1
|
Inada K, Miyamichi K. Association between parental behaviors and structural plasticity in the brain of male rodents. Neurosci Res 2023; 196:1-10. [PMID: 37343600 DOI: 10.1016/j.neures.2023.06.007] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2023] [Revised: 06/10/2023] [Accepted: 06/16/2023] [Indexed: 06/23/2023]
Abstract
In recent decades, human fathers across the globe have shown a substantial increase in their engagement in paternal caregiving behaviors. Despite the growing interest, the precise neurobiological mechanisms underlying caregiving behaviors in males remain unclear. Neurobiological studies conducted on rodents have advanced our understanding of the molecular, cellular, and circuit-level mechanisms. Typically, sexually naïve males exhibit aggression toward offspring, while fathers display parental behaviors. This drastic behavioral plasticity may be associated with changes in connections among specific regions or cell types. Recent studies have begun to describe this structural plasticity by comparing neural connections before and after fatherhood. In this Perspective, we summarize the findings from four well-studied rodent species, namely prairie voles, California mice, laboratory rats, and laboratory mice, with a view toward integrating past and current progress. We then review recent advances in the understanding of structural plasticity for parental behaviors. Finally, we discuss remaining questions that require further exploration to gain a deeper understanding of the neural mechanisms underlying paternal behaviors in males, including their possible implications for the human brain.
Collapse
Affiliation(s)
- Kengo Inada
- RIKEN Center for Biosystems Dynamics Research, 2-2-3 Minatojima minamimachi, Chuo-ku, Kobe, Hyogo 650-0047, Japan.
| | - Kazunari Miyamichi
- RIKEN Center for Biosystems Dynamics Research, 2-2-3 Minatojima minamimachi, Chuo-ku, Kobe, Hyogo 650-0047, Japan.
| |
Collapse
|
2
|
Haimson B, Mizrahi A. Plasticity in auditory cortex during parenthood. Hear Res 2023; 431:108738. [PMID: 36931020 DOI: 10.1016/j.heares.2023.108738] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/28/2022] [Revised: 02/09/2023] [Accepted: 03/06/2023] [Indexed: 03/11/2023]
Abstract
Most animals display robust parental behaviors that support the survival and well-being of their offspring. The manifestation of parental behaviors is accompanied by physiological and hormonal changes, which affect both the body and the brain for better care giving. Rodents exhibit a behavior called pup retrieval - a stereotyped sequence of perception and action - used to identify and retrieve their newborn pups back to the nest. Pup retrieval consists of a significant auditory component, which depends on plasticity in the auditory cortex (ACx). We review the evidence of neural changes taking place in the ACx of rodents during the transition to parenthood. We discuss how the plastic changes both in and out of the ACx support the encoding of pup vocalizations. Key players in the mechanism of this plasticity are hormones and experience, both of which have a clear dynamic signature during the transition to parenthood. Mothers, co caring females, and fathers have been used as models to understand parental plasticity at disparate levels of organization. Yet, common principles of cortical plasticity and the biological mechanisms underlying its involvement in parental behavior are just beginning to be unpacked.
Collapse
Affiliation(s)
- Baruch Haimson
- The Edmond and Lily Safra Center for Brain Sciences, and 2Department of Neurobiology, The Hebrew University of Jerusalem, Jerusalem 91904, Israel.
| | - Adi Mizrahi
- The Edmond and Lily Safra Center for Brain Sciences, and 2Department of Neurobiology, The Hebrew University of Jerusalem, Jerusalem 91904, Israel.
| |
Collapse
|
3
|
Abstract
Motherhood goes through preparation, onset and maintenance phases until the natural weaning. A variety of changes in hormonal/neurohormonal systems and brain circuits are involved in the maternal behavior. Hormones, neuropeptides, and neurotransmitters involved in maternal behavior act via G-protein-coupled receptors, many of which in turn activate plasma membrane enzymes including phospholipase C (PLC) β isoforms. In this study, we examined the effect of PLCβ1 knockout (KO) on maternal behavior. There was little difference between PLCβ1-KO and wild-type (WT) dams in the relative time spent in maternal behavior during the period between 24 h prepartum and 12 h postpartum (-24 h ∼ PPH 12). After PPH 18, however, PLCβ1-KO dams neglected their pups so that they all died in 2-3 days. In the pup retrieval test, latency was not different during the period within PPH 12, but after PPH 18, PLCβ1-KO dams could not finish pup retrieval in a given time. During both periods, FosB expression in the nucleus accumbens (NAcc) of PLCβ1-KO dams was significantly lower than WT, but not different in the medial preoptic area (mPOA). Given that mPOA activity is required for initiation of maternal behavior, and that NAcc is known to be involved in maternal motivation and maintenance of maternal behavior, our results suggest that PLCβ1 signaling is essential for transition from the onset to maintenance phase of maternal behavior.
Collapse
Affiliation(s)
- Hea-jin Kim
- Brain Science Institute (BSI), Korea Institute of Science and Technology (KIST), Seoul, Republic of Korea,Division of Bio-Medical Science & Technology, KIST School, Korea University of Science and Technology (UST), Seoul, Republic of Korea
| | - Jaewon Jang
- Brain Science Institute (BSI), Korea Institute of Science and Technology (KIST), Seoul, Republic of Korea,Department of Life Sciences, Korea University, Seoul, Republic of Korea
| | - Hae-Young Koh
- Brain Science Institute (BSI), Korea Institute of Science and Technology (KIST), Seoul, Republic of Korea,Division of Bio-Medical Science & Technology, KIST School, Korea University of Science and Technology (UST), Seoul, Republic of Korea, Hae-Young Koh Brain Science Institute (BSI), Korea Institute of Science and Technology (KIST), Hwarang-ro 14-gil 5, Seongbuk-gu, Seoul, 02792, Republic of Korea
| |
Collapse
|
4
|
Kumari R, Fazekas EA, Morvai B, Udvari EB, Dóra F, Zachar G, Székely T, Pogány Á, Dobolyi Á. Transcriptomics of Parental Care in the Hypothalamic-Septal Region of Female Zebra Finch Brain. Int J Mol Sci 2022; 23:ijms23052518. [PMID: 35269661 PMCID: PMC8910180 DOI: 10.3390/ijms23052518] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2022] [Revised: 02/21/2022] [Accepted: 02/22/2022] [Indexed: 02/07/2023] Open
Abstract
(1) Background: The objective of this study was to uncover genomic causes of parental care. Since birds do not lactate and, therefore, do not show the gene expressional changes required for lactation, we investigate gene expression associated with parenting in caring and non-caring females in an avian species, the small passerine bird zebra finch (Taeniopygia guttata). Here, we compare expression patterns in the hypothalamic–septal region since, previously, we showed that this area is activated in parenting females. (2) Methods: Transcriptome sequencing was first applied in a dissected part of the zebra finch brain related to taking care of the nestlings as compared to a control group of social pairs without nestlings. (3) Results: We found genes differentially expressed between caring and non-caring females. When introducing a log2fold change threshold of 1.5, 13 annotated genes were significantly upregulated in breeding pairs, while 39 annotated genes were downregulated. Significant enrichments of dopamine and acetylcholine biosynthetic processes were identified among upregulated pathways, while pro-opiomelanocortin and thyroid hormone pathways were downregulated, suggesting the importance of these systems in parental care. Network analysis further suggested neuro-immunological changes in mothers. (4) Conclusions: The results confirm the roles of several hypothesized major pathways in parental care, whereas novel pathways are also proposed.
Collapse
Affiliation(s)
- Rashmi Kumari
- MTA-ELTE Laboratory of Molecular and Systems Neurobiology, Eötvös Loránd Network of Research Excellence and Eötvös Loránd University, 1117 Budapest, Hungary; (R.K.); (E.A.F.); (E.B.U.)
- Department of Physiology and Neurobiology, Eötvös Loránd University, 1117 Budapest, Hungary
| | - Emese A. Fazekas
- MTA-ELTE Laboratory of Molecular and Systems Neurobiology, Eötvös Loránd Network of Research Excellence and Eötvös Loránd University, 1117 Budapest, Hungary; (R.K.); (E.A.F.); (E.B.U.)
- Department of Ethology, Eötvös Loránd University, 1117 Budapest, Hungary; (B.M.); (Á.P.)
| | - Boglárka Morvai
- Department of Ethology, Eötvös Loránd University, 1117 Budapest, Hungary; (B.M.); (Á.P.)
| | - Edina B. Udvari
- MTA-ELTE Laboratory of Molecular and Systems Neurobiology, Eötvös Loránd Network of Research Excellence and Eötvös Loránd University, 1117 Budapest, Hungary; (R.K.); (E.A.F.); (E.B.U.)
| | - Fanni Dóra
- Department of Anatomy, Histology and Embryology, Semmelweis University, 1093 Budapest, Hungary; (F.D.); (G.Z.)
| | - Gergely Zachar
- Department of Anatomy, Histology and Embryology, Semmelweis University, 1093 Budapest, Hungary; (F.D.); (G.Z.)
| | - Tamás Székely
- Milner Centre for Evolution, Department of Biology and Biochemistry, University of Bath, Bath BA2 7AY, UK;
| | - Ákos Pogány
- Department of Ethology, Eötvös Loránd University, 1117 Budapest, Hungary; (B.M.); (Á.P.)
| | - Árpád Dobolyi
- MTA-ELTE Laboratory of Molecular and Systems Neurobiology, Eötvös Loránd Network of Research Excellence and Eötvös Loránd University, 1117 Budapest, Hungary; (R.K.); (E.A.F.); (E.B.U.)
- Department of Physiology and Neurobiology, Eötvös Loránd University, 1117 Budapest, Hungary
- Correspondence: ; Tel.: +36-1-372-2500 (ext. 8775)
| |
Collapse
|
5
|
Cai W, Ma H, Xun Y, Hou W, Wang L, Zhang X, Ran Y, Yuan W, Guo Q, Zhang J, Li L, Yang Y, Li Y, Lv Z, He Z, Jia R, Tai F. Involvement of the dopamine system in paternal behavior induced by repeated pup exposure in virgin male ICR mice. Behav Brain Res 2021; 415:113519. [PMID: 34389426 DOI: 10.1016/j.bbr.2021.113519] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2021] [Revised: 07/06/2021] [Accepted: 08/07/2021] [Indexed: 10/20/2022]
Abstract
Like mothers, fathers play a vital role in the development of the brain and behavior of offspring in mammals with biparental care. Unlike mothers, fathers do not experience the physiological processes of pregnancy, parturition, or lactation before their first contact with offspring. Whether pup exposure can induce the onset of paternal behavior and the underlying neural mechanisms remains unclear. By using Slc:ICR male mice exhibiting maternal-like parental care, the present study found that repeated exposure to pups for six days significantly increased the total duration of paternal behavior and shortened the latency to retrieve and care for pups. Repeated pup exposure increased c-Fos-positive neurons and the levels of dopamine- and TH-positive neurons in the nucleus accumbens (NAc). In addition, inhibition of dopamine projections from the ventral tegmental area to the NAc using chemogenetic methods reduced paternal care induced by repeated pup exposure. In conclusion, paternal behavior in virgin male ICR mice can be initiated by repeated pup exposure via sensitization, and the dopamine system may be involved in this process.
Collapse
Affiliation(s)
- Wenqi Cai
- College of Life Sciences, Shaanxi Normal University, Xi'an, Shaanxi, China
| | - Huan Ma
- College of Life Sciences, Shaanxi Normal University, Xi'an, Shaanxi, China
| | - Yufeng Xun
- College of Life Sciences, Shaanxi Normal University, Xi'an, Shaanxi, China
| | - Wenjuan Hou
- College of Life Sciences, Shaanxi Normal University, Xi'an, Shaanxi, China
| | - Limin Wang
- College of Life Sciences, Shaanxi Normal University, Xi'an, Shaanxi, China
| | - Xueni Zhang
- College of Life Sciences, Shaanxi Normal University, Xi'an, Shaanxi, China
| | - Yufeng Ran
- College of Life Sciences, Shaanxi Normal University, Xi'an, Shaanxi, China
| | - Wei Yuan
- College of Life Sciences, Shaanxi Normal University, Xi'an, Shaanxi, China
| | - Qianqian Guo
- College of Life Sciences, Shaanxi Normal University, Xi'an, Shaanxi, China
| | - Jing Zhang
- College of Life Sciences, Shaanxi Normal University, Xi'an, Shaanxi, China
| | - Laifu Li
- College of Life Sciences, Shaanxi Normal University, Xi'an, Shaanxi, China
| | - Yang Yang
- College of Life Sciences, Shaanxi Normal University, Xi'an, Shaanxi, China
| | - Yitong Li
- College of Life Sciences, Shaanxi Normal University, Xi'an, Shaanxi, China
| | - Zijian Lv
- College of Life Sciences, Shaanxi Normal University, Xi'an, Shaanxi, China
| | - Zhixiong He
- College of Life Sciences, Shaanxi Normal University, Xi'an, Shaanxi, China
| | - Rui Jia
- College of Life Sciences, Shaanxi Normal University, Xi'an, Shaanxi, China.
| | - Fadao Tai
- College of Life Sciences, Shaanxi Normal University, Xi'an, Shaanxi, China.
| |
Collapse
|
6
|
Scopolamine increases perseveration in mice subjected to the detour test. Behav Brain Res 2019; 356:71-77. [DOI: 10.1016/j.bbr.2018.07.028] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2018] [Revised: 07/26/2018] [Accepted: 07/28/2018] [Indexed: 02/07/2023]
|
7
|
Akther S, Huang Z, Liang M, Zhong J, Fakhrul AAKM, Yuhi T, Lopatina O, Salmina AB, Yokoyama S, Higashida C, Tsuji T, Matsuo M, Higashida H. Paternal Retrieval Behavior Regulated by Brain Estrogen Synthetase (Aromatase) in Mouse Sires that Engage in Communicative Interactions with Pairmates. Front Neurosci 2015; 9:450. [PMID: 26696812 PMCID: PMC4678232 DOI: 10.3389/fnins.2015.00450] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2015] [Accepted: 11/13/2015] [Indexed: 12/03/2022] Open
Abstract
Parental behaviors involve complex social recognition and memory processes and interactive behavior with children that can greatly facilitate healthy human family life. Fathers play a substantial role in child care in a small but significant number of mammals, including humans. However, the brain mechanism that controls male parental behavior is much less understood than that controlling female parental behavior. Fathers of non-monogamous laboratory ICR mice are an interesting model for examining the factors that influence paternal responsiveness because sires can exhibit maternal-like parental care (retrieval of pups) when separated from their pups along with their pairmates because of olfactory and auditory signals from the dams. Here we tested whether paternal behavior is related to femininity by the aromatization of testosterone. For this purpose, we measured the immunoreactivity of aromatase [cytochrome P450 family 19 (CYP19)], which synthesizes estrogen from androgen, in nine brain regions of the sire. We observed higher levels of aromatase expression in these areas of the sire brain when they engaged in communicative interactions with dams in separate cages. Interestingly, the number of nuclei with aromatase immunoreactivity in sires left together with maternal mates in the home cage after pup-removing was significantly larger than that in sires housed with a whole family. The capacity of sires to retrieve pups was increased following a period of 5 days spent with the pups as a whole family after parturition, whereas the acquisition of this ability was suppressed in sires treated daily with an aromatase inhibitor. The results demonstrate that the dam significantly stimulates aromatase in the male brain and that the presence of the pups has an inhibitory effect on this increase. These results also suggest that brain aromatization regulates the initiation, development, and maintenance of paternal behavior in the ICR male mice.
Collapse
Affiliation(s)
- Shirin Akther
- Department of Basic Research on Social Recognition, Kanazawa University Research Center for Child Mental Development Kanazawa, Japan
| | - Zhiqi Huang
- Department of Basic Research on Social Recognition, Kanazawa University Research Center for Child Mental Development Kanazawa, Japan
| | - Mingkun Liang
- Department of Basic Research on Social Recognition, Kanazawa University Research Center for Child Mental Development Kanazawa, Japan
| | - Jing Zhong
- Department of Basic Research on Social Recognition, Kanazawa University Research Center for Child Mental Development Kanazawa, Japan
| | - Azam A K M Fakhrul
- Department of Basic Research on Social Recognition, Kanazawa University Research Center for Child Mental Development Kanazawa, Japan
| | - Teruko Yuhi
- Department of Basic Research on Social Recognition, Kanazawa University Research Center for Child Mental Development Kanazawa, Japan
| | - Olga Lopatina
- Department of Basic Research on Social Recognition, Kanazawa University Research Center for Child Mental Development Kanazawa, Japan ; Department of Biochemistry, Medical Pharmaceutical and Toxicological Chemistry, Krasnoyarsk State Medical University Krasnoyarsk, Russia
| | - Alla B Salmina
- Department of Biochemistry, Medical Pharmaceutical and Toxicological Chemistry, Krasnoyarsk State Medical University Krasnoyarsk, Russia
| | - Shigeru Yokoyama
- Department of Basic Research on Social Recognition, Kanazawa University Research Center for Child Mental Development Kanazawa, Japan
| | - Chiharu Higashida
- Department of Basic Research on Social Recognition, Kanazawa University Research Center for Child Mental Development Kanazawa, Japan
| | - Takahiro Tsuji
- Department of Basic Research on Social Recognition, Kanazawa University Research Center for Child Mental Development Kanazawa, Japan
| | - Mie Matsuo
- Department of Basic Research on Social Recognition, Kanazawa University Research Center for Child Mental Development Kanazawa, Japan
| | - Haruhiro Higashida
- Department of Basic Research on Social Recognition, Kanazawa University Research Center for Child Mental Development Kanazawa, Japan
| |
Collapse
|
8
|
Zhong J, Liang M, Akther S, Higashida C, Tsuji T, Higashida H. c-Fos expression in the paternal mouse brain induced by communicative interaction with maternal mates. Mol Brain 2014; 7:66. [PMID: 25208928 PMCID: PMC4172782 DOI: 10.1186/s13041-014-0066-x] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2014] [Accepted: 08/25/2014] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Appropriate parental care by fathers greatly facilitates health in human family life. Much less is known from animal studies regarding the factors and neural circuitry that affect paternal behavior compared with those affecting maternal behavior. We recently reported that ICR mouse sires displayed maternal-like retrieval behavior when they were separated from pups and caged with their mates (co-housing) because the sires receive communicative interactions via ultrasonic and pheromone signals from the dams. We investigated the brain structures involved in regulating this activity by quantifying c-Fos-immunoreactive cells as neuronal activation markers in the neural pathway of male parental behavior. RESULTS c-Fos expression in the medial preoptic area (mPOA) was significantly higher in sires that exhibited retrieval behavior (retrievers) than those with no such behavior (non-retrievers). Identical increased expression was found in the mPOA region in the retrievers stimulated by ultrasonic vocalizations or pheromones from their mates. Such increases in expression were not observed in the ventral tegmental area (VTA), nucleus accumbens (NAcc) or ventral palladium (VP). On the following day that we identified the families of the retrievers or non-retrievers, c-Fos expression in neuronal subsets in the mPOA, VTA, NAcc and VP was much higher in the retriever sires when they isolated together with their mates in new cages. This difference was not observed in the singly isolated retriever sires in new cages. The non-retriever sires did not display expression changes in the four brain regions that were assessed. CONCLUSION The mPOA neurons appeared to be activated by direct communicative interactions with mate dams, including ultrasonic vocalizations and pheromones. The mPOA-VTA-NAcc-VP neural circuit appears to be involved in paternal retrieval behavior.
Collapse
Affiliation(s)
| | | | | | | | | | - Haruhiro Higashida
- Kanazawa University Center for Child Mental Development, Kanazawa, Japan.
| |
Collapse
|
9
|
Liang M, Zhong J, Liu HX, Lopatina O, Nakada R, Yamauchi AM, Higashida H. Pairmate-dependent pup retrieval as parental behavior in male mice. Front Neurosci 2014; 8:186. [PMID: 25071431 PMCID: PMC4092370 DOI: 10.3389/fnins.2014.00186] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2014] [Accepted: 06/11/2014] [Indexed: 01/20/2023] Open
Abstract
Appropriate parental care by fathers can greatly facilitate healthy human family life. However, much less is known about paternal behavior in animals compared to those regarding maternal behavior. Previously, we reported that male ICR strain laboratory mice, although not spontaneously parental, can be induced to display maternal-like parental care (pup retrieval) when separated from their pups by signals from the pairmate dam (Liu et al., 2013). This parental behavior by the ICR sires, which are not genetically biparental, is novel and has been designated as pairmate-dependent paternal behavior. However, the factors critical for this paternal behavior are unclear. Here, we report that the pairmate-dependent paternal retrieval behavior is observed especially in the ICR strain and not in C57BL/6 or BALB/c mice. An ICR sire displays retrieval behavior only toward his biological pups. A sire co-housed with an unrelated non-pairing dam in a new environment, under which 38-kHz ultrasonic vocalizations are not detected, does not show parenting behavior. It is important for sires to establish their own home territory (cage) by continuous housing and testing to display retrieval behavior. These results indicated that the ICR sires display distinct paternity, including father-child social interaction, and shed light on parental behavior, although further analyses of paternal care at the neuroendocrinological and neurocircuitry levels are required.
Collapse
Affiliation(s)
- Mingkun Liang
- Department of Basic Research on Social Recognition and Memory, Research Center for Child Mental Development, Kanazawa University Kanazawa, Japan ; Department of Biophysical Genetics, Graduate School of Medical Sciences, Kanazawa University Kanazawa, Japan
| | - Jing Zhong
- Department of Basic Research on Social Recognition and Memory, Research Center for Child Mental Development, Kanazawa University Kanazawa, Japan ; Department of Biophysical Genetics, Graduate School of Medical Sciences, Kanazawa University Kanazawa, Japan
| | - Hong-Xiang Liu
- Department of Basic Research on Social Recognition and Memory, Research Center for Child Mental Development, Kanazawa University Kanazawa, Japan
| | - Olga Lopatina
- Department of Basic Research on Social Recognition and Memory, Research Center for Child Mental Development, Kanazawa University Kanazawa, Japan
| | - Ryusuke Nakada
- Department of Biophysical Genetics, Graduate School of Medical Sciences, Kanazawa University Kanazawa, Japan
| | - Agnes-Mikiko Yamauchi
- Department of Biophysical Genetics, Graduate School of Medical Sciences, Kanazawa University Kanazawa, Japan
| | - Haruhiro Higashida
- Department of Basic Research on Social Recognition and Memory, Research Center for Child Mental Development, Kanazawa University Kanazawa, Japan
| |
Collapse
|
10
|
Akther S, Fakhrul AAKM, Higashida H. Effects of electrical lesions of the medial preoptic area and the ventral pallidum on mate-dependent paternal behavior in mice. Neurosci Lett 2014; 570:21-5. [PMID: 24721669 DOI: 10.1016/j.neulet.2014.03.078] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2014] [Revised: 03/25/2014] [Accepted: 03/29/2014] [Indexed: 11/18/2022]
Abstract
In laboratory animals, less is known about the neural circuits that mediate paternal behavior than those that influence maternal behavior. In mice, we recently reported that when sires are separated with their mate dams from their pups, ultrasound and pheromonal signals from the dams can evoke and initiate maternal-like retrieval behavior in the sires upon reunion with the offspring; this is termed mate-dependent paternal care. We used electrolytic brain lesion (EBL) methods to identify the potential roles of the medial preoptic area (mPOA) and ventral pallidum (VP) regions in regulating paternal care, areas known to be critical for the expression of maternal behavior. Electrolytic lesions of the mPOA or VP disrupted mate-dependent paternal care; latencies to initiate pup retrieval, grooming and crouching were longer in the EBL-treated sires relative to the sham-operated mice. The number of grooming episodes and duration of crouching were also lower in sires with the EBL in both areas. These results indicate that the mPOA and VP regions are essential for mate-dependent paternal care in mice.
Collapse
Affiliation(s)
- Shirin Akther
- Department of Basic Research on Social Cognition, Kanazawa University Center for Child Mental Development, Kanazawa 920-8640, Japan
| | - Azam A K M Fakhrul
- Department of Basic Research on Social Cognition, Kanazawa University Center for Child Mental Development, Kanazawa 920-8640, Japan
| | - Haruhiro Higashida
- Department of Basic Research on Social Cognition, Kanazawa University Center for Child Mental Development, Kanazawa 920-8640, Japan.
| |
Collapse
|
11
|
Akther S, Korshnova N, Zhong J, Liang M, Cherepanov SM, Lopatina O, Komleva YK, Salmina AB, Nishimura T, Fakhrul AA, Hirai H, Kato I, Yamamoto Y, Takasawa S, Okamoto H, Higashida H. CD38 in the nucleus accumbens and oxytocin are related to paternal behavior in mice. Mol Brain 2013; 6:41. [PMID: 24059452 PMCID: PMC3848913 DOI: 10.1186/1756-6606-6-41] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2013] [Accepted: 09/17/2013] [Indexed: 11/17/2022] Open
Abstract
Background Mammalian sires participate in infant care. We previously demonstrated that sires of a strain of nonmonogamous laboratory mice initiate parental retrieval behavior in response to olfactory and auditory signals from the dam during isolation in a new environment. This behavior is rapidly lost in the absence of such signals when the sires are caged alone. The neural circuitry and hormones that control paternal behavior are not well-understood. CD38, a membrane glycoprotein, catalyzes synthesis of cyclic ADP-ribose and facilitates oxytocin (OT) secretion due to cyclic ADP-ribose-dependent increases in cytosolic free calcium concentrations in oxytocinergic neurons in the hypothalamus. In this paper, we studied CD38 in the nucleus accumbens (NAcc) and the role of OT on paternal pup retrieval behavior using CD38 knockout (CD38−/−) mice of the ICR strain. Results CD38−/− sires failed to retrieve when they were reunited with their pups after isolation together with the mate dams, but not with pup, in a novel cage for 10 min. CD38−/− sires treated with a single subcutaneous injection of OT exhibited recovery in the retrieval events when caged with CD38−/− dams treated with OT. We introduced human CD38 in the NAcc of CD38−/− sires using a lentiviral infection technique and examined the effects of local expression of CD38. Pairs of knockout dams treated with OT and sires expressing CD38 in the NAcc showed more retrieval (83% of wild-type sire levels). Complete recovery of retrieval was obtained in sires with the expression of CD38 in the NAcc in combination with OT administration. Other paternal behaviors, including pup grooming, crouching and huddling, were also more common in CD38−/− sires with CD38 expression in the NAcc compared with those in CD38−/− sires without CD38 expression in the NAcc. Conclusions CD38 in the NAcc and OT are critical in paternal behavior.
Collapse
Affiliation(s)
- Shirin Akther
- Kanazawa University Center for Child Mental Development, Kanazawa 920-8640, Japan.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|