1
|
Kolanek A, Cemaga R, Maciejczyk M. Role and Diagnostic Significance of Apolipoprotein D in Selected Neurodegenerative Disorders. Diagnostics (Basel) 2024; 14:2814. [PMID: 39767175 PMCID: PMC11675071 DOI: 10.3390/diagnostics14242814] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2024] [Revised: 12/08/2024] [Accepted: 12/13/2024] [Indexed: 01/11/2025] Open
Abstract
The World Health Organization in 2021 ranked Alzheimer's disease and other dementias as the seventh leading cause of death globally. Neurodegenerative disorders are progressive, intractable, and often fatal diseases. Early diagnosis may allow patients to enjoy prolonged survival with attenuated symptomatology because of early intervention. Hence, further research on finding non-invasive biomarkers of neurodegenerative diseases is warranted. Apolipoprotein D (ApoD) is a glycoprotein involved in lipid metabolism, oxidative stress regulation, and inflammation. It is expressed in various body fluids and regions of the central nervous system. ApoD's roles in neuroprotection, lipid transport, and anti-inflammatory processes are crucial as far as the prevention of neurodegenerative pathologies is concerned. This review aims to summarize the background knowledge on ApoD, and it covers studies indexed in the PubMed, Scopus, and Web of Science databases. It discusses the evidence for the multifaceted roles of ApoD in the mechanisms and pathogenesis of multiple sclerosis, Alzheimer's disease, and Parkinson's disease. ApoD may be a specific, sensitive, easily obtained, cost-effective biomarker for neurodegenerative diseases and its applications in diagnostic practices, treatment strategies, and advancing neurodegenerative disorders' management.
Collapse
Affiliation(s)
- Agata Kolanek
- Students’ Scientific Club “Biochemistry of Civilization Diseases” at the Department of Hygiene, Epidemiology and Ergonomics, Medical University of Bialystok, 15-233 Bialystok, Poland; (A.K.); (R.C.)
| | - Roman Cemaga
- Students’ Scientific Club “Biochemistry of Civilization Diseases” at the Department of Hygiene, Epidemiology and Ergonomics, Medical University of Bialystok, 15-233 Bialystok, Poland; (A.K.); (R.C.)
| | - Mateusz Maciejczyk
- Department of Hygiene, Epidemiology and Ergonomics, Medical University of Bialystok, 2c Mickiewicza Street, 15-233 Bialystok, Poland
| |
Collapse
|
2
|
Liao H, Ma H, Meng H, Kang N, Wang L. Ropinirole suppresses LPS-induced periodontal inflammation by inhibiting the NAT10 in an ac4C-dependent manner. BMC Oral Health 2024; 24:510. [PMID: 38689229 PMCID: PMC11059654 DOI: 10.1186/s12903-024-04250-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2024] [Accepted: 04/11/2024] [Indexed: 05/02/2024] Open
Abstract
BACKGROUND Periodontitis is a chronic osteolytic inflammatory disease, where anti-inflammatory intervention is critical for restricting periodontal damage and regenerating alveolar bone. Ropinirole, a dopamine D2 receptor agonist, has previously shown therapeutic potential for periodontitis but the underlying mechanism is still unclear. METHODS Human gingival fibroblasts (HGFs) treated with LPS were considered to mimic periodontitis in vitro. The dosage of Ropinirole was selected through the cell viability of HGFs evaluation. The protective effects of Ropinirole on HGFs were evaluated by detecting cell viability, cell apoptosis, and pro-inflammatory factor levels. The molecular docking between NAT10 and Ropinirole was performed. The interaction relationship between NAT10 and KLF6 was verified by ac4C Acetylated RNA Immunoprecipitation followed by qPCR (acRIP-qPCR) and dual-luciferase reporter assay. RESULTS Ropinirole alleviates LPS-induced damage of HGFs by promoting cell viability, inhibiting cell apoptosis and the levels of IL-1β, IL-18, and TNF-α. Overexpression of NAT10 weakens the effects of Ropinirole on protecting HGFs. Meanwhile, NAT10-mediated ac4C RNA acetylation promotes KLF6 mRNA stability. Upregulation of KLF6 reversed the effects of NAT10 inhibition on HGFs. CONCLUSIONS Taken together, Ropinirole protected HGFs through inhibiting the NAT10 ac4C RNA acetylation to decrease the KLF6 mRNA stability from LPS injury. The discovery of this pharmacological and molecular mechanism of Ropinirole further strengthens its therapeutic potential for periodontitis.
Collapse
Affiliation(s)
- Haiqing Liao
- Guangxi Key Laboratory of Oral and Maxillofacial Rehabilitation and Reconstruction & Guangxi Health Commission Key Laboratory of Prevention and Treatment for Oral Infectious Diseases & College and Hospital of Stomatology, Guangxi Medical University, No.10, Shuangyong Road, Nanning, 530021, Guangxi, China
| | - Huabing Ma
- Guangxi Key Laboratory of Oral and Maxillofacial Rehabilitation and Reconstruction & Guangxi Health Commission Key Laboratory of Prevention and Treatment for Oral Infectious Diseases & College and Hospital of Stomatology, Guangxi Medical University, No.10, Shuangyong Road, Nanning, 530021, Guangxi, China
| | - Hongying Meng
- Guangxi Key Laboratory of Oral and Maxillofacial Rehabilitation and Reconstruction & Guangxi Health Commission Key Laboratory of Prevention and Treatment for Oral Infectious Diseases & College and Hospital of Stomatology, Guangxi Medical University, No.10, Shuangyong Road, Nanning, 530021, Guangxi, China
| | - Na Kang
- Guangxi Key Laboratory of Oral and Maxillofacial Rehabilitation and Reconstruction & Guangxi Health Commission Key Laboratory of Prevention and Treatment for Oral Infectious Diseases & College and Hospital of Stomatology, Guangxi Medical University, No.10, Shuangyong Road, Nanning, 530021, Guangxi, China.
| | - Lufei Wang
- Guangxi Key Laboratory of Oral and Maxillofacial Rehabilitation and Reconstruction & Guangxi Health Commission Key Laboratory of Prevention and Treatment for Oral Infectious Diseases & College and Hospital of Stomatology, Guangxi Medical University, No.10, Shuangyong Road, Nanning, 530021, Guangxi, China.
| |
Collapse
|
3
|
Wang X, Dong T, Li X, Yu W, Jia Z, Liu Y, Yang J. Global biomarker trends in Parkinson's disease research: A bibliometric analysis. Heliyon 2024; 10:e27437. [PMID: 38501016 PMCID: PMC10945172 DOI: 10.1016/j.heliyon.2024.e27437] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2023] [Revised: 12/11/2023] [Accepted: 02/28/2024] [Indexed: 03/20/2024] Open
Abstract
As the second most common neurodegenerative disease globally, Parkinson's disease (PD) affects millions of people worldwide. In recent years, the scientific publications related to PD biomarker research have exploded, reflecting the growing interest in unraveling the complex pathophysiology of PD. In this study, we aim to use various bibliometric tools to identify key scientific concepts, detect emerging trends, and analyze the global trends and development of PD biomarker research.The research encompasses various stages of biomarker development, including exploration, identification, and multi-modal research. MOVEMENT DISORDERS emerged as the leading journal in terms of publications and citations. Key authors such as Mollenhauer and Salem were identified, while the University of Pennsylvania and USA stood out in collaboration and research output. NEUROSCIENCES emerged as the most important research direction. Key biomarker categories include α-synuclein-related markers, neurotransmitter-related markers, inflammation and immune system-related markers, oxidative stress and mitochondrial function-related markers, and brain imaging-related markers. Furthermore, future trends in PD biomarker research focus on exosomes and plasma biomarkers, miRNA, cerebrospinal fluid biomarkers, machine learning applications, and animal models of PD. These trends contribute to early diagnosis, disease progression monitoring, and understanding the pathological mechanisms of PD.
Collapse
Affiliation(s)
- Xingxin Wang
- School of Acupuncture-Moxibustion and Tuina, Shandong University of Traditional Chinese Medicine, Jinan, 250355, China
| | - Tiantian Dong
- School of Acupuncture-Moxibustion and Tuina, Shandong University of Traditional Chinese Medicine, Jinan, 250355, China
| | - Xuhao Li
- School of Acupuncture-Moxibustion and Tuina, Shandong University of Traditional Chinese Medicine, Jinan, 250355, China
| | - Wenyan Yu
- School of Acupuncture-Moxibustion and Tuina, Shandong University of Traditional Chinese Medicine, Jinan, 250355, China
| | - Zhixia Jia
- The First Clinical Medical College, Shandong University of Traditional Chinese Medicine, Jinan, 250355, China
| | - Yuanxiang Liu
- The First Clinical Medical College, Shandong University of Traditional Chinese Medicine, Jinan, 250355, China
| | - Jiguo Yang
- School of Acupuncture-Moxibustion and Tuina, Shandong University of Traditional Chinese Medicine, Jinan, 250355, China
| |
Collapse
|
4
|
Wang X, Dong T, Li X, Yu W, Jia Z, Liu Y, Yang J. Global biomarker trends in Parkinson's disease research: A bibliometric analysis. Heliyon 2024; 10:e27437. [PMID: 38501016 DOI: 10.1016/j.heliyon.2024.e27437if:] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2023] [Revised: 12/11/2023] [Accepted: 02/28/2024] [Indexed: 07/25/2024] Open
Abstract
As the second most common neurodegenerative disease globally, Parkinson's disease (PD) affects millions of people worldwide. In recent years, the scientific publications related to PD biomarker research have exploded, reflecting the growing interest in unraveling the complex pathophysiology of PD. In this study, we aim to use various bibliometric tools to identify key scientific concepts, detect emerging trends, and analyze the global trends and development of PD biomarker research.The research encompasses various stages of biomarker development, including exploration, identification, and multi-modal research. MOVEMENT DISORDERS emerged as the leading journal in terms of publications and citations. Key authors such as Mollenhauer and Salem were identified, while the University of Pennsylvania and USA stood out in collaboration and research output. NEUROSCIENCES emerged as the most important research direction. Key biomarker categories include α-synuclein-related markers, neurotransmitter-related markers, inflammation and immune system-related markers, oxidative stress and mitochondrial function-related markers, and brain imaging-related markers. Furthermore, future trends in PD biomarker research focus on exosomes and plasma biomarkers, miRNA, cerebrospinal fluid biomarkers, machine learning applications, and animal models of PD. These trends contribute to early diagnosis, disease progression monitoring, and understanding the pathological mechanisms of PD.
Collapse
Affiliation(s)
- Xingxin Wang
- School of Acupuncture-Moxibustion and Tuina, Shandong University of Traditional Chinese Medicine, Jinan, 250355, China
| | - Tiantian Dong
- School of Acupuncture-Moxibustion and Tuina, Shandong University of Traditional Chinese Medicine, Jinan, 250355, China
| | - Xuhao Li
- School of Acupuncture-Moxibustion and Tuina, Shandong University of Traditional Chinese Medicine, Jinan, 250355, China
| | - Wenyan Yu
- School of Acupuncture-Moxibustion and Tuina, Shandong University of Traditional Chinese Medicine, Jinan, 250355, China
| | - Zhixia Jia
- The First Clinical Medical College, Shandong University of Traditional Chinese Medicine, Jinan, 250355, China
| | - Yuanxiang Liu
- The First Clinical Medical College, Shandong University of Traditional Chinese Medicine, Jinan, 250355, China
| | - Jiguo Yang
- School of Acupuncture-Moxibustion and Tuina, Shandong University of Traditional Chinese Medicine, Jinan, 250355, China
| |
Collapse
|
5
|
Regan JT, Mirczuk SM, Scudder CJ, Stacey E, Khan S, Worwood M, Powles T, Dennis-Beron JS, Ginley-Hidinger M, McGonnell IM, Volk HA, Strickland R, Tivers MS, Lawson C, Lipscomb VJ, Fowkes RC. Sensitivity of the Natriuretic Peptide/cGMP System to Hyperammonaemia in Rat C6 Glioma Cells and GPNT Brain Endothelial Cells. Cells 2021; 10:cells10020398. [PMID: 33672024 PMCID: PMC7919485 DOI: 10.3390/cells10020398] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2020] [Revised: 02/05/2021] [Accepted: 02/11/2021] [Indexed: 12/16/2022] Open
Abstract
C-type natriuretic peptide (CNP) is the major natriuretic peptide of the central nervous system and acts via its selective guanylyl cyclase-B (GC-B) receptor to regulate cGMP production in neurons, astrocytes and endothelial cells. CNP is implicated in the regulation of neurogenesis, axonal bifurcation, as well as learning and memory. Several neurological disorders result in toxic concentrations of ammonia (hyperammonaemia), which can adversely affect astrocyte function. However, the relationship between CNP and hyperammonaemia is poorly understood. Here, we examine the molecular and pharmacological control of CNP in rat C6 glioma cells and rat GPNT brain endothelial cells, under conditions of hyperammonaemia. Concentration-dependent inhibition of C6 glioma cell proliferation by hyperammonaemia was unaffected by CNP co-treatment. Furthermore, hyperammonaemia pre-treatment (for 1 h and 24 h) caused a significant inhibition in subsequent CNP-stimulated cGMP accumulation in both C6 and GPNT cells, whereas nitric-oxide-dependent cGMP accumulation was not affected. CNP-stimulated cGMP efflux from C6 glioma cells was significantly reduced under conditions of hyperammonaemia, potentially via a mechanism involving changed in phosphodiesterase expression. Hyperammonaemia-stimulated ROS production was unaffected by CNP but enhanced by a nitric oxide donor in C6 cells. Extracellular vesicle production from C6 cells was enhanced by hyperammonaemia, and these vesicles caused impaired CNP-stimulated cGMP signalling in GPNT cells. Collectively, these data demonstrate functional interaction between CNP signalling and hyperammonaemia in C6 glioma and GPNT cells, but the exact mechanisms remain to be established.
Collapse
Affiliation(s)
- Jacob T. Regan
- Endocrine Signalling Group, Department of Comparative Biomedical Sciences, The Royal Veterinary College, University of London, Royal College Street, London NW1 0TU, UK; (J.T.R.); (S.M.M.); (C.J.S.); (E.S.); (S.K.); (M.W.); (T.P.); (J.S.D.-B.); (M.G.-H.)
| | - Samantha M. Mirczuk
- Endocrine Signalling Group, Department of Comparative Biomedical Sciences, The Royal Veterinary College, University of London, Royal College Street, London NW1 0TU, UK; (J.T.R.); (S.M.M.); (C.J.S.); (E.S.); (S.K.); (M.W.); (T.P.); (J.S.D.-B.); (M.G.-H.)
- Department of Comparative Biomedical Sciences, The Royal Veterinary College, University of London, Royal College Street, London NW1 0TU, UK; (I.M.M.); (C.L.)
| | - Christopher J. Scudder
- Endocrine Signalling Group, Department of Comparative Biomedical Sciences, The Royal Veterinary College, University of London, Royal College Street, London NW1 0TU, UK; (J.T.R.); (S.M.M.); (C.J.S.); (E.S.); (S.K.); (M.W.); (T.P.); (J.S.D.-B.); (M.G.-H.)
- Department of Comparative Biomedical Sciences, The Royal Veterinary College, University of London, Royal College Street, London NW1 0TU, UK; (I.M.M.); (C.L.)
| | - Emily Stacey
- Endocrine Signalling Group, Department of Comparative Biomedical Sciences, The Royal Veterinary College, University of London, Royal College Street, London NW1 0TU, UK; (J.T.R.); (S.M.M.); (C.J.S.); (E.S.); (S.K.); (M.W.); (T.P.); (J.S.D.-B.); (M.G.-H.)
| | - Sabah Khan
- Endocrine Signalling Group, Department of Comparative Biomedical Sciences, The Royal Veterinary College, University of London, Royal College Street, London NW1 0TU, UK; (J.T.R.); (S.M.M.); (C.J.S.); (E.S.); (S.K.); (M.W.); (T.P.); (J.S.D.-B.); (M.G.-H.)
| | - Michael Worwood
- Endocrine Signalling Group, Department of Comparative Biomedical Sciences, The Royal Veterinary College, University of London, Royal College Street, London NW1 0TU, UK; (J.T.R.); (S.M.M.); (C.J.S.); (E.S.); (S.K.); (M.W.); (T.P.); (J.S.D.-B.); (M.G.-H.)
| | - Torinn Powles
- Endocrine Signalling Group, Department of Comparative Biomedical Sciences, The Royal Veterinary College, University of London, Royal College Street, London NW1 0TU, UK; (J.T.R.); (S.M.M.); (C.J.S.); (E.S.); (S.K.); (M.W.); (T.P.); (J.S.D.-B.); (M.G.-H.)
| | - J. Sebastian Dennis-Beron
- Endocrine Signalling Group, Department of Comparative Biomedical Sciences, The Royal Veterinary College, University of London, Royal College Street, London NW1 0TU, UK; (J.T.R.); (S.M.M.); (C.J.S.); (E.S.); (S.K.); (M.W.); (T.P.); (J.S.D.-B.); (M.G.-H.)
| | - Matthew Ginley-Hidinger
- Endocrine Signalling Group, Department of Comparative Biomedical Sciences, The Royal Veterinary College, University of London, Royal College Street, London NW1 0TU, UK; (J.T.R.); (S.M.M.); (C.J.S.); (E.S.); (S.K.); (M.W.); (T.P.); (J.S.D.-B.); (M.G.-H.)
| | - Imelda M. McGonnell
- Department of Comparative Biomedical Sciences, The Royal Veterinary College, University of London, Royal College Street, London NW1 0TU, UK; (I.M.M.); (C.L.)
| | - Holger A. Volk
- Stiftung Tierärztliche Hochschule Hannover, Klinik für Kleintiere, Bünteweg, 930559 Hannover, Germany;
| | - Rhiannon Strickland
- Clinical Sciences & Services, Hawkshead Lane, North Mymms, Hatfield, Hertfordshire AL9 7TA, UK; (R.S.); (V.J.L.)
| | - Michael S. Tivers
- Paragon Veterinary Referrals, Paragon Business Village Paragon Way, Red Hall Cres, Wakefield WF1 2DF, UK;
| | - Charlotte Lawson
- Department of Comparative Biomedical Sciences, The Royal Veterinary College, University of London, Royal College Street, London NW1 0TU, UK; (I.M.M.); (C.L.)
| | - Victoria J. Lipscomb
- Clinical Sciences & Services, Hawkshead Lane, North Mymms, Hatfield, Hertfordshire AL9 7TA, UK; (R.S.); (V.J.L.)
| | - Robert C. Fowkes
- Endocrine Signalling Group, Department of Comparative Biomedical Sciences, The Royal Veterinary College, University of London, Royal College Street, London NW1 0TU, UK; (J.T.R.); (S.M.M.); (C.J.S.); (E.S.); (S.K.); (M.W.); (T.P.); (J.S.D.-B.); (M.G.-H.)
- Department of Comparative Biomedical Sciences, The Royal Veterinary College, University of London, Royal College Street, London NW1 0TU, UK; (I.M.M.); (C.L.)
- Correspondence: ; Tel.: +44-207-468-1215
| |
Collapse
|
6
|
Saller T, Peterss S, Scheiermann P, Eser-Valeri D, Ehler J, Bruegger D, Chappell D, Kofler O, Hagl C, Hofmann-Kiefer K. Natriuretic Peptides as a Prognostic Marker for Delirium in Cardiac Surgery-A Pilot Study. ACTA ACUST UNITED AC 2020; 56:medicina56060258. [PMID: 32471143 PMCID: PMC7353880 DOI: 10.3390/medicina56060258] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2020] [Revised: 05/19/2020] [Accepted: 05/22/2020] [Indexed: 11/16/2022]
Abstract
Background and Objectives: Delirium is a common and major complication subsequent to cardiac surgery. Despite scientific efforts, there are no parameters which reliably predict postoperative delirium. In delirium pathology, natriuretic peptides (NPs) interfere with the blood–brain barrier and thus promote delirium. Therefore, we aimed to assess whether NPs may predict postoperative delirium and long-term outcomes. Materials and Methods: To evaluate the predictive value of NPs for delirium we retrospectively analyzed data from a prospective, randomized study for serum levels of atrial natriuretic peptide (ANP) and the precursor of C-type natriuretic peptide (NT-proCNP) in patients undergoing coronary artery bypass grafting (CABG) with or without cardiopulmonary bypass (off-pump coronary bypass grafting; OPCAB). Delirium was assessed by a validated chart-based method. Long-term outcomes were assessed 10 years after surgery by a telephone interview. Results: The overall incidence of delirium in the total cohort was 48% regardless of the surgical approach (CABG vs. OPCAB). Serum ANP levels > 64.6 pg/mL predicted delirium with a sensitivity (95% confidence interval) of 100% (75.3–100) and specificity of 42.9% (17.7–71.1). Serum NT-proCNP levels >1.7 pg/mL predicted delirium with a sensitivity (95% confidence interval) of 92.3% (64.0–99.8) and specificity of 42.9% (17.7–71.1). Both NPs could not predict postoperative survival or long-term cognitive decline. Conclusions: We found a positive correlation between delirium and preoperative plasma levels of ANP and NT-proCNP. A well-powered and prospective study might identify NPs as biomarkers indicating the risk of delirium and postoperative cognitive decline in patients at risk for postoperative delirium.
Collapse
Affiliation(s)
- Thomas Saller
- Department of Anaesthesiology, University Hospital, LMU Munich, 81377 Munich, Germany; (P.S.); (D.B.); (O.K.); (K.H.-K.)
- Correspondence: ; Tel.: +49-89-4400-73410
| | - Sven Peterss
- Department of Cardiac Surgery, University Hospital, LMU Munich, 81377 Munich, Germany; (S.P.); (C.H.)
| | - Patrick Scheiermann
- Department of Anaesthesiology, University Hospital, LMU Munich, 81377 Munich, Germany; (P.S.); (D.B.); (O.K.); (K.H.-K.)
| | - Daniela Eser-Valeri
- Department of Psychiatry, University Hospital, LMU Munich, 80336 Munich, Germany;
| | - Johannes Ehler
- Department of Anaesthesiology and Intensive Care Medicine, University Medical Center, 18057 Rostock, Germany;
| | - Dirk Bruegger
- Department of Anaesthesiology, University Hospital, LMU Munich, 81377 Munich, Germany; (P.S.); (D.B.); (O.K.); (K.H.-K.)
| | - Daniel Chappell
- Clinic for Anaesthesia, Surgical Intensive Care, Emergency Medicine and Pain Therapy, Klinikum Frankfurt Hoechst, 65929 Frankfurt/Main, Germany;
| | - Othmar Kofler
- Department of Anaesthesiology, University Hospital, LMU Munich, 81377 Munich, Germany; (P.S.); (D.B.); (O.K.); (K.H.-K.)
| | - Christian Hagl
- Department of Cardiac Surgery, University Hospital, LMU Munich, 81377 Munich, Germany; (S.P.); (C.H.)
| | - Klaus Hofmann-Kiefer
- Department of Anaesthesiology, University Hospital, LMU Munich, 81377 Munich, Germany; (P.S.); (D.B.); (O.K.); (K.H.-K.)
| |
Collapse
|
7
|
Woodward Z, Prickett TC, Espiner EA, Anderson TJ. Central and systemic C-type Natriuretic Peptide are both reduced in Parkinson's Disease. Parkinsonism Relat Disord 2017; 43:15-19. [DOI: 10.1016/j.parkreldis.2017.06.019] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/02/2017] [Revised: 06/02/2017] [Accepted: 06/26/2017] [Indexed: 10/19/2022]
|
8
|
Del-Bel E, Bortolanza M, Dos-Santos-Pereira M, Bariotto K, Raisman-Vozari R. l-DOPA-induced dyskinesia in Parkinson's disease: Are neuroinflammation and astrocytes key elements? Synapse 2016; 70:479-500. [DOI: 10.1002/syn.21941] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2016] [Revised: 09/06/2016] [Accepted: 09/06/2016] [Indexed: 12/22/2022]
Affiliation(s)
- Elaine Del-Bel
- Department of MFPB-Physiology; FORP, Campus USP, University of São Paulo; Av. Café, s/no Ribeirão Preto SP 14040-904 Brazil
- Center for Interdisciplinary Research on Applied Neurosciences (NAPNA); São Paulo Brazil
- Department of Physiology; FMRP; São Paulo Brazil
- Department of Neurology and Behavioral Neuroscience; FMRP, Campus USP, University of São Paulo; Av. Bandeirantes 13400 Ribeirão Preto SP 14049-900 Brazil
| | - Mariza Bortolanza
- Department of MFPB-Physiology; FORP, Campus USP, University of São Paulo; Av. Café, s/no Ribeirão Preto SP 14040-904 Brazil
- Center for Interdisciplinary Research on Applied Neurosciences (NAPNA); São Paulo Brazil
| | - Maurício Dos-Santos-Pereira
- Department of MFPB-Physiology; FORP, Campus USP, University of São Paulo; Av. Café, s/no Ribeirão Preto SP 14040-904 Brazil
- Center for Interdisciplinary Research on Applied Neurosciences (NAPNA); São Paulo Brazil
- Department of Physiology; FMRP; São Paulo Brazil
| | - Keila Bariotto
- Department of MFPB-Physiology; FORP, Campus USP, University of São Paulo; Av. Café, s/no Ribeirão Preto SP 14040-904 Brazil
- Center for Interdisciplinary Research on Applied Neurosciences (NAPNA); São Paulo Brazil
- Department of Neurology and Behavioral Neuroscience; FMRP, Campus USP, University of São Paulo; Av. Bandeirantes 13400 Ribeirão Preto SP 14049-900 Brazil
| | - Rita Raisman-Vozari
- INSERM UMR 1127, CNRS UMR 7225, UPMC; Thérapeutique Expérimentale de la Neurodégénérescence, Hôpital de la Salpetrière-ICM (Institut du cerveau et de la moelle épinière); Paris France
| |
Collapse
|
9
|
Tomasiuk R, Gawroński K, Rzepecki P, Rabijewski M, Cacko M. The evaluation of NT-proCNP, C-reactive protein and serum amyloid A protein concentration in patients with multiple myeloma undergoing stem cell transplantation. Leuk Res 2016; 47:123-7. [PMID: 27322507 DOI: 10.1016/j.leukres.2016.05.017] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2016] [Revised: 05/21/2016] [Accepted: 05/23/2016] [Indexed: 11/27/2022]
Abstract
The importance of proinflamatory cytokines and acute phase proteins in pathogenesis and progression of MM is well known. However, there are any studies evaluating the role of NT-proCN in management and treatment of MM. The aim of our study was to evaluate the concentration of NT-proCNP and acute phase proteins in patients with MM before and after stem cell transplantation. We involved 40 newly diagnosed MM patients in stage III according to the Durie-Salmon classification and treated with high dose of melphalan (200mg/m2) prior to ASCT. Concentration of NT-proCNP, hs-CRP and SAA were measured before conditioning treatment and every 4days until the 24th day after stem cell infusion. We observed low NT-proCNP levels before conditioning treatment (0.121±0.04pmol/l), the higher in day on ASCT (0.28±0.14pmol/l). Further we showed significant gradual increase concentration of NT-proCNP up to 12days after stem cells infusion (1.07±0.72pmol/l). The kinetics of hs-CRP and SAA levels were similar to NT-proCNP. We showed positive correlation between NT-proCNP levels and absolute neutrophil and platelets count in patients after ASCT. NT-proCNP can be useful parameter to assess effectiveness of treatment and monitoring of hematopoetic recovery time in patients with MM after stem cell transplantations.
Collapse
Affiliation(s)
- Ryszard Tomasiuk
- Department of Laboratory Diagnostics, Mazovian Bródno Hospital in Warsaw, Poland
| | - Krzysztof Gawroński
- Department of Internal Diseases and Hematology, Military Institute of Medicine, Warsaw, Poland
| | - Piotr Rzepecki
- Department of Internal Diseases and Hematology, Military Institute of Medicine, Warsaw, Poland
| | - Michał Rabijewski
- Department of Internal Medicine, Diabetology and Endocrinology, Medical University of Warsaw, Poland
| | - Marek Cacko
- Department of Nuclear Medicine, Mazovian Bródno Hospital in Warsaw, Poland.
| |
Collapse
|
10
|
Lee HM, Kim Y. Drug Repurposing Is a New Opportunity for Developing Drugs against Neuropsychiatric Disorders. SCHIZOPHRENIA RESEARCH AND TREATMENT 2016; 2016:6378137. [PMID: 27073698 PMCID: PMC4814692 DOI: 10.1155/2016/6378137] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/15/2015] [Accepted: 02/24/2016] [Indexed: 01/03/2023]
Abstract
Better the drugs you know than the drugs you do not know. Drug repurposing is a promising, fast, and cost effective method that can overcome traditional de novo drug discovery and development challenges of targeting neuropsychiatric and other disorders. Drug discovery and development targeting neuropsychiatric disorders are complicated because of the limitations in understanding pathophysiological phenomena. In addition, traditional de novo drug discovery and development are risky, expensive, and time-consuming processes. One alternative approach, drug repurposing, has emerged taking advantage of off-target effects of the existing drugs. In order to identify new opportunities for the existing drugs, it is essential for us to understand the mechanisms of action of drugs, both biologically and pharmacologically. By doing this, drug repurposing would be a more effective method to develop drugs against neuropsychiatric and other disorders. Here, we review the difficulties in drug discovery and development in neuropsychiatric disorders and the extent and perspectives of drug repurposing.
Collapse
Affiliation(s)
- Hyeong-Min Lee
- Department of Cell Biology & Physiology, School of Medicine, University of North Carolina, 115 Mason Farm Road, Chapel Hill, NC 27599, USA
| | - Yuna Kim
- Department of Pediatrics, School of Medicine, Duke University, 905 S. LaSalle Street, Durham, NC 27710, USA
| |
Collapse
|
11
|
Bortolanza M, Cavalcanti-Kiwiatkoski R, Padovan-Neto FE, da-Silva CA, Mitkovski M, Raisman-Vozari R, Del-Bel E. Glial activation is associated with l-DOPA induced dyskinesia and blocked by a nitric oxide synthase inhibitor in a rat model of Parkinson's disease. Neurobiol Dis 2014; 73:377-87. [PMID: 25447229 DOI: 10.1016/j.nbd.2014.10.017] [Citation(s) in RCA: 79] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2014] [Accepted: 10/22/2014] [Indexed: 12/22/2022] Open
Abstract
l-3, 4-dihydroxyphenylalanine (L-DOPA) is the most effective treatment for Parkinson's disease but can induce debilitating abnormal involuntary movements (dyskinesia). Here we show that the development of L-DOPA-induced dyskinesia in the rat is accompanied by upregulation of an inflammatory cascade involving nitric oxide. Male Wistar rats sustained unilateral injections of 6-hydroxydopamine (6-OHDA) into the medial forebrain bundle. After three weeks animals started to receive daily treatment with L-DOPA (30 mg/kg plus benserazide 7.5 mg/kg, for 21 days), combined with an inhibitor of neuronal NOS (7-nitroindazole, 7-NI, 30 mg/kg/day) or vehicle (saline-PEG 50%). All animals treated with L-DOPA and vehicle developed abnormal involuntary movements, and this effect was prevented by 7-NI. L-DOPA-treated dyskinetic animals exhibited an increased striatal and pallidal expression of glial fibrillary acidic protein (GFAP) in reactive astrocytes, an increased number of CD11b-positive microglial cells with activated morphology, and the rise of cells positive for inducible nitric oxide-synthase immunoreactivity (iNOS). All these indexes of glial activation were prevented by 7-NI co-administration. These findings provide evidence that the development of L-DOPA-induced dyskinesia in the rat is associated with activation of glial cells that promote inflammatory responses. The dramatic effect of 7-NI in preventing this glial response points to an involvement of nitric oxide. Moreover, the results suggest that the NOS inhibitor prevents dyskinesia at least in part via inhibition of glial cell activation and iNOS expression. Our observations indicate nitric oxide synthase inhibitors as a therapeutic strategy for preventing neuroinflammatory and glial components of dyskinesia pathogenesis in Parkinson's disease.
Collapse
Affiliation(s)
- Mariza Bortolanza
- University of São Paulo (USP), School of Odontology of Ribeirao Preto, Department of Morphology, Physiology and Basic Pathology, Av. Café S/N, 14040-904 Ribeirão Preto, SP, Brazil; USP, Center for Interdisciplinary Research on Applied Neurosciences (NAPNA), Brazil
| | - Roberta Cavalcanti-Kiwiatkoski
- USP, Center for Interdisciplinary Research on Applied Neurosciences (NAPNA), Brazil; USP, Medical School, Department of Physiology, Av. Bandeirantes 3900, 14049-900 Ribeirão Preto, SP, Brazil
| | - Fernando E Padovan-Neto
- USP, Center for Interdisciplinary Research on Applied Neurosciences (NAPNA), Brazil; USP, Department of Behavioral Neurosciences, Av. Bandeirantes 3900, 14049-900 Ribeirão Preto, SP, Brazil
| | - Célia Aparecida da-Silva
- University of São Paulo (USP), School of Odontology of Ribeirao Preto, Department of Morphology, Physiology and Basic Pathology, Av. Café S/N, 14040-904 Ribeirão Preto, SP, Brazil; USP, Center for Interdisciplinary Research on Applied Neurosciences (NAPNA), Brazil
| | - Miso Mitkovski
- Light Microscopy Facility Max-Planck-Institute of Experimental Medicine, Hermann-Rein-Str. 3, 37075 Göttingen, Germany
| | - Rita Raisman-Vozari
- Sorbonne Université UPMC UM75 INSERM U1127, CNRS UMR 7225, Institut de Cerveau et de la Moelle Epinière, Paris, France
| | - Elaine Del-Bel
- University of São Paulo (USP), School of Odontology of Ribeirao Preto, Department of Morphology, Physiology and Basic Pathology, Av. Café S/N, 14040-904 Ribeirão Preto, SP, Brazil; USP, Center for Interdisciplinary Research on Applied Neurosciences (NAPNA), Brazil; USP, Medical School, Department of Physiology, Av. Bandeirantes 3900, 14049-900 Ribeirão Preto, SP, Brazil; USP, Department of Behavioral Neurosciences, Av. Bandeirantes 3900, 14049-900 Ribeirão Preto, SP, Brazil.
| |
Collapse
|