1
|
The Role of Tryptophan Dysmetabolism and Quinolinic Acid in Depressive and Neurodegenerative Diseases. Biomolecules 2022; 12:biom12070998. [PMID: 35883554 PMCID: PMC9313172 DOI: 10.3390/biom12070998] [Citation(s) in RCA: 68] [Impact Index Per Article: 22.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2022] [Revised: 07/04/2022] [Accepted: 07/14/2022] [Indexed: 02/04/2023] Open
Abstract
Emerging evidence suggests that neuroinflammation is involved in both depression and neurodegenerative diseases. The kynurenine pathway, generating metabolites which may play a role in pathogenesis, is one of several competing pathways of tryptophan metabolism. The present article is a narrative review of tryptophan metabolism, neuroinflammation, depression, and neurodegeneration. A disturbed tryptophan metabolism with increased activity of the kynurenine pathway and production of quinolinic acid may result in deficiencies in tryptophan and derived neurotransmitters. Quinolinic acid is an N-methyl-D-aspartate receptor agonist, and raised levels in CSF, together with increased levels of inflammatory cytokines, have been reported in mood disorders. Increased quinolinic acid has also been observed in neurodegenerative diseases, including Parkinson’s disease, Alzheimer’s disease, amyotrophic lateral sclerosis, and HIV-related cognitive decline. Oxidative stress in connection with increased indole-dioxygenase (IDO) activity and kynurenine formation may contribute to inflammatory responses and the production of cytokines. Increased formation of quinolinic acid may occur at the expense of kynurenic acid and neuroprotective picolinic acid. While awaiting ongoing research on potential pharmacological interventions on tryptophan metabolism, adequate protein intake with appropriate amounts of tryptophan and antioxidants may offer protection against oxidative stress and provide a balanced set of physiological receptor ligands.
Collapse
|
2
|
Fridjonsdottir E, Shariatgorji R, Nilsson A, Vallianatou T, Odell LR, Schembri LS, Svenningsson P, Fernagut PO, Crossman AR, Bezard E, Andrén PE. Mass spectrometry imaging identifies abnormally elevated brain l-DOPA levels and extrastriatal monoaminergic dysregulation in l-DOPA-induced dyskinesia. SCIENCE ADVANCES 2021; 7:7/2/eabe5948. [PMID: 33523980 PMCID: PMC7787486 DOI: 10.1126/sciadv.abe5948] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/01/2020] [Accepted: 11/10/2020] [Indexed: 05/20/2023]
Abstract
l-DOPA treatment for Parkinson's disease frequently leads to dyskinesias, the pathophysiology of which is poorly understood. We used MALDI-MSI to map the distribution of l-DOPA and monoaminergic pathways in brains of dyskinetic and nondyskinetic primates. We report elevated levels of l-DOPA, and its metabolite 3-O-methyldopa, in all measured brain regions of dyskinetic animals and increases in dopamine and metabolites in all regions analyzed except the striatum. In dyskinesia, dopamine levels correlated well with l-DOPA levels in extrastriatal regions, such as hippocampus, amygdala, bed nucleus of the stria terminalis, and cortical areas, but not in the striatum. Our results demonstrate that l-DOPA-induced dyskinesia is linked to a dysregulation of l-DOPA metabolism throughout the brain. The inability of extrastriatal brain areas to regulate the formation of dopamine during l-DOPA treatment introduces the potential of dopamine or even l-DOPA itself to modulate neuronal signaling widely across the brain, resulting in unwanted side effects.
Collapse
Affiliation(s)
- Elva Fridjonsdottir
- Medical Mass Spectrometry Imaging, Department of Pharmaceutical Biosciences, Uppsala University, Uppsala, Sweden
| | - Reza Shariatgorji
- Medical Mass Spectrometry Imaging, Department of Pharmaceutical Biosciences, Uppsala University, Uppsala, Sweden
- Science for Life Laboratory, National Resource for Mass Spectrometry Imaging, Uppsala University, Uppsala, Sweden
| | - Anna Nilsson
- Medical Mass Spectrometry Imaging, Department of Pharmaceutical Biosciences, Uppsala University, Uppsala, Sweden
- Science for Life Laboratory, National Resource for Mass Spectrometry Imaging, Uppsala University, Uppsala, Sweden
| | - Theodosia Vallianatou
- Medical Mass Spectrometry Imaging, Department of Pharmaceutical Biosciences, Uppsala University, Uppsala, Sweden
| | - Luke R Odell
- Department of Medicinal Chemistry, Uppsala University, Uppsala, Sweden
| | - Luke S Schembri
- Medical Mass Spectrometry Imaging, Department of Pharmaceutical Biosciences, Uppsala University, Uppsala, Sweden
- Science for Life Laboratory, National Resource for Mass Spectrometry Imaging, Uppsala University, Uppsala, Sweden
| | - Per Svenningsson
- Section of Neurology, Department of Clinical Neuroscience, Karolinska Institutet, Stockholm, Sweden
| | - Pierre-Olivier Fernagut
- Université de Bordeaux, Institut des Maladies Neurodégénératives, Bordeaux, France
- CNRS, Institut des Maladies Neurodégénératives, Bordeaux, France
- Université de Poitiers, INSERM, U0-1084, Laboratoire de Neurosciences Expérimentales et Cliniques, Poitiers, France
| | | | - Erwan Bezard
- Université de Bordeaux, Institut des Maladies Neurodégénératives, Bordeaux, France.
- CNRS, Institut des Maladies Neurodégénératives, Bordeaux, France
- Motac Neuroscience, Manchester M15 6WE, UK
| | - Per E Andrén
- Medical Mass Spectrometry Imaging, Department of Pharmaceutical Biosciences, Uppsala University, Uppsala, Sweden.
- Science for Life Laboratory, National Resource for Mass Spectrometry Imaging, Uppsala University, Uppsala, Sweden
| |
Collapse
|
3
|
Veyres N, Hamadjida A, Huot P. Predictive Value of Parkinsonian Primates in Pharmacologic Studies: A Comparison between the Macaque, Marmoset, and Squirrel Monkey. J Pharmacol Exp Ther 2018; 365:379-397. [PMID: 29523699 DOI: 10.1124/jpet.117.247171] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2017] [Accepted: 03/06/2018] [Indexed: 03/08/2025] Open
Abstract
The 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP)-lesioned primate is the gold-standard animal model of Parkinson disease (PD) and has been used to assess the effectiveness of experimental drugs on dyskinesia, parkinsonism, and psychosis. Three species have been used in most studies-the macaque, marmoset, and squirrel monkey-the last much less so than the first two species; however, the predictive value of each species at forecasting clinical efficacy, or lack thereof, is poorly documented. Here, we have reviewed all the published literature detailing pharmacologic studies that assessed the effects of experimental drugs on dyskinesia, parkinsonism, and psychosis in each of these species and have calculated their predictive value of success and failure at the clinical level. We found that, for dyskinesia, the macaque has a positive predictive value of 87.5% and a false-positive rate of 38.1%, whereas the marmoset has a positive predictive value of 76.9% and a false-positive rate of 15.6%. For parkinsonism, the macaque has a positive predictive value of 68.2% and a false-positive rate of 44.4%, whereas the marmoset has a positive predictive value of 86.9% and a false-positive rate of 41.7%. No drug that alleviates psychosis in the clinic has shown efficacy at doing so in the macaque, whereas the marmoset has 100% positive predictive value. The small number of studies conducted in the squirrel monkey precluded us from calculating its predictive efficacy. We hope our results will help in the design of pharmacologic experiments and will facilitate the drug discovery and development process in PD.
Collapse
Affiliation(s)
- Nicolas Veyres
- Centre de Recherche du Centre Hospitalier de l'Université de Montréal (N.V.),Montreal Neurological Institute (A.H.,P.H.), and Department of Neurology and Neurosurgery, McGill University (P.H.), Montreal, Quebec, Canada
| | - Adjia Hamadjida
- Centre de Recherche du Centre Hospitalier de l'Université de Montréal (N.V.),Montreal Neurological Institute (A.H.,P.H.), and Department of Neurology and Neurosurgery, McGill University (P.H.), Montreal, Quebec, Canada
| | - Philippe Huot
- Centre de Recherche du Centre Hospitalier de l'Université de Montréal (N.V.),Montreal Neurological Institute (A.H.,P.H.), and Department of Neurology and Neurosurgery, McGill University (P.H.), Montreal, Quebec, Canada
| |
Collapse
|
4
|
Ko WKD, Li Q, Cheng LY, Morelli M, Carta M, Bezard E. A preclinical study on the combined effects of repeated eltoprazine and preladenant treatment for alleviating L-DOPA-induced dyskinesia in Parkinson's disease. Eur J Pharmacol 2017; 813:10-16. [DOI: 10.1016/j.ejphar.2017.07.030] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2017] [Revised: 07/15/2017] [Accepted: 07/17/2017] [Indexed: 12/23/2022]
|
5
|
Involvement of the kynurenine pathway in the pathogenesis of Parkinson’s disease. Prog Neurobiol 2017; 155:76-95. [DOI: 10.1016/j.pneurobio.2015.12.009] [Citation(s) in RCA: 86] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2015] [Revised: 12/18/2015] [Accepted: 12/30/2015] [Indexed: 12/14/2022]
|
6
|
Ko WKD, Camus SM, Li Q, Yang J, McGuire S, Pioli EY, Bezard E. An evaluation of istradefylline treatment on Parkinsonian motor and cognitive deficits in 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP)-treated macaque models. Neuropharmacology 2016; 110:48-58. [PMID: 27424102 DOI: 10.1016/j.neuropharm.2016.07.012] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2016] [Revised: 07/08/2016] [Accepted: 07/12/2016] [Indexed: 01/27/2023]
Abstract
Istradefylline (KW-6002), an adenosine A2A receptor antagonist, is used adjunct with optimal doses of L-3,4-dihydroxyphenylalanine (l-DOPA) to extend on-time in Parkinson's disease (PD) patients experiencing motor fluctuations. Clinical application of istradefylline for the management of other l-DOPA-induced complications, both motor and non-motor related (i.e. dyskinesia and cognitive impairments), remains to be determined. In this study, acute effects of istradefylline (60-100 mg/kg) alone, or with optimal and sub-optimal doses of l-DOPA, were evaluated in two monkey models of PD (i) the gold-standard 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP)-treated macaque model of parkinsonian and dyskinetic motor symptoms and (ii) the chronic low dose (CLD) MPTP-treated macaque model of cognitive (working memory and attentional) deficits. Behavioural analyses in l-DOPA-primed MPTP-treated macaques showed that istradefylline alone specifically alleviated postural deficits. When combined with an optimal l-DOPA treatment dose, istradefylline increased on-time, enhanced therapeutic effects on bradykinesia and locomotion, but exacerbated dyskinesia. Istradefylline treatment at specific doses with sub-optimal l-DOPA specifically alleviated bradykinesia. Cognitive assessments in CLD MPTP-treated macaques showed that the attentional and working memory deficits caused by l-DOPA were lowered after istradefylline administration. Taken together, these data support a broader clinical use of istradefylline as an adjunct treatment in PD, where specific treatment combinations can be utilised to manage various l-DOPA-induced complications, which importantly, maintain a desired anti-parkinsonian response.
Collapse
Affiliation(s)
- Wai Kin D Ko
- Motac Neuroscience Ltd, Manchester, United Kingdom.
| | | | - Qin Li
- Motac Neuroscience Ltd, Manchester, United Kingdom
| | | | | | - Elsa Y Pioli
- Motac Neuroscience Ltd, Manchester, United Kingdom
| | - Erwan Bezard
- Motac Neuroscience Ltd, Manchester, United Kingdom; Univ. de Bordeaux, Institut des Maladies Neurodégénératives, UMR 5293, F-33000 Bordeaux, France; CNRS, Institut des Maladies Neurodégénératives, UMR 5293, F-33000 Bordeaux, France
| |
Collapse
|
7
|
De Deurwaerdère P, Di Giovanni G, Millan MJ. Expanding the repertoire of L-DOPA's actions: A comprehensive review of its functional neurochemistry. Prog Neurobiol 2016; 151:57-100. [PMID: 27389773 DOI: 10.1016/j.pneurobio.2016.07.002] [Citation(s) in RCA: 93] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2016] [Revised: 06/18/2016] [Accepted: 07/03/2016] [Indexed: 01/11/2023]
Abstract
Though a multi-facetted disorder, Parkinson's disease is prototypically characterized by neurodegeneration of nigrostriatal dopaminergic neurons of the substantia nigra pars compacta, leading to a severe disruption of motor function. Accordingly, L-DOPA, the metabolic precursor of dopamine (DA), is well-established as a treatment for the motor deficits of Parkinson's disease despite long-term complications such as dyskinesia and psychiatric side-effects. Paradoxically, however, despite the traditional assumption that L-DOPA is transformed in residual striatal dopaminergic neurons into DA, the mechanism of action of L-DOPA is neither simple nor entirely clear. Herein, focussing on its influence upon extracellular DA and other neuromodulators in intact animals and experimental models of Parkinson's disease, we highlight effects other than striatal generation of DA in the functional profile of L-DOPA. While not excluding a minor role for glial cells, L-DOPA is principally transformed into DA in neurons yet, interestingly, with a more important role for serotonergic than dopaminergic projections. Moreover, in addition to the striatum, L-DOPA evokes marked increases in extracellular DA in frontal cortex, nucleus accumbens, the subthalamic nucleus and additional extra-striatal regions. In considering its functional profile, it is also important to bear in mind the marked (probably indirect) influence of L-DOPA upon cholinergic, GABAergic and glutamatergic neurons in the basal ganglia and/or cortex, while anomalous serotonergic transmission is incriminated in the emergence of L-DOPA elicited dyskinesia and psychosis. Finally, L-DOPA may exert intrinsic receptor-mediated actions independently of DA neurotransmission and can be processed into bioactive metabolites. In conclusion, L-DOPA exerts a surprisingly complex pattern of neurochemical effects of much greater scope that mere striatal transformation into DA in spared dopaminergic neurons. Their further experimental and clinical clarification should help improve both L-DOPA-based and novel strategies for controlling the motor and other symptoms of Parkinson's disease.
Collapse
Affiliation(s)
- Philippe De Deurwaerdère
- CNRS (Centre National de la Recherche Scientifique), Institut des Maladies Neurodégénératives, UMR CNRS 5293, F-33000 Bordeaux, France.
| | - Giuseppe Di Giovanni
- Neuroscience Division, School of Biosciences, Cardiff University, Cardiff, UK; Department of Physiology & Biochemistry, Faculty of Medicine and Surgery, University of Malta, Malta
| | - Mark J Millan
- Institut de Recherche Servier, Pole for Therapeutic Innovation in Neuropsychiatry, 78290 Croissy/Seine,Paris, France
| |
Collapse
|
8
|
Pinna A, Ko WKD, Costa G, Tronci E, Fidalgo C, Simola N, Li Q, Tabrizi MA, Bezard E, Carta M, Morelli M. Antidyskinetic effect of A2Aand 5HT1A/1Breceptor ligands in two animal models of Parkinson's disease. Mov Disord 2016; 31:501-11. [DOI: 10.1002/mds.26475] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2015] [Revised: 09/28/2015] [Accepted: 10/11/2015] [Indexed: 11/06/2022] Open
Affiliation(s)
- Annalisa Pinna
- National Research Council of Italy, Neuroscience Institute; Cagliari Italy
| | - Wai Kin D. Ko
- Motac Neuroscience Ltd; Manchester UK
- Institute of Laboratory Animal Sciences, China Academy of Medical Sciences; Beijing China
| | - Giulia Costa
- Department of Biomedical Sciences, section of Neuropsychopharmacology; University of Cagliari; Cagliari Italy
| | - Elisabetta Tronci
- Department of Biomedical Sciences, section of Physiology; University of Cagliari; Cagliari Italy
| | - Camino Fidalgo
- Department of Biomedical Sciences, section of Physiology; University of Cagliari; Cagliari Italy
| | - Nicola Simola
- Department of Biomedical Sciences, section of Neuropsychopharmacology; University of Cagliari; Cagliari Italy
| | - Qin Li
- Motac Neuroscience Ltd; Manchester UK
- Institute of Laboratory Animal Sciences, China Academy of Medical Sciences; Beijing China
| | | | - Erwan Bezard
- Motac Neuroscience Ltd; Manchester UK
- Université de Bordeaux, Institut des Maladies Neurodégénératives; Bordeaux France
- CNRS, Institut des Maladies Neurodégénératives; Bordeaux France
- Institute of Laboratory Animal Sciences, China Academy of Medical Sciences; Beijing China
| | - Manolo Carta
- Department of Biomedical Sciences, section of Physiology; University of Cagliari; Cagliari Italy
| | - Micaela Morelli
- National Research Council of Italy, Neuroscience Institute; Cagliari Italy
- Department of Biomedical Sciences, section of Neuropsychopharmacology; University of Cagliari; Cagliari Italy
| |
Collapse
|
9
|
Bastide MF, Meissner WG, Picconi B, Fasano S, Fernagut PO, Feyder M, Francardo V, Alcacer C, Ding Y, Brambilla R, Fisone G, Jon Stoessl A, Bourdenx M, Engeln M, Navailles S, De Deurwaerdère P, Ko WKD, Simola N, Morelli M, Groc L, Rodriguez MC, Gurevich EV, Quik M, Morari M, Mellone M, Gardoni F, Tronci E, Guehl D, Tison F, Crossman AR, Kang UJ, Steece-Collier K, Fox S, Carta M, Angela Cenci M, Bézard E. Pathophysiology of L-dopa-induced motor and non-motor complications in Parkinson's disease. Prog Neurobiol 2015. [PMID: 26209473 DOI: 10.1016/j.pneurobio.2015.07.002] [Citation(s) in RCA: 358] [Impact Index Per Article: 35.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Involuntary movements, or dyskinesia, represent a debilitating complication of levodopa (L-dopa) therapy for Parkinson's disease (PD). L-dopa-induced dyskinesia (LID) are ultimately experienced by the vast majority of patients. In addition, psychiatric conditions often manifested as compulsive behaviours, are emerging as a serious problem in the management of L-dopa therapy. The present review attempts to provide an overview of our current understanding of dyskinesia and other L-dopa-induced dysfunctions, a field that dramatically evolved in the past twenty years. In view of the extensive literature on LID, there appeared a critical need to re-frame the concepts, to highlight the most suitable models, to review the central nervous system (CNS) circuitry that may be involved, and to propose a pathophysiological framework was timely and necessary. An updated review to clarify our understanding of LID and other L-dopa-related side effects was therefore timely and necessary. This review should help in the development of novel therapeutic strategies aimed at preventing the generation of dyskinetic symptoms.
Collapse
Affiliation(s)
- Matthieu F Bastide
- Univ. de Bordeaux, Institut des Maladies Neurodégénératives, UMR 5293, 33000 Bordeaux, France; CNRS, Institut des Maladies Neurodégénératives, UMR 5293, 33000 Bordeaux, France
| | - Wassilios G Meissner
- Univ. de Bordeaux, Institut des Maladies Neurodégénératives, UMR 5293, 33000 Bordeaux, France; CNRS, Institut des Maladies Neurodégénératives, UMR 5293, 33000 Bordeaux, France; Department of Neurology, University Hospital Bordeaux, France
| | - Barbara Picconi
- Laboratory of Neurophysiology, Fondazione Santa Lucia, IRCCS, Rome, Italy
| | - Stefania Fasano
- Division of Neuroscience, Institute of Experimental Neurology, San Raffaele Scientific Institute, 20132 Milan, Italy
| | - Pierre-Olivier Fernagut
- Univ. de Bordeaux, Institut des Maladies Neurodégénératives, UMR 5293, 33000 Bordeaux, France; CNRS, Institut des Maladies Neurodégénératives, UMR 5293, 33000 Bordeaux, France
| | - Michael Feyder
- Department of Neuroscience, Karolinska Institutet, Stockholm, Sweden
| | - Veronica Francardo
- Basal Ganglia Pathophysiology Unit, Department of Experimental Medical Science, Lund University, Lund, Sweden
| | - Cristina Alcacer
- Basal Ganglia Pathophysiology Unit, Department of Experimental Medical Science, Lund University, Lund, Sweden
| | - Yunmin Ding
- Department of Neurology, Columbia University, New York, USA
| | - Riccardo Brambilla
- Division of Neuroscience, Institute of Experimental Neurology, San Raffaele Scientific Institute, 20132 Milan, Italy
| | - Gilberto Fisone
- Department of Neuroscience, Karolinska Institutet, Stockholm, Sweden
| | - A Jon Stoessl
- Pacific Parkinson's Research Centre and National Parkinson Foundation Centre of Excellence, University of British Columbia, Vancouver, Canada
| | - Mathieu Bourdenx
- Univ. de Bordeaux, Institut des Maladies Neurodégénératives, UMR 5293, 33000 Bordeaux, France; CNRS, Institut des Maladies Neurodégénératives, UMR 5293, 33000 Bordeaux, France
| | - Michel Engeln
- Univ. de Bordeaux, Institut des Maladies Neurodégénératives, UMR 5293, 33000 Bordeaux, France; CNRS, Institut des Maladies Neurodégénératives, UMR 5293, 33000 Bordeaux, France
| | - Sylvia Navailles
- Univ. de Bordeaux, Institut des Maladies Neurodégénératives, UMR 5293, 33000 Bordeaux, France; CNRS, Institut des Maladies Neurodégénératives, UMR 5293, 33000 Bordeaux, France
| | - Philippe De Deurwaerdère
- Univ. de Bordeaux, Institut des Maladies Neurodégénératives, UMR 5293, 33000 Bordeaux, France; CNRS, Institut des Maladies Neurodégénératives, UMR 5293, 33000 Bordeaux, France
| | - Wai Kin D Ko
- Univ. de Bordeaux, Institut des Maladies Neurodégénératives, UMR 5293, 33000 Bordeaux, France; CNRS, Institut des Maladies Neurodégénératives, UMR 5293, 33000 Bordeaux, France
| | - Nicola Simola
- Department of Biomedical Sciences, Section of Neuropsychopharmacology, Cagliari University, 09124 Cagliari, Italy
| | - Micaela Morelli
- Department of Biomedical Sciences, Section of Neuropsychopharmacology, Cagliari University, 09124 Cagliari, Italy
| | - Laurent Groc
- Univ. de Bordeaux, Institut Interdisciplinaire de neurosciences, UMR 5297, 33000 Bordeaux, France; CNRS, Institut Interdisciplinaire de neurosciences, UMR 5297, 33000 Bordeaux, France
| | - Maria-Cruz Rodriguez
- Department of Neurology, Hospital Universitario Donostia and Neuroscience Unit, Bio Donostia Research Institute, San Sebastian, Spain
| | - Eugenia V Gurevich
- Department of Pharmacology, Vanderbilt University Medical Center, Nashville, TN 37232, USA
| | - Maryka Quik
- Center for Health Sciences, SRI International, CA 94025, USA
| | - Michele Morari
- Department of Medical Sciences, Section of Pharmacology, University of Ferrara, Ferrara, Italy
| | - Manuela Mellone
- Dipartimento di Scienze Farmacologiche e Biomolecolari, Università degli Studi di Milano, 20133 Milano, Italy
| | - Fabrizio Gardoni
- Dipartimento di Scienze Farmacologiche e Biomolecolari, Università degli Studi di Milano, 20133 Milano, Italy
| | - Elisabetta Tronci
- Department of Biomedical Sciences, Physiology Section, Cagliari University, Cagliari, Italy
| | - Dominique Guehl
- Univ. de Bordeaux, Institut des Maladies Neurodégénératives, UMR 5293, 33000 Bordeaux, France; CNRS, Institut des Maladies Neurodégénératives, UMR 5293, 33000 Bordeaux, France
| | - François Tison
- Univ. de Bordeaux, Institut des Maladies Neurodégénératives, UMR 5293, 33000 Bordeaux, France; CNRS, Institut des Maladies Neurodégénératives, UMR 5293, 33000 Bordeaux, France; Department of Neurology, University Hospital Bordeaux, France
| | | | - Un Jung Kang
- Basal Ganglia Pathophysiology Unit, Department of Experimental Medical Science, Lund University, Lund, Sweden
| | - Kathy Steece-Collier
- Michigan State University, College of Human Medicine, Department of Translational Science and Molecular Medicine & The Udall Center of Excellence in Parkinson's Disease Research, 333 Bostwick Ave NE, Grand Rapids, MI 49503, USA
| | - Susan Fox
- Morton & Gloria Shulman Movement Disorders Center, Toronto Western Hospital, Toronto, Ontario M4T 2S8, Canada
| | - Manolo Carta
- Department of Biomedical Sciences, Physiology Section, Cagliari University, Cagliari, Italy
| | - M Angela Cenci
- Basal Ganglia Pathophysiology Unit, Department of Experimental Medical Science, Lund University, Lund, Sweden
| | - Erwan Bézard
- Univ. de Bordeaux, Institut des Maladies Neurodégénératives, UMR 5293, 33000 Bordeaux, France; CNRS, Institut des Maladies Neurodégénératives, UMR 5293, 33000 Bordeaux, France; Motac Neuroscience Ltd, Manchester, UK.
| |
Collapse
|