1
|
Kann O. Lactate as a supplemental fuel for synaptic transmission and neuronal network oscillations: Potentials and limitations. J Neurochem 2024; 168:608-631. [PMID: 37309602 DOI: 10.1111/jnc.15867] [Citation(s) in RCA: 11] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Revised: 05/15/2023] [Accepted: 05/18/2023] [Indexed: 06/14/2023]
Abstract
Lactate shuttled from the blood circulation, astrocytes, oligodendrocytes or even activated microglia (resident macrophages) to neurons has been hypothesized to represent a major source of pyruvate compared to what is normally produced endogenously by neuronal glucose metabolism. However, the role of lactate oxidation in fueling neuronal signaling associated with complex cortex function, such as perception, motor activity, and memory formation, is widely unclear. This issue has been experimentally addressed using electrophysiology in hippocampal slice preparations (ex vivo) that permit the induction of different neural network activation states by electrical stimulation, optogenetic tools or receptor ligand application. Collectively, these studies suggest that lactate in the absence of glucose (lactate only) impairs gamma (30-70 Hz) and theta-gamma oscillations, which feature high energy demand revealed by the cerebral metabolic rate of oxygen (CMRO2, set to 100%). The impairment comprises oscillation attenuation or moderate neural bursts (excitation-inhibition imbalance). The bursting is suppressed by elevating the glucose fraction in energy substrate supply. By contrast, lactate can retain certain electric stimulus-induced neural population responses and intermittent sharp wave-ripple activity that features lower energy expenditure (CMRO2 of about 65%). Lactate utilization increases the oxygen consumption by about 9% during sharp wave-ripples reflecting enhanced adenosine-5'-triphosphate (ATP) synthesis by oxidative phosphorylation in mitochondria. Moreover, lactate attenuates neurotransmission in glutamatergic pyramidal cells and fast-spiking, γ-aminobutyric acid (GABA)ergic interneurons by reducing neurotransmitter release from presynaptic terminals. By contrast, the generation and propagation of action potentials in the axon is regular. In conclusion, lactate is less effective than glucose and potentially detrimental during neural network rhythms featuring high energetic costs, likely through the lack of some obligatory ATP synthesis by aerobic glycolysis at excitatory and inhibitory synapses. High lactate/glucose ratios might contribute to central fatigue, cognitive impairment, and epileptic seizures partially seen, for instance, during exhaustive physical exercise, hypoglycemia and neuroinflammation.
Collapse
Affiliation(s)
- Oliver Kann
- Institute of Physiology and Pathophysiology, University of Heidelberg, Heidelberg, Germany
- Interdisciplinary Center for Neurosciences (IZN), University of Heidelberg, Heidelberg, Germany
| |
Collapse
|
2
|
Zutshi I, Buzsáki G. Hippocampal sharp-wave ripples and their spike assembly content are regulated by the medial entorhinal cortex. Curr Biol 2023; 33:3648-3659.e4. [PMID: 37572665 PMCID: PMC10530523 DOI: 10.1016/j.cub.2023.07.039] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2023] [Revised: 07/18/2023] [Accepted: 07/20/2023] [Indexed: 08/14/2023]
Abstract
Hippocampal sharp-wave ripples (SPW-Rs) are critical for memory consolidation and retrieval. The neuronal content of spiking during SPW-Rs is believed to be under the influence of neocortical inputs via the entorhinal cortex (EC). Optogenetic silencing of the medial EC (mEC) reduced the incidence of SPW-Rs with minor impacts on their magnitude or duration, similar to local CA1 silencing. The effect of mEC silencing on CA1 firing and field potentials was comparable to the effect of transient cortex-wide DOWN states of non-REM (NREM) sleep, implying that decreased SPW-R incidence in both cases is due to tonic disfacilitation of hippocampal circuits. The neuronal composition of CA1 pyramidal neurons during SPW-Rs was altered by mEC silencing but was restored immediately after silencing. We suggest that the mEC provides both tonic and transient influences on hippocampal network states by timing the occurrence of SPW-Rs and altering their neuronal content.
Collapse
Affiliation(s)
- Ipshita Zutshi
- New York University Neuroscience Institute, New York, NY, USA
| | - György Buzsáki
- New York University Neuroscience Institute, New York, NY, USA; Center for Neural Science, New York University, New York, NY 10016, USA.
| |
Collapse
|
3
|
Jiménez-Balado J, Eich TS. GABAergic dysfunction, neural network hyperactivity and memory impairments in human aging and Alzheimer's disease. Semin Cell Dev Biol 2021; 116:146-159. [PMID: 33573856 PMCID: PMC8292162 DOI: 10.1016/j.semcdb.2021.01.005] [Citation(s) in RCA: 93] [Impact Index Per Article: 23.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2020] [Revised: 01/25/2021] [Accepted: 01/30/2021] [Indexed: 02/07/2023]
Abstract
In this review, we focus on the potential role of the γ-aminobutyric acidergic (GABAergic) system in age-related episodic memory impairments in humans, with a particular focus on Alzheimer's disease (AD). Well-established animal models have shown that GABA plays a central role in regulating and synchronizing neuronal signaling in the hippocampus, a brain area critical for episodic memory that undergoes early and significant morphologic and functional changes in the course of AD. Neuroimaging research in humans has documented hyperactivity in the hippocampus and losses of resting state functional connectivity in the Default Mode Network, a network that itself prominently includes the hippocampus-presaging episodic memory decline in individuals at-risk for AD. Apolipoprotein ε4, the highest genetic risk factor for AD, is associated with GABAergic dysfunction in animal models, and episodic memory impairments in humans. In combination, these findings suggest that GABA may be the linchpin in a complex system of factors that eventually leads to the principal clinical hallmark of AD: episodic memory loss. Here, we will review the current state of literature supporting this hypothesis. First, we will focus on the molecular and cellular basis of the GABAergic system and its role in memory and cognition. Next, we report the evidence of GABA dysregulations in AD and normal aging, both in animal models and human studies. Finally, we outline a model of GABAergic dysfunction based on the results of functional neuroimaging studies in humans, which have shown hippocampal hyperactivity to episodic memory tasks concurrent with and even preceding AD diagnosis, along with factors that may modulate this association.
Collapse
Affiliation(s)
- Joan Jiménez-Balado
- Leonard Davis School of Gerontology, University of Southern California, Los Angeles, CA 90089, USA
| | - Teal S Eich
- Leonard Davis School of Gerontology, University of Southern California, Los Angeles, CA 90089, USA.
| |
Collapse
|
4
|
Hollnagel JO, Cesetti T, Schneider J, Vazetdinova A, Valiullina-Rakhmatullina F, Lewen A, Rozov A, Kann O. Lactate Attenuates Synaptic Transmission and Affects Brain Rhythms Featuring High Energy Expenditure. iScience 2020; 23:101316. [PMID: 32653807 PMCID: PMC7350153 DOI: 10.1016/j.isci.2020.101316] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2020] [Revised: 06/09/2020] [Accepted: 06/23/2020] [Indexed: 01/29/2023] Open
Abstract
Lactate shuttled from blood, astrocytes, and/or oligodendrocytes may serve as the major glucose alternative in brain energy metabolism. However, its effectiveness in fueling neuronal information processing underlying complex cortex functions like perception and memory is unclear. We show that sole lactate disturbs electrical gamma and theta-gamma oscillations in hippocampal networks by either attenuation or neural bursts. Bursting is suppressed by elevating the glucose fraction in substrate supply. By contrast, lactate does not affect electrical sharp wave-ripple activity featuring lower energy use. Lactate increases the oxygen consumption during the network states, reflecting enhanced oxidative ATP synthesis in mitochondria. Finally, lactate attenuates synaptic transmission in excitatory pyramidal cells and fast-spiking, inhibitory interneurons by reduced neurotransmitter release from presynaptic terminals, whereas action potential generation in the axon is regular. In conclusion, sole lactate is less effective and potentially harmful during gamma-band rhythms by omitting obligatory ATP delivery through fast glycolysis at the synapse. Lactate fuels network oscillations featuring low energy expenditure Lactate can disturb the neuronal excitation-inhibition balance Lactate attenuates neurotransmission at glutamatergic and GABAergic synapses Lactate increases oxygen consumption, whereas neural activity can even decrease
Collapse
Affiliation(s)
- Jan-Oliver Hollnagel
- Institute of Physiology and Pathophysiology, University of Heidelberg, Im Neuenheimer Feld 326, 69120 Heidelberg, Germany
| | - Tiziana Cesetti
- Institute of Physiology and Pathophysiology, University of Heidelberg, Im Neuenheimer Feld 326, 69120 Heidelberg, Germany
| | - Justus Schneider
- Institute of Physiology and Pathophysiology, University of Heidelberg, Im Neuenheimer Feld 326, 69120 Heidelberg, Germany
| | - Alina Vazetdinova
- OpenLab of Neurobiology, Kazan Federal University, 420008 Kazan, Russia
| | | | - Andrea Lewen
- Institute of Physiology and Pathophysiology, University of Heidelberg, Im Neuenheimer Feld 326, 69120 Heidelberg, Germany
| | - Andrei Rozov
- Institute of Physiology and Pathophysiology, University of Heidelberg, Im Neuenheimer Feld 326, 69120 Heidelberg, Germany; OpenLab of Neurobiology, Kazan Federal University, 420008 Kazan, Russia
| | - Oliver Kann
- Institute of Physiology and Pathophysiology, University of Heidelberg, Im Neuenheimer Feld 326, 69120 Heidelberg, Germany; Interdisciplinary Center for Neurosciences, University of Heidelberg, 69120 Heidelberg, Germany.
| |
Collapse
|
5
|
GABA B receptor modulation — to B or not to be B a pro-cognitive medicine? Curr Opin Pharmacol 2017; 35:125-132. [DOI: 10.1016/j.coph.2017.09.012] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2017] [Accepted: 09/26/2017] [Indexed: 11/20/2022]
|
6
|
Maier P, Kaiser ME, Grinevich V, Draguhn A, Both M. Differential effects of oxytocin on mouse hippocampal oscillationsin vitro. Eur J Neurosci 2016; 44:2885-2898. [DOI: 10.1111/ejn.13412] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2015] [Revised: 09/09/2016] [Accepted: 09/20/2016] [Indexed: 12/11/2022]
Affiliation(s)
- Pia Maier
- Institute of Physiology and Pathophysiology; University of Heidelberg; Im Neuenheimer Feld 326 69120 Heidelberg Germany
| | - Martin E. Kaiser
- Institute of Physiology and Pathophysiology; University of Heidelberg; Im Neuenheimer Feld 326 69120 Heidelberg Germany
| | - Valery Grinevich
- Schaller Research Group on Neuropeptides; German Cancer Research Center (DKFZ) and Network Cluster of Excellence; University of Heidelberg; Heidelberg Germany
| | - Andreas Draguhn
- Institute of Physiology and Pathophysiology; University of Heidelberg; Im Neuenheimer Feld 326 69120 Heidelberg Germany
| | - Martin Both
- Institute of Physiology and Pathophysiology; University of Heidelberg; Im Neuenheimer Feld 326 69120 Heidelberg Germany
| |
Collapse
|
7
|
Kann O, Hollnagel JO, Elzoheiry S, Schneider J. Energy and Potassium Ion Homeostasis during Gamma Oscillations. Front Mol Neurosci 2016; 9:47. [PMID: 27378847 PMCID: PMC4909733 DOI: 10.3389/fnmol.2016.00047] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2016] [Accepted: 05/30/2016] [Indexed: 12/21/2022] Open
Abstract
Fast neuronal network oscillations in the gamma frequency band (30-100 Hz) occur in various cortex regions, require timed synaptic excitation and inhibition with glutamate and GABA, respectively, and are associated with higher brain functions such as sensory perception, attentional selection and memory formation. However, little is known about energy and ion homeostasis during the gamma oscillation. Recent studies addressed this topic in slices of the rodent hippocampus using cholinergic and glutamatergic receptor models of gamma oscillations (GAM). Methods with high spatial and temporal resolution were applied in vitro, such as electrophysiological recordings of local field potential (LFP) and extracellular potassium concentration ([K(+)]o), live-cell fluorescence imaging of nicotinamide adenine dinucleotide (phosphate) and flavin adenine dinucleotide [NAD(P)H and FAD, respectively] (cellular redox state), and monitoring of the interstitial partial oxygen pressure (pO2) in depth profiles with microsensor electrodes, including mathematical modeling. The main findings are: (i) GAM are associated with high oxygen consumption rate and significant changes in the cellular redox state, indicating rapid adaptations in glycolysis and oxidative phosphorylation; (ii) GAM are accompanied by fluctuating elevations in [K(+)]o of less than 0.5 mmol/L from baseline, likely reflecting effective K(+)-uptake mechanisms of neuron and astrocyte compartments; and (iii) GAM are exquisitely sensitive to metabolic stress induced by lowering oxygen availability or by pharmacological inhibition of the mitochondrial respiratory chain. These findings reflect precise cellular adaptations to maintain adenosine-5'-triphosphate (ATP), ion and neurotransmitter homeostasis and thus neural excitability and synaptic signaling during GAM. Conversely, the exquisite sensitivity of GAM to metabolic stress might significantly contribute the exceptional vulnerability of higher brain functions in brain disease.
Collapse
Affiliation(s)
- Oliver Kann
- Institute of Physiology and Pathophysiology, University of HeidelbergHeidelberg, Germany; Interdisciplinary Center for Neurosciences (IZN), University of HeidelbergHeidelberg, Germany
| | - Jan-Oliver Hollnagel
- Institute of Physiology and Pathophysiology, University of HeidelbergHeidelberg, Germany; Interdisciplinary Center for Neurosciences (IZN), University of HeidelbergHeidelberg, Germany
| | - Shehabeldin Elzoheiry
- Institute of Physiology and Pathophysiology, University of HeidelbergHeidelberg, Germany; Interdisciplinary Center for Neurosciences (IZN), University of HeidelbergHeidelberg, Germany
| | - Justus Schneider
- Institute of Physiology and Pathophysiology, University of HeidelbergHeidelberg, Germany; Interdisciplinary Center for Neurosciences (IZN), University of HeidelbergHeidelberg, Germany
| |
Collapse
|
8
|
Serotonin dependent masking of hippocampal sharp wave ripples. Neuropharmacology 2016; 101:188-203. [DOI: 10.1016/j.neuropharm.2015.09.026] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2015] [Revised: 08/04/2015] [Accepted: 09/21/2015] [Indexed: 11/21/2022]
|
9
|
Role of GABA(B) receptors in learning and memory and neurological disorders. Neurosci Biobehav Rev 2016; 63:1-28. [PMID: 26814961 DOI: 10.1016/j.neubiorev.2016.01.007] [Citation(s) in RCA: 92] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2015] [Revised: 12/31/2015] [Accepted: 01/21/2016] [Indexed: 01/13/2023]
Abstract
Although it is evident from the literature that altered GABAB receptor function does affect behavior, these results often do not correspond well. These differences could be due to the task protocol, animal strain, ligand concentration, or timing of administration utilized. Because several clinical populations exhibit learning and memory deficits in addition to altered markers of GABA and the GABAB receptor, it is important to determine whether altered GABAB receptor function is capable of contributing to the deficits. The aim of this review is to examine the effect of altered GABAB receptor function on synaptic plasticity as demonstrated by in vitro data, as well as the effects on performance in learning and memory tasks. Finally, data regarding altered GABA and GABAB receptor markers within clinical populations will be reviewed. Together, the data agree that proper functioning of GABAB receptors is crucial for numerous learning and memory tasks and that targeting this system via pharmaceuticals may benefit several clinical populations.
Collapse
|
10
|
Zeman A, Hoefeijzers S, Milton F, Dewar M, Carr M, Streatfield C. The GABAB receptor agonist, baclofen, contributes to three distinct varieties of amnesia in the human brain – A detailed case report. Cortex 2016; 74:9-19. [DOI: 10.1016/j.cortex.2015.10.005] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2015] [Revised: 09/13/2015] [Accepted: 10/08/2015] [Indexed: 02/06/2023]
|
11
|
Buzsáki G. Hippocampal sharp wave-ripple: A cognitive biomarker for episodic memory and planning. Hippocampus 2015; 25:1073-188. [PMID: 26135716 PMCID: PMC4648295 DOI: 10.1002/hipo.22488] [Citation(s) in RCA: 1040] [Impact Index Per Article: 104.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2015] [Accepted: 06/30/2015] [Indexed: 12/23/2022]
Abstract
Sharp wave ripples (SPW-Rs) represent the most synchronous population pattern in the mammalian brain. Their excitatory output affects a wide area of the cortex and several subcortical nuclei. SPW-Rs occur during "off-line" states of the brain, associated with consummatory behaviors and non-REM sleep, and are influenced by numerous neurotransmitters and neuromodulators. They arise from the excitatory recurrent system of the CA3 region and the SPW-induced excitation brings about a fast network oscillation (ripple) in CA1. The spike content of SPW-Rs is temporally and spatially coordinated by a consortium of interneurons to replay fragments of waking neuronal sequences in a compressed format. SPW-Rs assist in transferring this compressed hippocampal representation to distributed circuits to support memory consolidation; selective disruption of SPW-Rs interferes with memory. Recently acquired and pre-existing information are combined during SPW-R replay to influence decisions, plan actions and, potentially, allow for creative thoughts. In addition to the widely studied contribution to memory, SPW-Rs may also affect endocrine function via activation of hypothalamic circuits. Alteration of the physiological mechanisms supporting SPW-Rs leads to their pathological conversion, "p-ripples," which are a marker of epileptogenic tissue and can be observed in rodent models of schizophrenia and Alzheimer's Disease. Mechanisms for SPW-R genesis and function are discussed in this review.
Collapse
Affiliation(s)
- György Buzsáki
- The Neuroscience Institute, School of Medicine and Center for Neural Science, New York University, New York, New York
| |
Collapse
|
12
|
Lee KN, Chirwa S. Blocking Dopaminergic Signaling Soon after Learning Impairs Memory Consolidation in Guinea Pigs. PLoS One 2015; 10:e0135578. [PMID: 26275140 PMCID: PMC4537230 DOI: 10.1371/journal.pone.0135578] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2013] [Accepted: 07/25/2015] [Indexed: 11/18/2022] Open
Abstract
Formation of episodic memories (i.e. remembered experiences) requires a process called consolidation which involves communication between the neocortex and hippocampus. However, the neuromodulatory mechanisms underlying this neocortico-hippocampal communication are poorly understood. Here, we examined the involvement of dopamine D1 receptors (D1R) and D2 receptors (D2R) mediated signaling on memory consolidation using the Novel Object Recognition (NOR) test. We conducted the tests in male Hartley guinea pigs and cognitive behaviors were assessed in customized Phenotyper home cages utilizing Ethovision XT software from Noldus enabled for the 3-point detection system (nose, center of the body, and rear). We found that acute intraperitoneal injections of either 0.25 mg/kg SCH23390 to block D1Rs or 1.0 mg/kg sulpiride to block D2Rs soon after acquisition (which involved familiarization to two similar objects) attenuated subsequent discrimination for novel objects when tested after 5-hours in the NOR test. By contrast guinea pigs treated with saline showed robust discrimination for novel objects indicating normal operational processes undergirding memory consolidation. The data suggests that involvement of dopaminergic signaling is a key post-acquisition factor in modulating memory consolidation in guinea pigs.
Collapse
Affiliation(s)
- Kiera-Nicole Lee
- Department of Neuroscience and Pharmacology, Meharry Medical College, 1005 DB Todd Boulevard, Nashville, TN, 37208, United States of America
| | - Sanika Chirwa
- Department of Neuroscience and Pharmacology, Meharry Medical College, 1005 DB Todd Boulevard, Nashville, TN, 37208, United States of America
- Department of Pharmacology, 23 Avenue South & Pierce, Vanderbilt University, Nashville, TN, 37203, United States of America
- * E-mail:
| |
Collapse
|
13
|
Hippocampal-prefrontal circuit and disrupted functional connectivity in psychiatric and neurodegenerative disorders. BIOMED RESEARCH INTERNATIONAL 2015; 2015:810548. [PMID: 25918722 PMCID: PMC4396015 DOI: 10.1155/2015/810548] [Citation(s) in RCA: 58] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/23/2015] [Revised: 03/09/2015] [Accepted: 03/19/2015] [Indexed: 11/17/2022]
Abstract
In rodents, the hippocampus has been studied extensively as part of a brain system responsible for learning and memory, and the prefrontal cortex (PFC) participates in numerous cognitive functions including working memory, flexibility, decision making, and rewarding learning. The neuronal projections from the hippocampus, either directly or indirectly, to the PFC, referred to as the hippocampal-prefrontal cortex (Hip-PFC) circuit, play a critical role in cognitive and emotional regulation and memory consolidation. Although in certain psychiatric and neurodegenerative diseases, structural connectivity viewed by imaging techniques has been consistently found to be associated with clinical phenotype and disease severity, the focus has moved towards the investigation of connectivity correlates of molecular pathology and coupling of oscillation. Moreover, functional and structural connectivity measures have been emerging as potential intermediate biomarkers for neuronal disorders. In this review, we summarize progress on the anatomic, molecular, and electrophysiological characters of the Hip-PFC circuit in cognition and emotion processes with an emphasis on oscillation and functional connectivity, revealing a disrupted Hip-PFC connectivity and electrical activity in psychiatric and neurodegenerative disorders as a promising candidate of neural marker for neuronal disorders.
Collapse
|
14
|
Ritter P, Born J, Brecht M, Dinse HR, Heinemann U, Pleger B, Schmitz D, Schreiber S, Villringer A, Kempter R. State-dependencies of learning across brain scales. Front Comput Neurosci 2015; 9:1. [PMID: 25767445 PMCID: PMC4341560 DOI: 10.3389/fncom.2015.00001] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2014] [Accepted: 01/06/2015] [Indexed: 01/09/2023] Open
Abstract
Learning is a complex brain function operating on different time scales, from milliseconds to years, which induces enduring changes in brain dynamics. The brain also undergoes continuous “spontaneous” shifts in states, which, amongst others, are characterized by rhythmic activity of various frequencies. Besides the most obvious distinct modes of waking and sleep, wake-associated brain states comprise modulations of vigilance and attention. Recent findings show that certain brain states, particularly during sleep, are essential for learning and memory consolidation. Oscillatory activity plays a crucial role on several spatial scales, for example in plasticity at a synaptic level or in communication across brain areas. However, the underlying mechanisms and computational rules linking brain states and rhythms to learning, though relevant for our understanding of brain function and therapeutic approaches in brain disease, have not yet been elucidated. Here we review known mechanisms of how brain states mediate and modulate learning by their characteristic rhythmic signatures. To understand the critical interplay between brain states, brain rhythms, and learning processes, a wide range of experimental and theoretical work in animal models and human subjects from the single synapse to the large-scale cortical level needs to be integrated. By discussing results from experiments and theoretical approaches, we illuminate new avenues for utilizing neuronal learning mechanisms in developing tools and therapies, e.g., for stroke patients and to devise memory enhancement strategies for the elderly.
Collapse
Affiliation(s)
- Petra Ritter
- Minerva Research Group BrainModes, Max Planck Institute for Human Cognitive and Brain Sciences Leipzig, Germany ; Department of Neurology, Charité University Medicine Berlin Berlin, Germany ; Bernstein Center for Computational Neuroscience, Humboldt-Universität zu Berlin Berlin, Germany ; Berlin School of Mind and Brain & Mind and Brain Institute, Humboldt-Universität zu Berlin Berlin, Germany
| | - Jan Born
- Department of Medical Psychology and Behavioral Neurobiology & Center for Integrative Neuroscience (CIN), University of Tübingen Tübingen, Germany
| | - Michael Brecht
- Bernstein Center for Computational Neuroscience, Humboldt-Universität zu Berlin Berlin, Germany
| | - Hubert R Dinse
- Neural Plasticity Lab, Institute for Neuroinformatics, Ruhr-University Bochum Bochum, Germany ; Department of Neurology, BG University Hospital Bergmannsheil, Ruhr-University Bochum Bochum, Germany
| | - Uwe Heinemann
- Bernstein Center for Computational Neuroscience, Humboldt-Universität zu Berlin Berlin, Germany ; NeuroCure Cluster of Excellence Berlin, Germany
| | - Burkhard Pleger
- Clinic for Cognitive Neurology, University Hospital Leipzig Leipzig, Germany ; Max Planck Institute for Human Cognitive and Brain Sciences Leipzig, Germany
| | - Dietmar Schmitz
- Bernstein Center for Computational Neuroscience, Humboldt-Universität zu Berlin Berlin, Germany ; NeuroCure Cluster of Excellence Berlin, Germany ; Neuroscience Research Center NWFZ, Charité University Medicine Berlin Berlin, Germany ; Max-Delbrück Center for Molecular Medicine, MDC Berlin, Germany ; Center for Neurodegenerative Diseases (DZNE) Berlin, Germany
| | - Susanne Schreiber
- Bernstein Center for Computational Neuroscience, Humboldt-Universität zu Berlin Berlin, Germany ; Department of Biology, Institute for Theoretical Biology (ITB), Humboldt-Universität zu Berlin Berlin, Germany
| | - Arno Villringer
- Berlin School of Mind and Brain & Mind and Brain Institute, Humboldt-Universität zu Berlin Berlin, Germany ; Clinic for Cognitive Neurology, University Hospital Leipzig Leipzig, Germany ; Max Planck Institute for Human Cognitive and Brain Sciences Leipzig, Germany
| | - Richard Kempter
- Bernstein Center for Computational Neuroscience, Humboldt-Universität zu Berlin Berlin, Germany ; Department of Biology, Institute for Theoretical Biology (ITB), Humboldt-Universität zu Berlin Berlin, Germany
| |
Collapse
|