1
|
Zhao SW, Xu X, Wang XY, Yan TC, Cao Y, Yan QH, Chen K, Jin YC, Zhang YH, Yin H, Cui LB. Shaping the Trans-Scale Properties of Schizophrenia via Cerebral Alterations on Magnetic Resonance Imaging and Single-Nucleotide Polymorphisms of Coding and Non-Coding Regions. Front Hum Neurosci 2021; 15:720239. [PMID: 34566604 PMCID: PMC8458928 DOI: 10.3389/fnhum.2021.720239] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2021] [Accepted: 08/05/2021] [Indexed: 11/13/2022] Open
Abstract
Schizophrenia is a complex mental illness with genetic heterogeneity, which is often accompanied by alterations in brain structure and function. The neurobiological mechanism of schizophrenia associated with heredity remains unknown. Recently, the development of trans-scale and multi-omics methods that integrate gene and imaging information sheds new light on the nature of schizophrenia. In this article, we summarized the results of brain structural and functional changes related to the specific single-nucleotide polymorphisms (SNPs) in the past decade, and the SNPs were divided into non-coding regions and coding regions, respectively. It is hoped that the relationship between SNPs and cerebral alterations can be displayed more clearly and intuitively, so as to provide fresh approaches for the discovery of potential biomarkers and the development of clinical accurate individualized treatment decision-making.
Collapse
Affiliation(s)
- Shu-Wan Zhao
- Department of Clinical Psychology, School of Medical Psychology, Fourth Military Medical University, Xi'an, China.,Department of Radiology, Xijing Hospital, Fourth Military Medical University, Xi'an, China
| | - Xian Xu
- Department of Radiology, The Second Medical Center, Chinese PLA General Hospital, Beijing, China
| | - Xian-Yang Wang
- Department of Clinical Psychology, School of Medical Psychology, Fourth Military Medical University, Xi'an, China
| | - Tian-Cai Yan
- Department of Clinical Psychology, School of Medical Psychology, Fourth Military Medical University, Xi'an, China
| | - Yang Cao
- Department of Clinical Psychology, School of Medical Psychology, Fourth Military Medical University, Xi'an, China
| | - Qing-Hong Yan
- Department of Psychiatry, Xijing Hospital, Fourth Military Medical University, Xi'an, China
| | - Kun Chen
- Department of Anatomy and K. K. Leung Brain Research Centre, Fourth Military Medical University, Xi'an, China
| | - Yin-Chuan Jin
- Department of Clinical Psychology, School of Medical Psychology, Fourth Military Medical University, Xi'an, China
| | - Ya-Hong Zhang
- Department of Psychiatry, Xijing Hospital, Fourth Military Medical University, Xi'an, China
| | - Hong Yin
- Department of Radiology, Xijing Hospital, Fourth Military Medical University, Xi'an, China
| | - Long-Biao Cui
- Department of Clinical Psychology, School of Medical Psychology, Fourth Military Medical University, Xi'an, China.,Department of Radiology, The Second Medical Center, Chinese PLA General Hospital, Beijing, China
| |
Collapse
|
2
|
Zhang K, Tang Y, Meng L, Zhu L, Zhou X, Zhao Y, Yan X, Tang B, Guo J. The Effects of SNCA rs894278 on Resting-State Brain Activity in Parkinson's Disease. Front Neurosci 2019; 13:47. [PMID: 30778284 PMCID: PMC6369188 DOI: 10.3389/fnins.2019.00047] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2018] [Accepted: 01/18/2019] [Indexed: 12/21/2022] Open
Abstract
The pathogenesis of Parkinson's disease (PD) is not well established. The rs894278 polymorphism of SNCA has been associated with PD. We performed this study to investigate the relationship between rs894278 and PD status on resting-state brain activity, by analyzing the amplitude of low-frequency fluctuation (ALFF). A total of 81 PD patients and 64 healthy controls were recruited. Disease severity and PD stage were evaluated in PD patients using the unified Parkinson's disease rating scale (UPDRS) and the Hoehn and Yahr (HY) scale, while the cognitive function of all participants was assessed using the mini-mental state examination (MMSE). All participants were genotyped for the rs894278 SNP and underwent a resting state functional magnetic resonance imaging scan. We found that the ALFF values of PD patients in the lingual gyrus and left caudate were lower than those of HCs; and the ALFF values for the right fusiform of participants with G allele were lower than those of participants without G allele. And we further revealed higher ALFF values in bilateral fusiform in rs894278-G carriers than in rs894278-G non-carriers in the PD group and lower ALFF values in bilateral fusiform in rs894278-G carriers than in rs894278-G non-carriers in the HC group. Our findings show that rs894278 and PD status interactively affect the brain activity of PD patients and HCs, and changes in the brain connectomes may play a key role in the pathogenesis of PD. Thus, our work sheds light on the mechanism underlying PD pathogenesis.
Collapse
Affiliation(s)
- Kailin Zhang
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, China
| | - Yan Tang
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, China.,School of Information Science and Engineering, Central South University, Changsha, China
| | - Li Meng
- Department of Radiology, Xiangya Hospital, Central South University, Changsha, China
| | - Liping Zhu
- Department of Radiology, Xiangya Hospital, Central South University, Changsha, China
| | - Xiaoting Zhou
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, China
| | - Yuwen Zhao
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, China
| | - Xinxiang Yan
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, China
| | - Beisha Tang
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, China.,National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Changsha, China.,Key Laboratory of Hunan Province in Neurodegenerative Disorders, Central South University, Changsha, China.,Center for Medical Genetics, School of Life Sciences, Central South University, Changsha, China.,Parkinson's Disease Center of Beijing Institute for Brain Disorders, Beijing China.,Collaborative Innovation Center for Brain Science, Shanghai, China
| | - Jifeng Guo
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, China.,National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Changsha, China.,Key Laboratory of Hunan Province in Neurodegenerative Disorders, Central South University, Changsha, China.,Center for Medical Genetics, School of Life Sciences, Central South University, Changsha, China
| |
Collapse
|
3
|
Wang S, He Y, Chen Z, Li Y, Zhao J, Lyu L. Pleiotropic action of genetic variation in ZNF804A on brain structure: a meta-analysis of magnetic resonance imaging studies. Neuropsychiatr Dis Treat 2019; 15:721-729. [PMID: 30962687 PMCID: PMC6432899 DOI: 10.2147/ndt.s174728] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
OBJECTIVE The zinc finger protein 804A (ZNF804A) gene encodes the protein 804A containing the C2H2 zinc finger structure, which plays an important role in embryonic nerve development and repair. Previous studies have shown a significant association between the ZNF804A genetic variation polymorphism rs1344706 and the risk of schizophrenia and brain structure abnormalities. However, the findings are inconsistent. MATERIALS AND METHODS Seventeen studies on structural magnetic resonance imaging (sMRI), with 1,031 schizophrenia patients and 3,416 healthy controls, were included in the meta-analysis. These analyses were performed using Anisotropic Effect-Size Signed Differential Mapping (AES-SDM) software and Comprehensive Meta-Analysis (CMA) software. RESULTS rs1344706 risk allele carriers of schizophrenia had increased gray matter in the brain regions including frontal lobe, temporal lobe, and other brain regions, but the carriers of healthy individuals had decreased gray matter and white matter integrity in the frontal lobe, central network, and other brain regions. The results of sensitivity analysis are stable, but publication bias exists in a few analyses of indexes. CONCLUSION Abnormalities of brain structure have a strong relationship with ZNF804A gene rs1344706 polymorphism, but the association may be different in healthy individuals and those with mental disorders.
Collapse
Affiliation(s)
- Shuai Wang
- Department of Psychology, Chengdu Medical College, Chengdu, People's Republic of China, .,Mental Health Institute of the Second Xiangya Hospital, Central South University, National Clinical Research Center on Mental Health Disorders, National Technology Institute on Mental Disorders, Hunan Key Laboratory of Psychiatry and Mental Health, Changsha, People's Republic of China,
| | - Yi He
- Medical Group, Department of Academic Popularization, DIAO Group, Chengdu, People's Republic of China
| | - Zi Chen
- Department of Psychology, Chengdu Medical College, Chengdu, People's Republic of China,
| | - Yanzhang Li
- Department of Psychology, Chengdu Medical College, Chengdu, People's Republic of China,
| | - Jingping Zhao
- Mental Health Institute of the Second Xiangya Hospital, Central South University, National Clinical Research Center on Mental Health Disorders, National Technology Institute on Mental Disorders, Hunan Key Laboratory of Psychiatry and Mental Health, Changsha, People's Republic of China,
| | - Luxian Lyu
- Henan Mental Hospital, The Second Affiliated Hospital of Xinxiang Medical University, Xinxiang, People's Republic of China
| |
Collapse
|
4
|
Genetic association of rs1344706 in ZNF804A with bipolar disorder and schizophrenia susceptibility in Chinese populations. Sci Rep 2017; 7:41140. [PMID: 28120939 PMCID: PMC5264157 DOI: 10.1038/srep41140] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2016] [Accepted: 12/15/2016] [Indexed: 02/06/2023] Open
Abstract
Rs1344706 in the the zinc finger protein 804A (ZNF804A) gene has been identified to be associated with schizophrenia and bipolar disorder (BD) in Europeans. However, whether rs1344706 is associated with schizophrenia in Chinese populations remains inconclusive; furthermore, the association between rs1344706 and BD in Chinese populations has been rarely explored. To explore the association between rs1344706 and schizophrenia/BD in Chinese populations, we genotyped rs1344706 among 1128 Chinese subjects (537 patients with BD and 591 controls) and found that rs1344706 showed marginal allelic association with BD (P = 0.028) with T-allele being more prevalent in cases than that in controls (OR = 1.19, 95% CI 1.03–1.37). Meta-analysis of rs1344706 by pooling all available data showed that rs1344706 was significantly associated with BD (P = 0.001). Besides, positive association of rs1344706 with schizophrenia was observed in Northern Chinese (P = 0.005). Furthermore, ZNF804A is highly expressed in human and mouse brains, especially in prenatal stage.
Collapse
|
5
|
Mallas EJ, Carletti F, Chaddock CA, Woolley J, Picchioni MM, Shergill SS, Kane F, Allin MP, Barker GJ, Prata DP. Genome-wide discovered psychosis-risk gene ZNF804A impacts on white matter microstructure in health, schizophrenia and bipolar disorder. PeerJ 2016; 4:e1570. [PMID: 26966642 PMCID: PMC4782689 DOI: 10.7717/peerj.1570] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2015] [Accepted: 12/15/2015] [Indexed: 01/10/2023] Open
Abstract
Background. Schizophrenia (SZ) and bipolar disorder (BD) have both been associated with reduced microstructural white matter integrity using, as a proxy, fractional anisotropy (FA) detected using diffusion tensor imaging (DTI). Genetic susceptibility for both illnesses has also been positively correlated in recent genome-wide association studies with allele A (adenine) of single nucleotide polymorphism (SNP) rs1344706 of the ZNF804A gene. However, little is known about how the genomic linkage disequilibrium region tagged by this SNP impacts on the brain to increase risk for psychosis. This study aimed to assess the impact of this risk variant on FA in patients with SZ, in those with BD and in healthy controls. Methods. 230 individuals were genotyped for the rs1344706 SNP and underwent DTI. We used tract-based spatial statistics (TBSS) followed by an analysis of variance, with threshold-free cluster enhancement (TFCE), to assess underlying effects of genotype, diagnosis and their interaction, on FA. Results. As predicted, statistically significant reductions in FA across a widely distributed brain network (p < 0.05, TFCE-corrected) were positively associated both with a diagnosis of SZ or BD and with the double (homozygous) presence of the ZNF804A rs1344706 risk variant (A). The main effect of genotype was medium (d = 0.48 in a 44,054-voxel cluster) and the effect in the SZ group alone was large (d = 1.01 in a 51,260-voxel cluster), with no significant effects in BD or controls, in isolation. No areas under a significant diagnosis by genotype interaction were found. Discussion. We provide the first evidence in a predominantly Caucasian clinical sample, of an association between ZNF804A rs1344706 A-homozygosity and reduced FA, both irrespective of diagnosis and particularly in SZ (in overlapping brain areas). This suggests that the previously observed involvement of this genomic region in psychosis susceptibility, and in impaired functional connectivity, may be conferred through it inducing abnormalities in white matter microstructure.
Collapse
Affiliation(s)
- Emma-Jane Mallas
- Department of Psychosis Studies, Institute of Psychiatry, Psychology and Neuroscience, King’s College London, University of London, London, United Kingdom
- Computational, Cognitive and Clinical Neuroimaging Laboratory, Division of Brain Sciences, Department of Medicine, Imperial College London, London, United Kingdom
| | - Francesco Carletti
- Department of Neuroradiology, John Radcliffe Hospital, Oxford University Hospitals NHS Trust, Oxford, United Kingdom
| | - Christopher A. Chaddock
- Department of Psychosis Studies, Institute of Psychiatry, Psychology and Neuroscience, King’s College London, University of London, London, United Kingdom
| | - James Woolley
- Psychological Medicine, Royal Brompton & Harefield NHS Trust, London, United Kingdom
| | - Marco M. Picchioni
- Department of Psychosis Studies, Institute of Psychiatry, Psychology and Neuroscience, King’s College London, University of London, London, United Kingdom
- St Andrew’s Academic Department, St Andrew’s Healthcare, Northampton, United Kingdom
| | - Sukhwinder S. Shergill
- Department of Psychosis Studies, Institute of Psychiatry, Psychology and Neuroscience, King’s College London, University of London, London, United Kingdom
| | - Fergus Kane
- Department of Psychology, Institute of Psychiatry, Psychology and Neuroscience, King’s College London, University of London, London, United Kingdom
| | - Matthew P.G. Allin
- Department of Psychosis Studies, Institute of Psychiatry, Psychology and Neuroscience, King’s College London, University of London, London, United Kingdom
| | - Gareth J. Barker
- Department of Neuroimaging, Institute of Psychiatry, Psychology & Neuroscience, King’s College London, University of London, London, United Kingdom
| | - Diana P. Prata
- Department of Neuroimaging, Institute of Psychiatry, Psychology & Neuroscience, King’s College London, University of London, London, United Kingdom
- Instituto de Medicina Molecular, Faculdade de Medicina, Universidade de Lisboa, Lisbon, Portugal
| |
Collapse
|
6
|
Giddaluru S, Espeseth T, Salami A, Westlye LT, Lundquist A, Christoforou A, Cichon S, Adolfsson R, Steen VM, Reinvang I, Nilsson LG, Le Hellard S, Nyberg L. Genetics of structural connectivity and information processing in the brain. Brain Struct Funct 2016; 221:4643-4661. [PMID: 26852023 PMCID: PMC5102980 DOI: 10.1007/s00429-016-1194-0] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2015] [Accepted: 01/22/2016] [Indexed: 12/20/2022]
Abstract
Understanding the genetic factors underlying brain structural connectivity is a major challenge in imaging genetics. Here, we present results from genome-wide association studies (GWASs) of whole-brain white matter (WM) fractional anisotropy (FA), an index of microstructural coherence measured using diffusion tensor imaging. Data from independent GWASs of 355 Swedish and 250 Norwegian healthy adults were integrated by meta-analysis to enhance power. Complementary GWASs on behavioral data reflecting processing speed, which is related to microstructural properties of WM pathways, were performed and integrated with WM FA results via multimodal analysis to identify shared genetic associations. One locus on chromosome 17 (rs145994492) showed genome-wide significant association with WM FA (meta P value = 1.87 × 10-08). Suggestive associations (Meta P value <1 × 10-06) were observed for 12 loci, including one containing ZFPM2 (lowest meta P value = 7.44 × 10-08). This locus was also implicated in multimodal analysis of WM FA and processing speed (lowest Fisher P value = 8.56 × 10-07). ZFPM2 is relevant in specification of corticothalamic neurons during brain development. Analysis of SNPs associated with processing speed revealed association with a locus that included SSPO (lowest meta P value = 4.37 × 10-08), which has been linked to commissural axon growth. An intergenic SNP (rs183854424) 14 kb downstream of CSMD1, which is implicated in schizophrenia, showed suggestive evidence of association in the WM FA meta-analysis (meta P value = 1.43 × 10-07) and the multimodal analysis (Fisher P value = 1 × 10-07). These findings provide novel data on the genetics of WM pathways and processing speed, and highlight a role of ZFPM2 and CSMD1 in information processing in the brain.
Collapse
Affiliation(s)
- Sudheer Giddaluru
- Dr. Einar Martens Research Group for Biological Psychiatry, Center for Medical Genetics and Molecular Medicine, Haukeland University Hospital, 5021, Bergen, Norway.,K.G.Jebsen Center for Psychosis Research and the Norwegian Center for Mental Disorders Research (NORMENT), Department of Clinical Science, University of Bergen, 5021, Bergen, Norway
| | - Thomas Espeseth
- K.G. Jebsen Center for Psychosis Research, Norwegian Center for Mental Disorders Research (NORMENT), Division of Mental Health and Addiction, Oslo University Hospital, 0424, Oslo, Norway.,Department of Psychology, University of Oslo, 0317, Oslo, Norway
| | - Alireza Salami
- Umeå Center for Functional Brain Imaging (UFBI), Umeå University, 90187, Umeå, Sweden.,Aging Research Center, Karolinska Institutet and Stockholm University, 11330, Stockholm, Sweden
| | - Lars T Westlye
- K.G. Jebsen Center for Psychosis Research, Norwegian Center for Mental Disorders Research (NORMENT), Division of Mental Health and Addiction, Oslo University Hospital, 0424, Oslo, Norway.,Department of Psychology, University of Oslo, 0317, Oslo, Norway
| | - Anders Lundquist
- Umeå Center for Functional Brain Imaging (UFBI), Umeå University, 90187, Umeå, Sweden.,Department of Statistics, USBF, Umeå University, 90187, Umeå, Sweden
| | - Andrea Christoforou
- Dr. Einar Martens Research Group for Biological Psychiatry, Center for Medical Genetics and Molecular Medicine, Haukeland University Hospital, 5021, Bergen, Norway.,K.G.Jebsen Center for Psychosis Research and the Norwegian Center for Mental Disorders Research (NORMENT), Department of Clinical Science, University of Bergen, 5021, Bergen, Norway
| | - Sven Cichon
- Division of Medical Genetics, Department of Biomedicine, University of Basel, 4058, Basel, Switzerland.,Institute of Neuroscience and Medicine (INM-1), Research Center Juelich, 52425, Juelich, Germany.,Department of Genomics, Life and Brain Center, University of Bonn, 53127, Bonn, Germany
| | - Rolf Adolfsson
- Department of Clinical Sciences, Psychiatry, Umeå University, 90187, Umeå, Sweden
| | - Vidar M Steen
- Dr. Einar Martens Research Group for Biological Psychiatry, Center for Medical Genetics and Molecular Medicine, Haukeland University Hospital, 5021, Bergen, Norway.,K.G.Jebsen Center for Psychosis Research and the Norwegian Center for Mental Disorders Research (NORMENT), Department of Clinical Science, University of Bergen, 5021, Bergen, Norway
| | - Ivar Reinvang
- Department of Psychology, University of Oslo, 0317, Oslo, Norway
| | - Lars Göran Nilsson
- Umeå Center for Functional Brain Imaging (UFBI), Umeå University, 90187, Umeå, Sweden.,ARC, Karolinska Institutet, Stockholm, Sweden
| | - Stéphanie Le Hellard
- Dr. Einar Martens Research Group for Biological Psychiatry, Center for Medical Genetics and Molecular Medicine, Haukeland University Hospital, 5021, Bergen, Norway.,K.G.Jebsen Center for Psychosis Research and the Norwegian Center for Mental Disorders Research (NORMENT), Department of Clinical Science, University of Bergen, 5021, Bergen, Norway
| | - Lars Nyberg
- Umeå Center for Functional Brain Imaging (UFBI), Umeå University, 90187, Umeå, Sweden. .,Department of Radiation Sciences, Umeå University, 90187, Umeå, Sweden. .,Department of Integrative Medical Biology, Umeå University, 90187, Umeå, Sweden.
| |
Collapse
|
7
|
Elevated P3b latency variability in carriers of ZNF804A risk allele for psychosis. Neuroimage 2015; 116:207-13. [DOI: 10.1016/j.neuroimage.2015.04.024] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2015] [Revised: 03/23/2015] [Accepted: 04/10/2015] [Indexed: 12/21/2022] Open
|
8
|
Chavarria-Siles I, White T, de Leeuw C, Goudriaan A, Lips E, Ehrlich S, Turner JA, Calhoun VD, Gollub RL, Magnotta VA, Ho BC, Smit AB, Verheijen MHG, Posthuma D. Myelination-related genes are associated with decreased white matter integrity in schizophrenia. Eur J Hum Genet 2015; 24:381-6. [PMID: 26014434 DOI: 10.1038/ejhg.2015.120] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2014] [Revised: 03/24/2015] [Accepted: 04/17/2015] [Indexed: 01/01/2023] Open
Abstract
Disruptions in white matter (WM) tract structures have been implicated consistently in the pathophysiology of schizophrenia. Global WM integrity--as measured by fractional anisotropy (FA)--is highly heritable and may provide a good endophenotype for genetic studies of schizophrenia. WM abnormalities in schizophrenia are not localized to one specific brain region but instead reflect global low-level decreases in FA coupled with focal abnormalities. In this study, we sought to investigate whether functional gene sets associated with schizophrenia are also associated with WM integrity. We analyzed FA and genetic data from the Mind Research Network Clinical Imaging Consortium to study the effect of multiple oligodendrocyte gene sets on schizophrenia and WM integrity using a functional gene set analysis in 77 subjects with schizophrenia and 104 healthy controls. We found that a gene set involved in myelination was significantly associated with schizophrenia and FA. This gene set includes 17 genes that are expressed in oligodendrocytes and one neuronal gene (NRG1) that is known to regulate myelination. None of the genes within the gene set were associated with schizophrenia or FA individually, suggesting that no single gene was driving the association of the gene set. Our findings support the hypothesis that multiple genetic variants in myelination-related genes contribute to the observed correlation between schizophrenia and decreased WM integrity as measured by FA.
Collapse
Affiliation(s)
- Ivan Chavarria-Siles
- Department of Functional Genomics, CNCR, Neuroscience Campus Amsterdam, VU University, Amsterdam, The Netherlands.,Department of Complex Trait Genetics, VU University Medical Center, Amsterdam, The Netherlands.,Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Tonya White
- Department of Child and Adolescent Psychiatry, Erasmus Medical Center, Rotterdam, The Netherlands.,Department of Radiology, Erasmus Medical Center, Rotterdam, The Netherlands
| | - Christiaan de Leeuw
- Department of Functional Genomics, CNCR, Neuroscience Campus Amsterdam, VU University, Amsterdam, The Netherlands.,Department of Complex Trait Genetics, VU University Medical Center, Amsterdam, The Netherlands
| | - Andrea Goudriaan
- Department of Molecular and Cellular Neurobiology, CNCR, Neuroscience Campus Amsterdam, VU University, Amsterdam, The Netherlands
| | - Esther Lips
- Department of Functional Genomics, CNCR, Neuroscience Campus Amsterdam, VU University, Amsterdam, The Netherlands
| | - Stefan Ehrlich
- Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Boston, MA, USA.,Department of Child and Adolescent Psychiatry, TU Dresden, Germany
| | - Jessica A Turner
- Department of Psychology and Neuroscience Institute, Georgia State University, Atlanta, GA, USA.,The Mind Research Network, Albuquerque, NM, USA
| | - Vince D Calhoun
- The Mind Research Network, Albuquerque, NM, USA.,Department of Psychiatry, University of New Mexico, New Mexico, NM, USA.,Department of Electrical and Computer Engineering, University of New Mexico, Albuquerque, NM, USA
| | - Randy L Gollub
- Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Boston, MA, USA.,Departments of Psychiatry and Radiology, Massachusetts General Hospital, Boston, MA, USA
| | - Vincent A Magnotta
- Department of Radiology, The University of Iowa Carver College of Medicine, Iowa City, IA, USA
| | - Beng-Choon Ho
- Department of Psychiatry, The University of Iowa Carver College of Medicine, Iowa City, IA, USA
| | - August B Smit
- Department of Molecular and Cellular Neurobiology, CNCR, Neuroscience Campus Amsterdam, VU University, Amsterdam, The Netherlands
| | - Mark H G Verheijen
- Department of Molecular and Cellular Neurobiology, CNCR, Neuroscience Campus Amsterdam, VU University, Amsterdam, The Netherlands
| | - Danielle Posthuma
- Department of Functional Genomics, CNCR, Neuroscience Campus Amsterdam, VU University, Amsterdam, The Netherlands.,Department of Complex Trait Genetics, VU University Medical Center, Amsterdam, The Netherlands.,Department of Child and Adolescent Psychiatry, Erasmus Medical Center, Rotterdam, The Netherlands
| |
Collapse
|
9
|
Gurung R, Prata DP. What is the impact of genome-wide supported risk variants for schizophrenia and bipolar disorder on brain structure and function? A systematic review. Psychol Med 2015; 45:2461-2480. [PMID: 25858580 DOI: 10.1017/s0033291715000537] [Citation(s) in RCA: 74] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
The powerful genome-wide association studies (GWAS) revealed common mutations that increase susceptibility for schizophrenia (SZ) and bipolar disorder (BD), but the vast majority were not known to be functional or associated with these illnesses. To help fill this gap, their impact on human brain structure and function has been examined. We systematically discuss this output to facilitate its timely integration in the psychosis research field; and encourage reflection for future research. Irrespective of imaging modality, studies addressing the effect of SZ/BD GWAS risk genes (ANK3, CACNA1C, MHC, TCF4, NRGN, DGKH, PBRM1, NCAN and ZNF804A) were included. Most GWAS risk variations were reported to affect neuroimaging phenotypes implicated in SZ/BD: white-matter integrity (ANK3 and ZNF804A), volume (CACNA1C and ZNF804A) and density (ZNF804A); grey-matter (CACNA1C, NRGN, TCF4 and ZNF804A) and ventricular (TCF4) volume; cortical folding (NCAN) and thickness (ZNF804A); regional activation during executive tasks (ANK3, CACNA1C, DGKH, NRGN and ZNF804A) and functional connectivity during executive tasks (CACNA1C and ZNF804A), facial affect recognition (CACNA1C and ZNF804A) and theory-of-mind (ZNF804A); but inconsistencies and non-replications also exist. Further efforts such as standardizing reporting and exploring complementary designs, are warranted to test the reproducibility of these early findings.
Collapse
Affiliation(s)
- R Gurung
- Department of Psychosis Studies,Institute of Psychiatry,King's College London,UK
| | - D P Prata
- Centre for Neuroimaging Sciences,Institute of Psychiatry,King's College London,UK
| |
Collapse
|
10
|
Sun Y, Hu D, Liang J, Bao YP, Meng SQ, Lu L, Shi J. Association between variants of zinc finger genes and psychiatric disorders: systematic review and meta-analysis. Schizophr Res 2015; 162:124-37. [PMID: 25667193 DOI: 10.1016/j.schres.2015.01.036] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/19/2014] [Revised: 01/20/2015] [Accepted: 01/21/2015] [Indexed: 12/21/2022]
Abstract
Psychiatric disorders have a negative impact on society and human lives. Genetic factors are involved in the occurrence and development of psychiatric diseases. ZNF804A has been identified as one of the most compelling risk genes associated with broad phenotypes related to psychosis. We conducted a systematic meta-analysis and reviewed ZNF804A variants in psychosis-related disorders, including schizophrenia, bipolar disorder, and attention-deficit hyperactivity disorder. We also summarized the association between other zinc finger protein genes (ZNFs) and psychiatric diseases. The meta-analysis included a total of six variants of ZNF804A and three variants of other ZNFs (ZDHHC8 and ZKSCAN4), and the effects of ZNF variants on neurocognition and neuroimaging phenotypes were reviewed. The biological functions of these variants are also presented. We verified that ZNF804A was significantly related to psychiatric diseases, and the association between ZNF804A rs1344706 and psychosis (schizophrenia and bipolar disorder) did not vary with disease or ethnicity. The main brain area regulated by ZNF804A rs1344706 was the dorsolateral prefrontal cortex. The effect of ZNF804A variants on cognition did not display consistency with different diseases or methodologies. These findings suggest that ZNF804A might play an important role in common pathogenesis of psychiatric diseases, and its variants are likely involved in regulating the expression of psychosis-related genes, especially the dopamine pathway genes. Further research should focus on the molecular mechanisms by which ZNF804A variants act in psychiatric diseases and related phenotypes.
Collapse
Affiliation(s)
- Yan Sun
- National Institute on Drug Dependence, Beijing 100191, China; Beijing Key Laboratory on Drug Dependence Research, Beijing 100191, China
| | - Die Hu
- National Institute on Drug Dependence, Beijing 100191, China; Beijing Key Laboratory on Drug Dependence Research, Beijing 100191, China
| | - Jie Liang
- National Institute on Drug Dependence, Beijing 100191, China; Beijing Key Laboratory on Drug Dependence Research, Beijing 100191, China
| | - Yan-Ping Bao
- National Institute on Drug Dependence, Beijing 100191, China; Beijing Key Laboratory on Drug Dependence Research, Beijing 100191, China
| | - Shi-Qiu Meng
- National Institute on Drug Dependence, Beijing 100191, China; Institute of Mental Health/Peking University Sixth Hospital and Key Laboratory of Mental Health, Peking University, Beijing 100191, China; Peking-Tsinghua Center for Life Sciences and PKU-IDG/McGovern Institute for Brain Research, Peking University, Beijing 100871, China; Beijing Key Laboratory on Drug Dependence Research, Beijing 100191, China
| | - Lin Lu
- National Institute on Drug Dependence, Beijing 100191, China; Institute of Mental Health/Peking University Sixth Hospital and Key Laboratory of Mental Health, Peking University, Beijing 100191, China; Peking-Tsinghua Center for Life Sciences and PKU-IDG/McGovern Institute for Brain Research, Peking University, Beijing 100871, China; Beijing Key Laboratory on Drug Dependence Research, Beijing 100191, China
| | - Jie Shi
- National Institute on Drug Dependence, Beijing 100191, China; Beijing Key Laboratory on Drug Dependence Research, Beijing 100191, China; The State Key Laboratory of Natural and Biomimetic Drugs, Beijing 100191, China; Key Laboratory for Neuroscience of the Ministry of Education and the Ministry of Public Health, Beijing 100191, China.
| |
Collapse
|
11
|
Karbasforoushan H, Duffy B, Blackford JU, Woodward ND. Processing speed impairment in schizophrenia is mediated by white matter integrity. Psychol Med 2015; 45:109-120. [PMID: 25066842 PMCID: PMC5297385 DOI: 10.1017/s0033291714001111] [Citation(s) in RCA: 64] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
BACKGROUND Processing speed predicts functional outcome and is a potential endophenotype for schizophrenia. Establishing the neural basis of processing speed impairment may inform the treatment and etiology of schizophrenia. Neuroimaging investigations in healthy subjects have linked processing speed to brain anatomical connectivity. However, the relationship between processing speed impairment and white matter (WM) integrity in schizophrenia is unclear. METHOD Individuals with schizophrenia and healthy subjects underwent diffusion tensor imaging (DTI) and completed a brief neuropsychological assessment that included measures of processing speed, verbal learning, working memory and executive functioning. Group differences in WM integrity, inferred from fractional anisotropy (FA), were examined throughout the brain and the hypothesis that processing speed impairment in schizophrenia is mediated by diminished WM integrity was tested. RESULTS WM integrity of the corpus callosum, cingulum, superior and inferior frontal gyri, and precuneus was reduced in schizophrenia. Average FA in these regions mediated group differences in processing speed but not in other cognitive domains. Diminished WM integrity in schizophrenia was accounted for, in large part, by individual differences in processing speed. CONCLUSIONS Cognitive impairment in schizophrenia was mediated by reduced WM integrity. This relationship was strongest for processing speed because deficits in working memory, verbal learning and executive functioning were not mediated by WM integrity. Larger sample sizes may be required to detect more subtle mediation effects in these domains. Interventions that preserve WM integrity or ameliorate WM disruption may enhance processing speed and functional outcome in schizophrenia.
Collapse
Affiliation(s)
- H Karbasforoushan
- Psychotic Disorders and Psychiatric Neuroimaging Programs, Department of Psychiatry,Vanderbilt University School of Medicine,Nashville, TN,USA
| | - B Duffy
- Psychotic Disorders and Psychiatric Neuroimaging Programs, Department of Psychiatry,Vanderbilt University School of Medicine,Nashville, TN,USA
| | - J U Blackford
- Psychotic Disorders and Psychiatric Neuroimaging Programs, Department of Psychiatry,Vanderbilt University School of Medicine,Nashville, TN,USA
| | - N D Woodward
- Psychotic Disorders and Psychiatric Neuroimaging Programs, Department of Psychiatry,Vanderbilt University School of Medicine,Nashville, TN,USA
| |
Collapse
|
12
|
Voineskos AN. Genetic underpinnings of white matter 'connectivity': heritability, risk, and heterogeneity in schizophrenia. Schizophr Res 2015; 161:50-60. [PMID: 24893906 DOI: 10.1016/j.schres.2014.03.034] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/23/2014] [Revised: 03/11/2014] [Accepted: 03/12/2014] [Indexed: 12/14/2022]
Abstract
Schizophrenia is a highly heritable disorder. Thus, the combination of genetics and brain imaging may be a useful strategy to investigate the effects of risk genes on anatomical connectivity, and for gene discovery, i.e. discovering the genetic correlates of white matter phenotypes. Following a database search, I review evidence for heritability of white matter phenotypes. I also review candidate gene investigations, examining association of putative risk variants with white matter phenotypes, as well as the recent flurry of research exploring relationships of genome-wide significant risk loci with white matter phenotypes. Finally, I review multivariate and polygene approaches, which constitute a new wave of imaging-genetics research, including large collaborative initiatives aiming to discover new genes that may predict aspects of white matter microstructure. The literature supports the heritability of white matter phenotypes. Loci in genes intimately implicated in oligodendrocyte and myelin development, growth and maintenance, and neurotrophic systems are associated with white matter microstructure. GWAS variants have not yet sufficiently been explored using DTI-based evaluation of white matter to draw conclusions, although micro-RNA 137 is promising due to its potential regulation of other GWAS schizophrenia genes. Many imaging-genetic studies only include healthy participants, which, while helping control for certain confounds, cannot address questions related to disease heterogeneity or symptom expression, and thus more studies should include participants with schizophrenia. With sufficiently large sample sizes, the future of this field lies in polygene strategies aimed at risk prediction and heterogeneity dissection of schizophrenia that can translate to personalized interventions.
Collapse
Affiliation(s)
- Aristotle N Voineskos
- Kimel Family Translational Imaging-Genetics Laboratory, Research Imaging Centre, Campbell Family Mental Health Institute, Centre for Addiction and Mental Health, Canada; Institute of Medical Science, University of Toronto, Canada; Department of Psychiatry, University of Toronto, Canada.
| |
Collapse
|
13
|
Nenadic I, Maitra R, Basmanav FB, Schultz CC, Lorenz C, Schachtzabel C, Smesny S, Nöthen MM, Cichon S, Reichenbach JR, Sauer H, Schlösser RGM, Gaser C. ZNF804A genetic variation (rs1344706) affects brain grey but not white matter in schizophrenia and healthy subjects. Psychol Med 2015; 45:143-152. [PMID: 25065377 DOI: 10.1017/s0033291714001159] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Abstract
BACKGROUND Genetic variation in the gene encoding ZNF804A, a risk gene for schizophrenia, has been shown to affect brain functional endophenotypes of the disorder, while studies of white matter structure have been inconclusive. METHOD We analysed effects of ZNF804A single nucleotide polymorphism rs1344706 on grey and white matter using voxel-based morphometry (VBM) in high-resolution T1-weighted magnetic resonance imaging scans of 62 schizophrenia patients and 54 matched healthy controls. RESULTS We found a significant (p < 0.05, family-wise error corrected for multiple comparisons) interaction effect of diagnostic group x genotype for local grey matter in the left orbitofrontal and right and left lateral temporal cortices, where patients and controls showed diverging effects of genotype. Analysing the groups separately (at p < 0.001, uncorrected), variation in rs1344706 showed effects on brain structure within the schizophrenia patients in several areas including the left and right inferior temporal, right supramarginal/superior temporal, right and left inferior frontal, left frontopolar, right and left dorsolateral/ventrolateral prefrontal cortices, and the right thalamus, as well as effects within the healthy controls in left lateral temporal, right anterior insula and left orbitofrontal cortical areas. We did not find effects of genotype of regional white matter in either of the two cohorts. CONCLUSIONS Our findings demonstrate effects of ZNF804A genetic variation on brain structure, with diverging regional effects in schizophrenia patients and healthy controls in frontal and temporal brain areas. These effects, however, might be dependent on the impact of other (genetic or non-genetic) disease factors.
Collapse
Affiliation(s)
- I Nenadic
- Department of Psychiatry and Psychotherapy,Jena University Hospital,Jena,Germany
| | - R Maitra
- Department of Psychiatry and Psychotherapy,Jena University Hospital,Jena,Germany
| | - F B Basmanav
- Institute of Human Genetics,University of Bonn,Bonn,Germany
| | - C C Schultz
- Department of Psychiatry and Psychotherapy,Jena University Hospital,Jena,Germany
| | - C Lorenz
- Department of Psychiatry and Psychotherapy,Jena University Hospital,Jena,Germany
| | - C Schachtzabel
- Department of Psychiatry and Psychotherapy,Jena University Hospital,Jena,Germany
| | - S Smesny
- Department of Psychiatry and Psychotherapy,Jena University Hospital,Jena,Germany
| | - M M Nöthen
- Institute of Human Genetics,University of Bonn,Bonn,Germany
| | - S Cichon
- Department of Genomics, Life and Brain Center,University of Bonn,Bonn,Germany
| | - J R Reichenbach
- Medical Physics Group, Institute for Diagnostic and Interventional Radiology I (IDIR I),Jena University Hospital,Germany
| | - H Sauer
- Department of Psychiatry and Psychotherapy,Jena University Hospital,Jena,Germany
| | - R G M Schlösser
- Department of Psychiatry and Psychotherapy,Jena University Hospital,Jena,Germany
| | - C Gaser
- Department of Psychiatry and Psychotherapy,Jena University Hospital,Jena,Germany
| |
Collapse
|
14
|
Ikuta T, Peters BD, Guha S, John M, Karlsgodt KH, Lencz T, Szeszko PR, Malhotra AK. A schizophrenia risk gene, ZNF804A, is associated with brain white matter microstructure. Schizophr Res 2014; 155:15-20. [PMID: 24685285 PMCID: PMC4060886 DOI: 10.1016/j.schres.2014.03.001] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/24/2013] [Revised: 02/27/2014] [Accepted: 03/01/2014] [Indexed: 01/03/2023]
Abstract
Genome-wide association studies have provided strong evidence for association of the SNP rs1344706 in the ZNF804A gene with schizophrenia and bipolar disorder. Neuroimaging studies have suggested that variation at rs1344706 may be associated with neural endophenotypes such as white matter volumes and densities. However, analyses of white matter microstructure using diffusion tensor imaging (DTI) have produced conflicting results. We examined the association between rs1344706 and white matter microstructure in 107 healthy individuals using tract-based spatial statistics (TBSS). TBSS analysis showed significant association between the risk allele and lower fractional anisotropy in the corpus callosum, left forceps minor, and right parietal white matter (p<.05; FWE corrected). Post-hoc analyses indicated that this association was largely driven by alterations in radial diffusivity, consistent with an effect of genotype on myelination. In light of the strong DTI evidence for white matter microstructural abnormalities in schizophrenia, the current results implicate a potential mechanism for schizophrenia risk formation by ZNF804A rs1344706 genotype.
Collapse
Affiliation(s)
- T Ikuta
- Department of Communication Sciences and Disorders, School of Applied Sciences, University of Mississippi, University, MS, USA.
| | - B D Peters
- Division of Psychiatry Research, Zucker Hillside Hospital, Glen Oaks, NY, USA
| | - S Guha
- Division of Medical Genetics, Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, NY, USA
| | - M John
- Division of Psychiatry Research, Zucker Hillside Hospital, Glen Oaks, NY, USA; Center for Psychiatric Neuroscience, Feinstein Institute for Medical Research, Manhasset, NY, USA
| | - K H Karlsgodt
- Division of Psychiatry Research, Zucker Hillside Hospital, Glen Oaks, NY, USA; Center for Psychiatric Neuroscience, Feinstein Institute for Medical Research, Manhasset, NY, USA; Hofstra North Shore-LIJ School of Medicine, Departments of Psychiatry and Molecular Medicine, Hempstead, NY, USA
| | - T Lencz
- Division of Psychiatry Research, Zucker Hillside Hospital, Glen Oaks, NY, USA; Center for Psychiatric Neuroscience, Feinstein Institute for Medical Research, Manhasset, NY, USA; Hofstra North Shore-LIJ School of Medicine, Departments of Psychiatry and Molecular Medicine, Hempstead, NY, USA
| | - P R Szeszko
- Division of Psychiatry Research, Zucker Hillside Hospital, Glen Oaks, NY, USA; Center for Psychiatric Neuroscience, Feinstein Institute for Medical Research, Manhasset, NY, USA; Hofstra North Shore-LIJ School of Medicine, Departments of Psychiatry and Molecular Medicine, Hempstead, NY, USA
| | - A K Malhotra
- Division of Psychiatry Research, Zucker Hillside Hospital, Glen Oaks, NY, USA; Center for Psychiatric Neuroscience, Feinstein Institute for Medical Research, Manhasset, NY, USA; Hofstra North Shore-LIJ School of Medicine, Departments of Psychiatry and Molecular Medicine, Hempstead, NY, USA
| |
Collapse
|
15
|
Fernandes CPD, Westlye LT, Giddaluru S, Christoforou A, Kauppi K, Adolfsson R, Nilsson LG, Nyberg L, Lundervold AJ, Reinvang I, Steen VM, Le Hellard S, Espeseth T. Lack of association of the rs1344706 ZNF804A variant with cognitive functions and DTI indices of white matter microstructure in two independent healthy populations. Psychiatry Res 2014; 222:60-6. [PMID: 24636489 DOI: 10.1016/j.pscychresns.2014.02.009] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/27/2013] [Revised: 02/10/2014] [Accepted: 02/13/2014] [Indexed: 01/08/2023]
Abstract
The rs1344706 single nucleotide polymorphism within intron 2 of the ZNF804A gene is strongly associated with schizophrenia and bipolar disorder. This variant has also been associated in some studies with a range of cognitive and neuroimaging phenotypes, but several studies have reported no effect on the same phenotypes in other samples. Here, we genotyped 670 healthy adult Norwegian subjects and 1753 healthy adult Swedish subjects for rs1344706, and tested for associations with cognitive phenotypes including general intellectual abilities, memory functions and cognitive inhibition. We also tested whether rs1344706 is associated with white matter microstructural properties using diffusion tensor imaging (DTI) data from 250 to 340 of the Norwegian and Swedish subjects, respectively. Whole-brain voxel-wise statistical modeling of the effect of the ZNF804A variant on two DTI indices, fractional anisotropy (FA) and radial diffusivity (RD), was performed using tract-based spatial statistics (TBSS), and commonly reported effect sizes were calculated within several large-scale white matter pathways based on neuroanatomical atlases. No significant associations were found between rs1344706 and the cognitive traits or white matter microstructure. We conclude that the rs1344706 SNP has no significant effect on these phenotypes in our two reasonably powered samples.
Collapse
Affiliation(s)
- Carla Patricia Duarte Fernandes
- K.G. Jebsen Centre for Psychosis Research, Norwegian Centre for Mental Disorders Research (NORMENT), Department of Clinical Science, University of Bergen, Bergen, Norway; Dr. Einar Martens Research Group for Biological Psychiatry, Center for Medical Genetics and Molecular Medicine, Haukeland University Hospital, Bergen, Norway; K.G. Jebsen Centre for Psychosis Research, Norwegian Centre for Mental Disorders Research (NORMENT), Department of Clinical Science, University of Bergen, Bergen, Norway
| | - Lars Tjelta Westlye
- K.G. Jebsen Centre for Psychosis Research, Norwegian Centre For Mental Disorders Research (NORMENT), Division of Mental Health and Addiction, Oslo University Hospital & Institute of Clinical Medicine, University of Oslo, Oslo, Norway; Department of Psychology, University of Oslo, Oslo N-0317, Norway
| | - Sudheer Giddaluru
- K.G. Jebsen Centre for Psychosis Research, Norwegian Centre for Mental Disorders Research (NORMENT), Department of Clinical Science, University of Bergen, Bergen, Norway; Dr. Einar Martens Research Group for Biological Psychiatry, Center for Medical Genetics and Molecular Medicine, Haukeland University Hospital, Bergen, Norway
| | - Andrea Christoforou
- K.G. Jebsen Centre for Psychosis Research, Norwegian Centre for Mental Disorders Research (NORMENT), Department of Clinical Science, University of Bergen, Bergen, Norway; Dr. Einar Martens Research Group for Biological Psychiatry, Center for Medical Genetics and Molecular Medicine, Haukeland University Hospital, Bergen, Norway
| | - Karolina Kauppi
- Department of Integrative Medical Biology, Umeå University, Umeå, Sweden
| | - Rolf Adolfsson
- Department of Clinical Sciences, Division of Psychiatry, Umeå University, Umeå, Sweden
| | - Lars-Göran Nilsson
- Department of Psychology, Stockholm University and Stockholm Brain Institute, Uppsala, Sweden
| | - Lars Nyberg
- Umeå Center for Functional Brain Imaging, Department of Integrative Medical Biology, Physiology Section, and Department of Radiation Sciences, Diagnostic Radiology, Umeå University, Umeå, Sweden
| | - Astri Johansen Lundervold
- Department of Biological and Medical Psychology, University of Bergen, Bergen, Norway; Kavli Research Centre for Aging and Dementia, Haraldsplass Deaconess Hospital, Bergen, Norway; K.G. Jebsen Centre for Research on Neuropsychiatric Disorders, University of Bergen, Bergen, Norway
| | - Ivar Reinvang
- Department of Psychology, University of Oslo, Oslo N-0317, Norway
| | - Vidar Martin Steen
- K.G. Jebsen Centre for Psychosis Research, Norwegian Centre for Mental Disorders Research (NORMENT), Department of Clinical Science, University of Bergen, Bergen, Norway; Dr. Einar Martens Research Group for Biological Psychiatry, Center for Medical Genetics and Molecular Medicine, Haukeland University Hospital, Bergen, Norway
| | - Stéphanie Le Hellard
- K.G. Jebsen Centre for Psychosis Research, Norwegian Centre for Mental Disorders Research (NORMENT), Department of Clinical Science, University of Bergen, Bergen, Norway; Dr. Einar Martens Research Group for Biological Psychiatry, Center for Medical Genetics and Molecular Medicine, Haukeland University Hospital, Bergen, Norway
| | - Thomas Espeseth
- K.G. Jebsen Centre for Psychosis Research, Norwegian Centre For Mental Disorders Research (NORMENT), Division of Mental Health and Addiction, Oslo University Hospital & Institute of Clinical Medicine, University of Oslo, Oslo, Norway; Department of Psychology, University of Oslo, Oslo N-0317, Norway.
| |
Collapse
|
16
|
Nyberg L, Salami A. The APOE ε4 allele in relation to brain white-matter microstructure in adulthood and aging. Scand J Psychol 2014; 55:263-7. [PMID: 24506254 DOI: 10.1111/sjop.12099] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2013] [Accepted: 11/28/2013] [Indexed: 01/13/2023]
Abstract
The Apolipoprotein E (ApoE) ε4 allele is a major genetic risk factor for sporadic Alzheimer's disease and has been associated with structural and functional brain alterations across the adult life span. Recent studies have presented evidence that ε4 affects microstructural properties of brain white matter (WM) in non-demented carriers of the ε4 allele, but conflicting evidence has been presented as well. The main purpose of the present study was therefore to examine ApoE effects on WM in a large sample of middle-aged and older adults (N = 273). Diffusion tensor imaging (DTI) data was acquired, and tract-based as well as voxel-wise analyses were conducted. The tract-based analyses revealed no significant ApoE effects, and no significant interactions between genotype and age were observed. Taken together, the findings of the present study suggest that ApoE effects on white-matter microstructure are less abundant than has been suggested in some previous studies.
Collapse
Affiliation(s)
- Lars Nyberg
- Umea Center for Functional Brain Imaging, Umeå University, Umeå, Sweden
| | | |
Collapse
|