1
|
Ezechukwu HC, Ney LJ, Jarvis MA, Shrestha N, Holland OJ, Cuffe JSM, Perkins AV, Yau SY, McAinch AJ, Hryciw DH. Sex-Specific Changes to Brain Fatty Acids, Plasmalogen, and Plasma Endocannabinoids in Offspring Exposed to Maternal and Postnatal High-Linoleic-Acid Diets. Int J Mol Sci 2024; 25:7911. [PMID: 39063152 PMCID: PMC11277558 DOI: 10.3390/ijms25147911] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2024] [Revised: 07/06/2024] [Accepted: 07/17/2024] [Indexed: 07/28/2024] Open
Abstract
Linoleic acid (LA) is required for neuronal development. We have previously demonstrated sex-specific changes in cardiovascular and hepatic function in rat offspring from mothers consuming a high-LA diet, with some effects associated with reduced LA concentration in the postnatal diet. At this time, the impact of a high-maternal-LA diet on offspring brain development and the potential for the postnatal diet to alter any adverse changes are unknown. Rat offspring from mothers fed low- (LLA) or high-LA (HLA) diets during pregnancy and lactation were weaned at postnatal day 25 (PN25) and fed LLA or HLA diets until sacrifice in adulthood (PN180). In the offspring's brains, the postnatal HLA diet increased docosapentaenoate in males. The maternal HLA diet increased LA, arachidonate, docosapentaenoate, C18:0 dimethylacetal (DMA), C16:0 DMA, C16:0 DMA/C16:0, and C18:0 DMA/C18:0, but decreased eoicosenoate, nervoniate, lignocerate, and oleate in males. Maternal and postnatal HLA diets reduced oleate and vaccenate and had an interaction effect on myristate, palmitoleate, and eicosapentaenoate in males. In females, maternal HLA diet increased eicosadienoate. Postnatal HLA diet increased stearate and docosapentaenoate. Maternal and postnatal HLA diets had an interaction effect on oleate, arachidate, and docosahexaenoic acid (DHA)/omega (n)-6 docosapentaenoic acid (DPA) in females. Postnatal HLA diet decreased DHA/n-6 DPA in males and females. Postnatal HLA diet increased plasma endocannabinoids (arachidonoyl ethanolamide and 2-arachidonoyl glycerol), as well as other N-acyl ethanolamides and testosterone. HLA diet alters brain fatty acids, plasma endocannabinoids, and plasmalogen concentrations in a development-specific and sex-specific manner.
Collapse
Affiliation(s)
- Henry C. Ezechukwu
- School of Human Sciences, The University of Western Australia, Perth, WA 6009, Australia;
| | - Luke J. Ney
- School of Psychology and Counselling, Queensland University of Technology, Kelvin Grove, QLD 4059, Australia; (L.J.N.); (M.A.J.)
| | - Madeline A. Jarvis
- School of Psychology and Counselling, Queensland University of Technology, Kelvin Grove, QLD 4059, Australia; (L.J.N.); (M.A.J.)
| | - Nirajan Shrestha
- School of Pharmacy and Medical Science, Griffith University, Gold Coast, QLD 4222, Australia; (N.S.); (O.J.H.); (A.V.P.)
| | - Olivia J. Holland
- School of Pharmacy and Medical Science, Griffith University, Gold Coast, QLD 4222, Australia; (N.S.); (O.J.H.); (A.V.P.)
| | - James S. M. Cuffe
- School of Biomedical Sciences, The University of Queensland, Brisbane, QLD 4072, Australia;
| | - Anthony V. Perkins
- School of Pharmacy and Medical Science, Griffith University, Gold Coast, QLD 4222, Australia; (N.S.); (O.J.H.); (A.V.P.)
- School of Health, University of Sunshine Coast, Sippy Downs, QLD 4556, Australia
| | - Suk-Yu Yau
- Department of Rehabilitation Sciences, The Hong Kong Polytechnic University, Kowloon, Hong Kong;
- Mental Health Research Center, The Hong Kong Polytechnic University, Kowloon, Hong Kong
| | - Andrew J. McAinch
- Institute for Health and Sport, Victoria University, Melbourne, VIC 8001, Australia;
- Australian Institute for Musculoskeletal Science (AIMSS), Victoria University, St. Albans, VIC 3021, Australia
| | - Deanne H. Hryciw
- School of Environment and Science, Griffith University, Nathan, QLD 4111, Australia
- Griffith Institute for Drug Discovery, Griffith University, Nathan, QLD 4111, Australia
| |
Collapse
|
2
|
Garikapati V, Colasante C, Baumgart-Vogt E, Spengler B. Sequential lipidomic, metabolomic, and proteomic analyses of serum, liver, and heart tissue specimens from peroxisomal biogenesis factor 11α knockout mice. Anal Bioanal Chem 2022; 414:2235-2250. [PMID: 35083512 PMCID: PMC8821073 DOI: 10.1007/s00216-021-03860-0] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2020] [Revised: 11/25/2021] [Accepted: 12/20/2021] [Indexed: 12/16/2022]
Abstract
Peroxisomes are versatile single membrane-enclosed cytoplasmic organelles, involved in reactive oxygen species (ROS) and lipid metabolism and diverse other metabolic processes. Peroxisomal disorders result from mutations in Pex genes-encoded proteins named peroxins (PEX proteins) and single peroxisomal enzyme deficiencies. The PEX11 protein family (α, β, and γ isoforms) plays an important role in peroxisomal proliferation and fission. However, their specific functions and the metabolic impact caused by their deficiencies have not been precisely characterized. To understand the systemic molecular alterations caused by peroxisomal defects, here we utilized untreated peroxisomal biogenesis factor 11α knockout (Pex11α KO) mouse model and performed serial relative-quantitative lipidomic, metabolomic, and proteomic analyses of serum, liver, and heart tissue homogenates. We demonstrated significant specific changes in the abundances of multiple lipid species, polar metabolites, and proteins and dysregulated metabolic pathways in distinct biological specimens of the Pex11α KO adult mice in comparison to the wild type (WT) controls. Overall, the present study reports comprehensive semi-quantitative molecular omics information of the Pex11α KO mice, which might serve in the future as a reference for a better understanding of the roles of Pex11α and underlying pathophysiological mechanisms of peroxisomal biogenesis disorders.
Collapse
Affiliation(s)
- Vannuruswamy Garikapati
- Institute of Inorganic and Analytical Chemistry, Justus Liebig University Giessen, 35392, Giessen, Germany.,Institute for Anatomy and Cell Biology II, Division of Medical Cell Biology, Justus Liebig University Giessen, 35392, Giessen, Germany
| | - Claudia Colasante
- Institute for Anatomy and Cell Biology II, Division of Medical Cell Biology, Justus Liebig University Giessen, 35392, Giessen, Germany
| | - Eveline Baumgart-Vogt
- Institute for Anatomy and Cell Biology II, Division of Medical Cell Biology, Justus Liebig University Giessen, 35392, Giessen, Germany.
| | - Bernhard Spengler
- Institute of Inorganic and Analytical Chemistry, Justus Liebig University Giessen, 35392, Giessen, Germany.
| |
Collapse
|
3
|
Nguyen HT, Li L, Eguchi A, Kannan K, Kim EY, Iwata H. Effects on the liver lipidome of rat offspring prenatally exposed to bisphenol A. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 759:143466. [PMID: 33243495 DOI: 10.1016/j.scitotenv.2020.143466] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/09/2020] [Revised: 10/21/2020] [Accepted: 10/24/2020] [Indexed: 06/11/2023]
Abstract
Bisphenol A (BPA) is a well-known endocrine disruptor that has obesogenic properties. We have previously reported sex- and age-dependent changes in hepatic transcriptome and proteome of several lipid homeostasis-related genes in rat offspring prenatally exposed to BPA. To further understand the impacts of prenatal BPA exposure, we analyzed lipidomic profiles in the postnatal day (PND) 21 and 60 rats using a high-resolution QTOF mass spectrometer coupled with a HPLC system. We found that the total lipid content was significantly decreased in PND21 females prenatally exposed to 5000 μg/kg bw/day of BPA. Levels of total fatty acids, acylcarnitines, and monoacylglycerols significantly increased in both female and male BPA-exposed rats at PND21. An elevation in total cholesterol esters and reductions in triacylglycerols and monogalactosyl diacylglycerols were found only in PND21 females prenatally exposed to BPA. Interestingly, opposite responses were observed for phospholipids and sphingolipids between PND21 females and males following BPA exposure. The effects on the body weight and total lipid content were mitigated in the latter stage, although the alterations of lipid profiles continued until PND60. A Data Integration Analysis for Biomarker discovery using Latent cOmponents (DIABLO) revealed a high correlation of the lipidome with our previously published transcriptome data. DIABLO also identified potential biomarkers of prenatal exposure to BPA; glycerol-3-phosphate dehydrogenase 1 (Gpd1) and glyceronephosphate O-acyltransferase (Gnpat), which are involved in the glycerophospholipid metabolism, in females and males, respectively. Collectively, we highlighted the sex- and age-dependent effects of prenatal BPA exposure on hepatic lipid homeostasis in rat offspring.
Collapse
Affiliation(s)
- Hoa Thanh Nguyen
- Center for Marine Environmental Studies, Ehime University, Matsuyama 790-8577, Japan
| | - Lingyun Li
- Wadsworth Center, New York State Department of Health, Albany, NY 12201, United States
| | - Akifumi Eguchi
- Center for Preventive Medical Sciences, Chiba University, Chiba 263-0022, Japan
| | - Kurunthachalam Kannan
- Wadsworth Center, New York State Department of Health, Albany, NY 12201, United States; Department of Pediatrics, New York University School of Medicine, New York, NY 10016, United States; Department of Environmental Medicine, New York University School of Medicine, New York, NY 10016, United States
| | - Eun-Young Kim
- Department of Life and Nanopharmaceutical Science and Department of Biology, Kyung Hee University, Seoul 130-701, Republic of Korea
| | - Hisato Iwata
- Center for Marine Environmental Studies, Ehime University, Matsuyama 790-8577, Japan.
| |
Collapse
|
4
|
Jo DS, Cho DH. Peroxisomal dysfunction in neurodegenerative diseases. Arch Pharm Res 2019; 42:393-406. [PMID: 30739266 DOI: 10.1007/s12272-019-01131-2] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2018] [Accepted: 02/03/2019] [Indexed: 01/06/2023]
Abstract
Peroxisomes and their (patho-)physiological importance in heath and disease have attracted increasing interest during last few decades. Together with mitochondria, peroxisomes comprise key metabolic platforms for oxidation of various fatty acids and redox regulation. In addition, peroxisomes contribute to bile acid, cholesterol, and plasmalogen biosynthesis. The importance of functional peroxisomes for cellular metabolism is demonstrated by the marked brain and systemic organ abnormalities occuring in peroxisome biogenesis disorders and peroxisomal enzyme deficiencies. Current evidences indicate that peroxisomal function is declined with aging, with peroxisomal dysfunction being linked to early onset of multiple age-related diseases including neurodegenerative diseases. Herein, we review recent progress toward understanding the physiological roles and pathological implications of peroxisomal dysfunctions, focusing on neurodegenerative disease.
Collapse
Affiliation(s)
- Doo Sin Jo
- School of Life Sciences, Kyungpook National University, 80 Daehakro Bukgu, Daegu, 41566, Republic of Korea
| | - Dong-Hyung Cho
- School of Life Sciences, Kyungpook National University, 80 Daehakro Bukgu, Daegu, 41566, Republic of Korea.
| |
Collapse
|
5
|
Cipolla CM, Lodhi IJ. Peroxisomal Dysfunction in Age-Related Diseases. Trends Endocrinol Metab 2017; 28:297-308. [PMID: 28063767 PMCID: PMC5366081 DOI: 10.1016/j.tem.2016.12.003] [Citation(s) in RCA: 119] [Impact Index Per Article: 14.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/31/2016] [Revised: 12/04/2016] [Accepted: 12/07/2016] [Indexed: 12/21/2022]
Abstract
Peroxisomes carry out many key functions related to lipid and reactive oxygen species (ROS) metabolism. The fundamental importance of peroxisomes for health in humans is underscored by the existence of devastating genetic disorders caused by impaired peroxisomal function or lack of peroxisomes. Emerging studies suggest that peroxisomal function may also be altered with aging and contribute to the pathogenesis of a variety of diseases, including diabetes and its related complications, neurodegenerative disorders, and cancer. With increasing evidence connecting peroxisomal dysfunction to the pathogenesis of these acquired diseases, the possibility of targeting peroxisomal function in disease prevention or treatment becomes intriguing. Here, we review recent developments in understanding the pathophysiological implications of peroxisomal dysfunctions outside the context of inherited peroxisomal disorders.
Collapse
Affiliation(s)
- Cynthia M Cipolla
- Division of Endocrinology, Metabolism & Lipid Research, Department of Medicine, Washington University School of Medicine, Saint Louis, MO 63110, USA
| | - Irfan J Lodhi
- Division of Endocrinology, Metabolism & Lipid Research, Department of Medicine, Washington University School of Medicine, Saint Louis, MO 63110, USA.
| |
Collapse
|