JD, Launer LJ, Bryan RN, Davatzikos C. Spatial patterns of structural brain changes in type 2 diabetic patients and their longitudinal progression with intensive control of blood glucose. Diabetes Care 2015; 38:97-104. [PMID: 25336747 PMCID: PMC4274773 DOI: 10.2337/dc14-1196] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/09/2014] [Accepted: 09/22/2014] [Indexed: 02/03/2023]
Abstract
OBJECTIVE Understanding the effect of diabetes as well as of alternative treatment strategies on cerebral structure is critical for the development of targeted interventions against accelerated neurodegeneration in type 2 diabetes. We investigated whether diabetes characteristics were associated with spatially specific patterns of brain changes and whether those patterns were affected by intensive versus standard glycemic treatment. RESEARCH DESIGN AND METHODS Using baseline MRIs of 488 participants with type 2 diabetes from the Action to Control Cardiovascular Risk in Diabetes-Memory in Diabetes (ACCORD-MIND) study, we applied a new voxel-based analysis methodology to identify spatially specific patterns of gray matter and white matter volume loss related to diabetes duration and HbA1c. The longitudinal analysis used 40-month follow-up data to evaluate differences in progression of volume loss between intensive and standard glycemic treatment arms. RESULTS Participants with longer diabetes duration had significantly lower gray matter volumes, primarily in certain regions in the frontal and temporal lobes. The longitudinal analysis of treatment effects revealed a heterogeneous pattern of decelerated loss of gray matter volume associated with intensive glycemic treatment. Intensive treatment decelerated volume loss, particularly in regions adjacent to those cross-sectionally associated with diabetes duration. No significant relationship between low versus high baseline HbA1c levels and brain changes was found. Finally, regions in which cognitive change was associated with longitudinal volume loss had only small overlap with regions related to diabetes duration and to treatment effects. CONCLUSIONS Applying advanced quantitative image pattern analysis methods on longitudinal MRI data of a large sample of patients with type 2 diabetes, we demonstrate that there are spatially specific patterns of brain changes that vary by diabetes characteristics and that the progression of gray matter volume loss is slowed by intensive glycemic treatment, particularly in regions adjacent to areas affected by diabetes.
Collapse
Affiliation(s)
- Guray Erus
- Center for Biomedical Image Computing and Analytics (CBICA) and Department of Radiology, University of Pennsylvania Health System, Philadelphia, PA
| | - Harsha Battapady
- Center for Biomedical Image Computing and Analytics (CBICA) and Department of Radiology, University of Pennsylvania Health System, Philadelphia, PA
| | - Tianhao Zhang
- Center for Biomedical Image Computing and Analytics (CBICA) and Department of Radiology, University of Pennsylvania Health System, Philadelphia, PA
| | - James Lovato
- Department of Biostatistical Sciences, Wake Forest University School of Medicine, Winston-Salem, NC
| | - Michael E Miller
- Department of Biostatistical Sciences, Wake Forest University School of Medicine, Winston-Salem, NC
| | - Jeff D Williamson
- Roena B. Kulynych Center for Memory and Cognition Research, Department of Internal Medicine, Wake Forest Baptist Medical Center, Winston-Salem, NC
| | - Lenore J Launer
- Intramural Research Program, National Institute on Aging, National Institutes of Health, Bethesda, MD
| | - R Nick Bryan
- Center for Biomedical Image Computing and Analytics (CBICA) and Department of Radiology, University of Pennsylvania Health System, Philadelphia, PA
| | - Christos Davatzikos
- Center for Biomedical Image Computing and Analytics (CBICA) and Department of Radiology, University of Pennsylvania Health System, Philadelphia, PA
| |
Collapse
|
6
|
Free radical scavenging activity and neuroprotective potentials of D138, one Cu(II)/Zn(II) Schiff-base complex derived from N,N'-bis(2-hydroxynaphthylmethylidene)-1,3-propanediamine. Neurochem Res 2014; 39:1834-44. [PMID: 25069642 DOI: 10.1007/s11064-014-1392-1] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2014] [Revised: 07/08/2014] [Accepted: 07/16/2014] [Indexed: 10/25/2022]
Abstract
There is increasing evidence that free radicals play an important role in neuronal damages induced by diabetes mellitus or cerebral ischemia insults. Antioxidants with free radical scavenging activities have been shown to be beneficial and neuroprotective for these pathological conditions. Here, we report free radical scavenging activity and neuroprotective potential of D138, one copper(II)/zinc(II) Schiff-base complex derived from N,N'-2(2-hydroxynaphthylmethylidene)-1,3-propanediamine. The data from three in vitro assays, 2,2-diphenyl-1-picrylhydrazyl assay, nitro blue tetrazolium assay and hydroxyl radical scavenging assay, indicated that D138 presented a potent free radical scavenging activity. The neuroprotective and antioxidative effects of D138 were further evaluated in vivo using bilateral common carotid artery occlusion (BCCAO) mouse model and streptozotocin (STZ) diabetic mouse model. Our results indicated that treatment of D138 significantly ameliorated the hippocampal neuronal damage and the oxidative stress levels in these animal models. Moreover, D138 also reversed the behavioral deficiencies induced by BCCAO or STZ, as assessed by Y-maze test and fear conditioning test. In conclusion, all these findings support that D138 exerts free radical scavenging and neuroprotective activities and has the potentials to be a potent therapeutic candidate for brain oxidative damage induced by cerebral ischemia or diabetes mellitus.
Collapse
|
7
|
Alatzoglou KS, Webb EA, Le Tissier P, Dattani MT. Isolated growth hormone deficiency (GHD) in childhood and adolescence: recent advances. Endocr Rev 2014; 35:376-432. [PMID: 24450934 DOI: 10.1210/er.2013-1067] [Citation(s) in RCA: 84] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
The diagnosis of GH deficiency (GHD) in childhood is a multistep process involving clinical history, examination with detailed auxology, biochemical testing, and pituitary imaging, with an increasing contribution from genetics in patients with congenital GHD. Our increasing understanding of the factors involved in the development of somatotropes and the dynamic function of the somatotrope network may explain, at least in part, the development and progression of childhood GHD in different age groups. With respect to the genetic etiology of isolated GHD (IGHD), mutations in known genes such as those encoding GH (GH1), GHRH receptor (GHRHR), or transcription factors involved in pituitary development, are identified in a relatively small percentage of patients suggesting the involvement of other, yet unidentified, factors. Genome-wide association studies point toward an increasing number of genes involved in the control of growth, but their role in the etiology of IGHD remains unknown. Despite the many years of research in the area of GHD, there are still controversies on the etiology, diagnosis, and management of IGHD in children. Recent data suggest that childhood IGHD may have a wider impact on the health and neurodevelopment of children, but it is yet unknown to what extent treatment with recombinant human GH can reverse this effect. Finally, the safety of recombinant human GH is currently the subject of much debate and research, and it is clear that long-term controlled studies are needed to clarify the consequences of childhood IGHD and the long-term safety of its treatment.
Collapse
Affiliation(s)
- Kyriaki S Alatzoglou
- Developmental Endocrinology Research Group (K.S.A., E.A.W., M.T.D.), Clinical and Molecular Genetics Unit, and Birth Defects Research Centre (P.L.T.), UCL Institute of Child Health, London WC1N 1EH, United Kingdom; and Faculty of Life Sciences (P.L.T.), University of Manchester, Manchester M13 9PT, United Kingdom
| | | | | | | |
Collapse
|
8
|
Lee JH, Choi Y, Jun C, Hong YS, Cho HB, Kim JE, Lyoo IK. Neurocognitive changes and their neural correlates in patients with type 2 diabetes mellitus. Endocrinol Metab (Seoul) 2014; 29:112-21. [PMID: 25031883 PMCID: PMC4091490 DOI: 10.3803/enm.2014.29.2.112] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/21/2023] Open
Abstract
As the prevalence and life expectancy of type 2 diabetes mellitus (T2DM) continue to increase, the importance of effective detection and intervention for the complications of T2DM, especially neurocognitive complications including cognitive dysfunction and dementia, is receiving greater attention. T2DM is thought to influence cognitive function through an as yet unclear mechanism that involves multiple factors such as hyperglycemia, hypoglycemia, and vascular disease. Recent developments in neuroimaging methods have led to the identification of potential neural correlates of T2DM-related neurocognitive changes, which extend from structural to functional and metabolite alterations in the brain. The evidence indicates various changes in the T2DM brain, including global and regional atrophy, white matter hyperintensity, altered functional connectivity, and changes in neurometabolite levels. Continued neuroimaging research is expected to further elucidate the underpinnings of cognitive decline in T2DM and allow better diagnosis and treatment of the condition.
Collapse
Affiliation(s)
- Junghyun H Lee
- College of Pharmacy and Graduate School of Pharmaceutical Sciences, Ewha Womans University, Seoul, Korea
- Ewha Brain Institute, Ewha Womans University, Seoul, Korea
| | - Yera Choi
- Ewha Brain Institute, Ewha Womans University, Seoul, Korea
- Interdisciplinary Program in Neuroscience, Seoul National University College of Natural Sciences, Seoul, Korea
| | - Chansoo Jun
- College of Pharmacy and Graduate School of Pharmaceutical Sciences, Ewha Womans University, Seoul, Korea
- Ewha Brain Institute, Ewha Womans University, Seoul, Korea
| | - Young Sun Hong
- Ewha Brain Institute, Ewha Womans University, Seoul, Korea
- Department of Internal Medicine, Ewha Womans University School of Medicine, Seoul, Korea
| | - Han Byul Cho
- Ewha Brain Institute, Ewha Womans University, Seoul, Korea
- Interdisciplinary Program in Neuroscience, Seoul National University College of Natural Sciences, Seoul, Korea
| | - Jieun E Kim
- Ewha Brain Institute, Ewha Womans University, Seoul, Korea
- Department of Brain and Cognitive Sciences, Ewha Womans University Graduate School, Seoul, Korea
| | - In Kyoon Lyoo
- College of Pharmacy and Graduate School of Pharmaceutical Sciences, Ewha Womans University, Seoul, Korea
- Ewha Brain Institute, Ewha Womans University, Seoul, Korea
| |
Collapse
|
9
|
Rosenfeld CS, Ferguson SA. Barnes maze testing strategies with small and large rodent models. J Vis Exp 2014:e51194. [PMID: 24637673 DOI: 10.3791/51194] [Citation(s) in RCA: 88] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
Spatial learning and memory of laboratory rodents is often assessed via navigational ability in mazes, most popular of which are the water and dry-land (Barnes) mazes. Improved performance over sessions or trials is thought to reflect learning and memory of the escape cage/platform location. Considered less stressful than water mazes, the Barnes maze is a relatively simple design of a circular platform top with several holes equally spaced around the perimeter edge. All but one of the holes are false-bottomed or blind-ending, while one leads to an escape cage. Mildly aversive stimuli (e.g. bright overhead lights) provide motivation to locate the escape cage. Latency to locate the escape cage can be measured during the session; however, additional endpoints typically require video recording. From those video recordings, use of automated tracking software can generate a variety of endpoints that are similar to those produced in water mazes (e.g. distance traveled, velocity/speed, time spent in the correct quadrant, time spent moving/resting, and confirmation of latency). Type of search strategy (i.e. random, serial, or direct) can be categorized as well. Barnes maze construction and testing methodologies can differ for small rodents, such as mice, and large rodents, such as rats. For example, while extra-maze cues are effective for rats, smaller wild rodents may require intra-maze cues with a visual barrier around the maze. Appropriate stimuli must be identified which motivate the rodent to locate the escape cage. Both Barnes and water mazes can be time consuming as 4-7 test trials are typically required to detect improved learning and memory performance (e.g. shorter latencies or path lengths to locate the escape platform or cage) and/or differences between experimental groups. Even so, the Barnes maze is a widely employed behavioral assessment measuring spatial navigational abilities and their potential disruption by genetic, neurobehavioral manipulations, or drug/ toxicant exposure.
Collapse
Affiliation(s)
- Cheryl S Rosenfeld
- Biomedical Sciences and Bond Life Sciences Center, University of Missouri;
| | - Sherry A Ferguson
- Division of Neurotoxicology, National Center for Toxicological Research, Food and Drug Administration;
| |
Collapse
|
10
|
Ma L, Wei Q, Deng H, Zhang Q, Li G, Tang N, Xie J, Chen Y. Growth factor receptor-bound protein 10-mediated negative regulation of the insulin-like growth factor-1 receptor-activated signalling pathway results in cognitive disorder in diabetic rats. J Neuroendocrinol 2013; 25:626-34. [PMID: 23614367 DOI: 10.1111/jne.12040] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/04/2012] [Revised: 03/28/2013] [Accepted: 04/20/2013] [Indexed: 11/29/2022]
Abstract
Growth factor receptor-bound protein 10 (Grb10) is a Src homology 2 domain-containing protein and one of the binding partners for several transmembrane tyrosine kinase receptors, including insulin receptor (IR) and insulin-like growth factor-1 receptor (IGF1-R). The hippocampus, which is critical for cognitive functions, is one of the main distribution areas of Grb10 in the central nervous system. In recent years, diabetic encephalopathy has been defined as a third type of diabetes and the IGF1-IR pathway was shown to be critical for the neuropathogenic process of cognitive disorder in diabetes. However, the role of endogenous Grb10 in regulating the IGF1-IR pathway and neurobehavioural changes is not explicit. The present study aimed to determine the in vivo function of endogenous Grb10 in diabetic encephalopathy and the underlying mechanisms. Using stereotaxic surgical techniques and lentiviral vectors expressing specific short hairpin RNA, we could steadily knockdown Grb10 expression in the hippocampus. More importantly, we demonstrated that hippocampus-specific modulation of Grb10 protein levels led to a prominent remission of cognitive disorder, including improvements in both ultrastructural pathology and abnormal neurobehavioural changes. Our findings indicate that endogenous overexpression of Grb10 functions as a suppressor of the IGF1-IR pathway, which may represent an important mechanism for regulating cognitive disorder in diabetes.
Collapse
Affiliation(s)
- L Ma
- Department of Gerontology, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400042, China
| | | | | | | | | | | | | | | |
Collapse
|
11
|
Abstract
Emerging data indicate that growth hormone (GH) therapy could have a role in improving cognitive function. GH replacement therapy in experimental animals and human patients counteracts the dysfunction of many behaviours related to the central nervous system (CNS). Various behaviours, such as cognitive behaviours related to learning and memory, are known to be induced by GH; the hormone might interact with specific receptors located in areas of the CNS that are associated with the functional anatomy of these behaviours. GH is believed to affect excitatory circuits involved in synaptic plasticity, which alters cognitive capacity. GH also has a protective effect on the CNS, as indicated by its beneficial effects in patients with spinal cord injury. Data collected from animal models indicates that GH might also stimulate neurogenesis. This Review discusses the mechanisms underlying the interactions between GH and the CNS, and the data emerging from animal and human studies on the relationship between GH and cognitive function. In this article, particular emphasis is given to the role of GH as a treatment for patients with cognitive impairment resulting from deficiency of the hormone.
Collapse
Affiliation(s)
- Fred Nyberg
- Department of Pharmaceutical Biosciences, Uppsala University, PO Box 591, S-751 24 Uppsala, Sweden
| | | |
Collapse
|
12
|
Grönbladh A, Johansson J, Nöstl A, Nyberg F, Hallberg M. GH improves spatial memory and reverses certain anabolic androgenic steroid-induced effects in intact rats. J Endocrinol 2013; 216:31-41. [PMID: 23092877 DOI: 10.1530/joe-12-0315] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
GH has previously been shown to promote cognitive functions in GH-deficient rodents. In this study we report the effects of GH on learning and memory in intact rats pretreated with the anabolic androgenic steroid nandrolone. Male Wistar rats received nandrolone decanoate (15 mg/kg) or peanut oil every third day for 3 weeks and were subsequently treated with recombinant human GH (1.0 IU/kg) or saline for 10 consecutive days. During the GH/saline treatment spatial learning and memory were tested in the Morris water maze (MWM). Also, plasma levels of IGF1 were assessed and the gene expression of the GH receptors (Ghr), Igf1 and Igf2, in hippocampus and frontal cortex was analyzed. The results demonstrated a significant positive effect of GH on memory functions and increased gene expression of Igf1 in the hippocampus was found in the animals treated with GH. In addition, GH was demonstrated to increase the body weight gain and was able to attenuate the reduced body weight seen in nandrolone-treated animals. In general, the rats treated with nandrolone alone did not exhibit any pronounced alteration in memory compared with controls in the MWM, and in many cases GH did not induce any alteration. Regarding target zone crossings, considered to be associated with spatial memory, the difference between GH- and steroid-treated animals was significant and administration of GH improved this parameter in the latter group. In conclusion, GH improves spatial memory in intact rats and can reverse certain effects induced by anabolic androgenic steroid.
Collapse
Affiliation(s)
- Alfhild Grönbladh
- Division of Biological Research on Drug Dependence, Department of Pharmaceutical Biosciences, Uppsala University, PO Box 591, S-751 24 Uppsala, Sweden
| | | | | | | | | |
Collapse
|
13
|
Aksu I, Ates M, Baykara B, Kiray M, Sisman AR, Buyuk E, Baykara B, Cetinkaya C, Gumus H, Uysal N. Anxiety correlates to decreased blood and prefrontal cortex IGF-1 levels in streptozotocin induced diabetes. Neurosci Lett 2012; 531:176-81. [PMID: 23123774 DOI: 10.1016/j.neulet.2012.10.045] [Citation(s) in RCA: 53] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2012] [Revised: 10/12/2012] [Accepted: 10/14/2012] [Indexed: 01/03/2023]
Abstract
It is well known that diabetes mellitus may cause neuropsychiatric disorders such as anxiety disorders. Diabetes may also cause reduced IGF-1 (insulin like growth factor-1) levels in brain and blood. The purpose of the present study was to investigate the relationship between diabetes induced anxiety and IGF-1 levels in diabetic rats. The anxiety levels of rats were assessed 2 weeks after intraperitoneal injection of streptozotocin. Diabetic rats had higher levels of anxiety, as they spent more time in closed branches in elevated-plus-maze-test and less time in the center cells of open-field-arena. Prefrontal cortex (PFC) IGF-1 levels and neuron numbers were decreased and apoptosis was increased in diabetic rats. Blood IGF-1 levels decreased in a time dependent fashion following streptozotocin injection while blood corticosterone levels increased. They had higher malondialdehyde levels and lower superoxide dismutase enzyme activity. Oxidative stress may negatively affect blood and PFC tissue IGF-1 levels. Reduction in IGF-1 may cause PFC damage, which may eventually trigger anxiety in diabetic rats. Therapeutic strategies that increase blood and brain tissue IGF-1 levels may be promising to prevent psychiatric sequelae of diabetes mellitus.
Collapse
Affiliation(s)
- Ilkay Aksu
- Dokuz Eylul University, Faculty of Medicine, Department of Physiology, Turkey
| | | | | | | | | | | | | | | | | | | |
Collapse
|
14
|
Enhamre-Brolin E, Carlsson A, Hallberg M, Nyberg F. Growth hormone reverses streptozotocin-induced cognitive impairments in male mice. Behav Brain Res 2012; 238:273-8. [PMID: 23124136 DOI: 10.1016/j.bbr.2012.10.036] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2012] [Accepted: 10/20/2012] [Indexed: 12/31/2022]
Abstract
In recent decades, growth hormone (GH) replacement therapy in human subjects deficient in the hormone has resulted in a number of beneficial effects on cognitive performance. Studies in hypophysectomised rats report similar effects of GH treatment on learning and memory tasks. The purpose of this study was to investigate the ability of GH to reverse learning impairments in mice with streptozotocin (STZ)-induced diabetes. Diabetic and control mice were given recombinant human GH (rhGH) 0.1 IU/kg/day for ten consecutive days. In the latter phase of the treatment the cognitive abilities of the mice were tested using the Barnes maze (BM). A profound hormonal effect was seen when analysing the search patterns used by the animals in the maze. rhGH treatment significantly counteracted the cognitive disabilities expressed as lack of direct search strategies on the last day in the BM. In addition, the number of primary errors made by diabetic mice during the acquisition phase was reduced by rhGH treatment, although the primary escape latency was unchanged in these animals when compared to saline-treated diabetic animals. These results suggest that specific cognitive impairments induced by STZ, i.e. the disabilities seen in strategic behaviour, could be reversed by exogenous hormone treatment. Our findings highlight the influence of GH on brain function and in particular on cognitive behaviour related to learning and memory.
Collapse
Affiliation(s)
- Erika Enhamre-Brolin
- Department of Pharmaceutical Biosciences, Division of Biological Research on Drug Dependence, Uppsala University, Uppsala, Sweden.
| | | | | | | |
Collapse
|