1
|
Li BX, Dong GH, Li HL, Zhang JS, Bing YH, Chu CP, Cui SB, Qiu DL. Chronic Ethanol Exposure Enhances Facial Stimulation-Evoked Mossy Fiber-Granule Cell Synaptic Transmission via GluN2A Receptors in the Mouse Cerebellar Cortex. Front Syst Neurosci 2021; 15:657884. [PMID: 34408633 PMCID: PMC8365521 DOI: 10.3389/fnsys.2021.657884] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2021] [Accepted: 07/08/2021] [Indexed: 11/16/2022] Open
Abstract
Sensory information is transferred to the cerebellar cortex via the mossy fiber–granule cell (MF–GC) pathway, which participates in motor coordination and motor learning. We previously reported that chronic ethanol exposure from adolescence facilitated the sensory-evoked molecular layer interneuron–Purkinje cell synaptic transmission in adult mice in vivo. Herein, we investigated the effect of chronic ethanol exposure from adolescence on facial stimulation-evoked MF–GC synaptic transmission in the adult mouse cerebellar cortex using electrophysiological recording techniques and pharmacological methods. Chronic ethanol exposure from adolescence induced an enhancement of facial stimulation-evoked MF–GC synaptic transmission in the cerebellar cortex of adult mice. The application of an N-methyl-D-aspartate receptor (NMDAR) antagonist, D-APV (250 μM), induced stronger depression of facial stimulation-evoked MF–GC synaptic transmission in chronic ethanol-exposed mice compared with that in control mice. Chronic ethanol exposure-induced facilitation of facial stimulation evoked by MF–GC synaptic transmission was abolished by a selective GluN2A antagonist, PEAQX (10 μM), but was unaffected by the application of a selective GluN2B antagonist, TCN-237 (10 μM), or a type 1 metabotropic glutamate receptor blocker, JNJ16259685 (10 μM). These results indicate that chronic ethanol exposure from adolescence enhances facial stimulation-evoked MF–GC synaptic transmission via GluN2A, which suggests that chronic ethanol exposure from adolescence impairs the high-fidelity transmission capability of sensory information in the cerebellar cortex by enhancing the NMDAR-mediated components of MF–GC synaptic transmission in adult mice in vivo.
Collapse
Affiliation(s)
- Bing-Xue Li
- Brain Science Research Center, Yanbian University, Yanji, China.,Department of Physiology and Pathophysiology, College of Medicine, Yanbian University, Yanji, China
| | - Guang-Hui Dong
- Brain Science Research Center, Yanbian University, Yanji, China.,Department of Neurology, Affiliated Hospital of Yanbian University, Yanji, China
| | - Hao-Long Li
- Brain Science Research Center, Yanbian University, Yanji, China.,Department of Physiology and Pathophysiology, College of Medicine, Yanbian University, Yanji, China
| | - Jia-Song Zhang
- Brain Science Research Center, Yanbian University, Yanji, China.,Department of Physiology and Pathophysiology, College of Medicine, Yanbian University, Yanji, China
| | - Yan-Hua Bing
- Brain Science Research Center, Yanbian University, Yanji, China
| | - Chun-Ping Chu
- Brain Science Research Center, Yanbian University, Yanji, China.,Department of Physiology and Pathophysiology, College of Medicine, Yanbian University, Yanji, China
| | - Song-Biao Cui
- Department of Neurology, Affiliated Hospital of Yanbian University, Yanji, China
| | - De-Lai Qiu
- Brain Science Research Center, Yanbian University, Yanji, China.,Department of Physiology and Pathophysiology, College of Medicine, Yanbian University, Yanji, China
| |
Collapse
|
2
|
Effect of chronic alcohol intake on motor functions on the elderly. Neurosci Lett 2021; 745:135630. [PMID: 33440234 DOI: 10.1016/j.neulet.2021.135630] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2020] [Revised: 12/22/2020] [Accepted: 01/04/2021] [Indexed: 12/21/2022]
Abstract
Alcohol use disorder (AUD) is a chronic and progressive disease influenced by genetic, psychosocial, and environmental factors. The consequences of alcohol consumption involve alterations in neural circuits of emotion and cognition, as well as in the motor planning circuit. Furthermore, during the natural aging process, several biochemical and functional alterations are also observed with neurological consequences. Thus, considering the consequences of chronic alcohol consumption on neural systems and natural aging process, we aimed to analyze the degree of motor and functional impairment in elderly with chronic alcohol consumption. Sixty elderly underwent an analysis of alcohol consumption profile (Alcohol Use Disorders Identification Test - AUDIT) that divided them into a control group (CON) and an alcohol group (ALC). The analysis of quality of life was performed using the Medical Outcomes Study 36-Item Short-Form Health Survey (SF-36), the analysis of motor function was performed using the Borg Scale, the Six-Minute Walk Test (6MWT) and the Motor Scale for Elderly (MSE). We were able to conclude that the misuse of alcohol by the elderly promotes significant physical limitations. These limitations result in a worsening of functional capacity of walking and various dimensions of motor ability: fine motor skill, global coordination, balance, body scheme, spatial organization, temporal organization, and general motor aptitude. Besides the physical limitations caused by alcohol use, the quality of life in their physical, mental, and social aspects was reduced. Thus, actions are required to help the elderly understand these losses and exercise control over alcohol misuse.
Collapse
|
3
|
Sun N, Li BX, Dong GH, Li DY, Cui BR, Qiu DL, Cui SB, Chu CP. Chronic ethanol exposure facilitates facial-evoked MLI-PC synaptic transmission via nitric oxide signaling pathway in vivo in mice. Neurosci Lett 2020; 715:134628. [PMID: 31738951 DOI: 10.1016/j.neulet.2019.134628] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2019] [Revised: 11/04/2019] [Accepted: 11/12/2019] [Indexed: 12/26/2022]
Abstract
Ethanol (EtOH) exposure causes alterations of motor coordination, balance, behavior, speech, and certain cognitive functions are considered to be caused partly by impairment of cerebellar circuits function and modulation of synaptic transmission. The cerebellar cortical molecular layer interneuron-Purkinje cell (MLI-PC) synapses are critical for various information integration and transmission, which are sensitive to acute and chronic EtOH exposure. The aim of this study is to investigate the effect of chronic ethanol exposure on the facial stimulation-evoked MLI-PC synaptic transmission in urethane-anesthetized mice, by electrophysiological recording and pharmacological methods. Under current-clamp recording conditions, air-puff stimulation of ipsilateral whisker pad evoked MLI-PC synaptic transmission, which expressed an inhibitory component (P1) followed by a pause of simple spike (SS) firing in cerebellar PCs. Chronic ethanol exposure did not change the latency of the facial stimulation-evoked responses in cerebellar PCs, but induced significant enhancement of the stimulation-evoked MLI-PC synaptic transmission, which expressed increases in amplitude of P1 and pause of SS firing. The amplitude of P1 and pause of SS in ethanol exposure group were significant higher than that in control group. Cerebellar surface application of nitric oxide synthesis (NOS) inhibitor, L-NNA (5 mM) significantly decreased the amplitude of P1 and the pause of SS firing in EtOH exposure group, but did no effect on control group. In contrast, cerebellar surface application of NO donor, SNAP (100 μM) significantly increased the amplitude of P1 and the pause of SS firing in control group, but not in EtOH exposure group. These results indicated that chronic EtOH exposure significantly facilitated the sensory-evoked MLI-PC synaptic transmission via NO signaling pathway in mouse cerebellar cortex.
Collapse
Affiliation(s)
- Na Sun
- Key Laboratory of Cellular Function and Pharmacology of Jilin Province, Yanbian University, Yanji, Jilin Province, 133002, China; Department of Physiology and Pathophysiology, College of Medicine, Yanbian University, Yanji, Jilin Province, China
| | - Bing-Xue Li
- Key Laboratory of Cellular Function and Pharmacology of Jilin Province, Yanbian University, Yanji, Jilin Province, 133002, China; Department of Physiology and Pathophysiology, College of Medicine, Yanbian University, Yanji, Jilin Province, China
| | - Guang-Hui Dong
- Department of Neurology, Affiliated Hospital of Yanbian University, Yanji, Jilin Province, China
| | - Da-Yong Li
- Department of Physiology and Pathophysiology, College of Medicine, Yanbian University, Yanji, Jilin Province, China
| | - Bai-Ri Cui
- Department of Osteology, Affiliated Hospital of Yanbian University, Yanji, Jilin Province, China
| | - De-Lai Qiu
- Key Laboratory of Cellular Function and Pharmacology of Jilin Province, Yanbian University, Yanji, Jilin Province, 133002, China; Department of Physiology and Pathophysiology, College of Medicine, Yanbian University, Yanji, Jilin Province, China
| | - Song-Biao Cui
- Department of Neurology, Affiliated Hospital of Yanbian University, Yanji, Jilin Province, China
| | - Chun-Ping Chu
- Key Laboratory of Cellular Function and Pharmacology of Jilin Province, Yanbian University, Yanji, Jilin Province, 133002, China.
| |
Collapse
|
4
|
Li DY, Bing YH, Chu CP, Cui X, Cui SB, Qiu DL, Su LD. Chronic Ethanol Consumption Impairs the Tactile-Evoked Long-Term Depression at Cerebellar Molecular Layer Interneuron-Purkinje Cell Synapses in vivo in Mice. Front Cell Neurosci 2019; 12:521. [PMID: 30692916 PMCID: PMC6339896 DOI: 10.3389/fncel.2018.00521] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2018] [Accepted: 12/13/2018] [Indexed: 01/21/2023] Open
Abstract
The cerebellum is sensitive to ethanol (EtOH) consumption. Chronic EtOH consumption impairs motor learning by modulating the cerebellar circuitry synaptic transmission and long-term plasticity. Under in vitro conditions, acute EtOH inhibits both parallel fiber (PF) and climbing fiber (CF) long-term depression (LTD). However, thus far it has not been investigated how chronic EtOH consumption affects sensory stimulation-evoked LTD at the molecular layer interneurons (MLIs) to the Purkinje cell (PC) synapses (MLI-PC LTD) in the cerebellar cortex of living animals. In this study, we investigated the effect of chronic EtOH consumption on facial stimulation-evoked MLI-PC LTD, using an electrophysiological technique as well as pharmacological methods, in urethane-anesthetized mice. Our results showed that facial stimulation induced MLI–PC LTD in the control mice, but it could not be induced in mice with chronic EtOH consumption (0.8 g/kg; 28 days). Blocking the cannabinoid type 1 (CB1) receptor activity with AM-251, prevented MLI-PC LTD in the control mice, but revealed a nitric oxide (NO)-dependent long-term potentiation (LTP) of MLI–PC synaptic transmission (MLI-PC LTP) in the EtOH consumption mice. Notably, with the application of a NO donor, S-nitroso-N-Acetyl-D, L-penicillamine (SNAP) alone prevented the induction of MLI–PC LTD, but a mixture of SNAP and AM-251 revealed an MLI-PC LTP in control mice. In contrast, inhibiting NO synthase (NOS) revealed the facial stimulation-induced MLI-PC LTD in EtOH consumption mice. These results indicate that long-term EtOH consumption can impair the sensory stimulation-induced MLI–PC LTD via the activation of a NO signaling pathway in the cerebellar cortex in vivo in mice. Our results suggest that the chronic EtOH exposure causes a deficit in the cerebellar motor learning function and may be involved in the impaired MLI–PC GABAergic synaptic plasticity.
Collapse
Affiliation(s)
- Da-Yong Li
- Key Laboratory of Cellular Function and Pharmacology of Jilin Province, Yanbian University, Yanji, China.,Department of Physiology and Pathophysiology, College of Medicine, Yanbian University, Yanji, China.,College of Basic Courses, Zhejiang Shuren University, Hangzhou, China
| | - Yan-Hua Bing
- Key Laboratory of Cellular Function and Pharmacology of Jilin Province, Yanbian University, Yanji, China.,Department of Neurology, Affiliated Hospital of Yanbian University, Yanji, China
| | - Chun-Ping Chu
- Key Laboratory of Cellular Function and Pharmacology of Jilin Province, Yanbian University, Yanji, China
| | - Xun Cui
- Key Laboratory of Cellular Function and Pharmacology of Jilin Province, Yanbian University, Yanji, China
| | - Song-Biao Cui
- Department of Neurology, Affiliated Hospital of Yanbian University, Yanji, China
| | - De-Lai Qiu
- Key Laboratory of Cellular Function and Pharmacology of Jilin Province, Yanbian University, Yanji, China.,Department of Physiology and Pathophysiology, College of Medicine, Yanbian University, Yanji, China
| | - Li-Da Su
- Neuroscience Care Unit, Second Affiliated Hospital of Zhe-Jiang University School of Medicine, Hangzhou, China
| |
Collapse
|
5
|
Xu YH, Zhang GJ, Zhao JT, Chu CP, Li YZ, Qiu DL. Roles of N-methyl-d-aspartate receptors during the sensory stimulation-evoked field potential responses in mouse cerebellar cortical molecular layer. Neurosci Lett 2017; 660:135-139. [PMID: 28919538 DOI: 10.1016/j.neulet.2017.09.030] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2017] [Revised: 09/05/2017] [Accepted: 09/12/2017] [Indexed: 01/28/2023]
Abstract
The functions of N-methyl-d-aspartate receptors (NMDARs) in cerebellar cortex have been widely studied under in vitro condition, but their roles during the sensory stimulation-evoked responses in the cerebellar cortical molecular layer in living animals are currently unclear. We here investigated the roles of NMDARs during the air-puff stimulation on ipsilateral whisker pad-evoked field potential responses in cerebellar cortical molecular layer in urethane-anesthetized mice by electrophysiological recording and pharmacological methods. Our results showed that cerebellar surface administration of NMDA induced a dose-dependent decrease in amplitude of the facial stimulation-evoked inhibitory responses (P1) in the molecular layer, accompanied with decreases in decay time, half-width and area under curve (AUC) of P1. The IC50 of NMDA induced inhibition in amplitude of P1 was 46.5μM. In addition, application of NMDA induced significant increases in the decay time, half-width and AUC values of the facial stimulation-evoked excitatory responses (N1) in the molecular layer. Application of an NMDAR blocker, D-APV (250μM) abolished the facial stimulation-evoked P1 in the molecular layer. These results suggested that NMDARs play a critical role during the sensory information processing in cerebellar cortical molecular layer in vivo in mice.
Collapse
Affiliation(s)
- Yin-Hua Xu
- Key Laboratory of Cellular Function and Pharmacology of Jilin Province, Yanbian University, Yanji City, Jilin Province, 133002, China; Department of Physiology and Pathophysiology, College of Medicine, Yanbian University, Yanji City, Jilin Province, China; Department of Neurology, Affiliated Hospital of Yanbian University, Yanji, Jilin Province, China
| | - Guang-Jian Zhang
- Key Laboratory of Cellular Function and Pharmacology of Jilin Province, Yanbian University, Yanji City, Jilin Province, 133002, China; Department of Pain, Affiliated Hospital of Yanbian University, Yanji City, Jilin Province, China
| | - Jing-Tong Zhao
- Key Laboratory of Cellular Function and Pharmacology of Jilin Province, Yanbian University, Yanji City, Jilin Province, 133002, China; Department of Cardiology, Affiliated Hospital of Yanbian University, Yanji City, Jilin Province, 133000, China
| | - Chun-Ping Chu
- Key Laboratory of Cellular Function and Pharmacology of Jilin Province, Yanbian University, Yanji City, Jilin Province, 133002, China
| | - Yu-Zi Li
- Department of Cardiology, Affiliated Hospital of Yanbian University, Yanji City, Jilin Province, 133000, China.
| | - De-Lai Qiu
- Key Laboratory of Cellular Function and Pharmacology of Jilin Province, Yanbian University, Yanji City, Jilin Province, 133002, China; Department of Physiology and Pathophysiology, College of Medicine, Yanbian University, Yanji City, Jilin Province, China.
| |
Collapse
|
6
|
Zhang GJ, Wu MC, Shi JD, Xu YH, Chu CP, Cui SB, Qiu DL. Ethanol Modulates the Spontaneous Complex Spike Waveform of Cerebellar Purkinje Cells Recorded in vivo in Mice. Front Cell Neurosci 2017; 11:43. [PMID: 28293172 PMCID: PMC5328976 DOI: 10.3389/fncel.2017.00043] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2016] [Accepted: 02/09/2017] [Indexed: 11/18/2022] Open
Abstract
Cerebellar Purkinje cells (PCs) are sensitive to ethanol, but the effect of ethanol on spontaneous complex spike (CS) activity in these cells in vivo is currently unknown. Here, we investigated the effect of ethanol on spontaneous CS activity in PCs in urethane-anesthetized mice using in vivo patch-clamp recordings and pharmacological manipulation. Ethanol (300 mM) induced a decrease in the CS-evoked pause in simple spike (SS) firing and in the amplitude of the afterhyperpolarization (AHP) under current clamp conditions. Under voltage-clamp conditions, ethanol significantly decreased the area under the curve (AUC) and the number of CS spikelets, without changing the spontaneous frequency of the CSs or the instantaneous frequency of the CS spikelets. Ethanol-induced a decrease in the AUC of spontaneous CSs was concentration dependent. The EC50 of ethanol for decreasing the AUC of spontaneous CSs was 168.5 mM. Blocking N-methyl-D-aspartate receptors (NMDARs) failed to prevent the ethanol-induced decreases in the CS waveform parameters. However, blockade of cannabinoid receptor 1 (CB1) significantly suppressed the ethanol-induced effects on the CS-evoked pause in SS firing, amplitude of the AHP, spikelet number and the AUC of CSs. Moreover, a CB1 receptor agonist not only reduced the number of spikelets and the AUC of CSs, but also prevented the ethanol-induced inhibition of CS activity. Our results indicate that ethanol inhibits CS activity via activation of the CB1 receptor in vivo in mice, suggesting that excessive ethanol intake inhibits climbing fiber (CF)–PC synaptic transmission by modulating CB1 receptors in the cerebellar cortex.
Collapse
Affiliation(s)
- Guang-Jian Zhang
- Key Laboratory of Cellular Function and Pharmacology of Jilin Province, YanBian UniversityYanji City, China; Department of Pain, Affiliated Hospital of Yanbian UniversityYanji City, China
| | - Mao-Cheng Wu
- Key Laboratory of Cellular Function and Pharmacology of Jilin Province, YanBian UniversityYanji City, China; Department of Osteology, Affiliated Hospital of Yanbian UniversityYanji City, China
| | - Jin-Di Shi
- Key Laboratory of Cellular Function and Pharmacology of Jilin Province, YanBian UniversityYanji City, China; Department of Physiology and Pathophysiology, College of Medicine, Yanbian UniversityYanji City, China
| | - Yin-Hua Xu
- Key Laboratory of Cellular Function and Pharmacology of Jilin Province, YanBian UniversityYanji City, China; Department of Neurology, Affiliated Hospital of Yanbian UniversityYanji City, China
| | - Chun-Ping Chu
- Key Laboratory of Cellular Function and Pharmacology of Jilin Province, YanBian University Yanji City, China
| | - Song-Biao Cui
- Department of Neurology, Affiliated Hospital of Yanbian University Yanji City, China
| | - De-Lai Qiu
- Key Laboratory of Cellular Function and Pharmacology of Jilin Province, YanBian UniversityYanji City, China; Department of Physiology and Pathophysiology, College of Medicine, Yanbian UniversityYanji City, China
| |
Collapse
|
7
|
Ethanol modulates facial stimulation-evoked outward currents in cerebellar Purkinje cells in vivo in mice. Sci Rep 2016; 6:30857. [PMID: 27489024 PMCID: PMC4973232 DOI: 10.1038/srep30857] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2016] [Accepted: 07/08/2016] [Indexed: 11/16/2022] Open
Abstract
Acute ethanol overdose can induce dysfunction of cerebellar motor regulation and cerebellar ataxia. In this study, we investigated the effect of ethanol on facial stimulation-evoked inhibitory synaptic responses in cerebellar Purkinje cells (PCs) in urethane-anesthetized mice, using in vivo patch-clamp recordings. Under voltage-clamp conditions, ethanol (300 mM) decreased the amplitude, half-width, rise time and decay time of facial stimulation-evoked outward currents in PCs. The ethanol-induced inhibition of facial stimulation-evoked outward currents was dose-dependent, with an IC50 of 148.5 mM. Notably, the ethanol-induced inhibition of facial stimulation-evoked outward currents were significantly abrogated by cannabinoid receptor 1 (CB1) antagonists, AM251 and O-2050, as well as by the CB1 agonist WIN55212-2. Moreover, the ethanol-induced inhibition of facial stimulation-evoked outward currents was prevented by cerebellar surface perfusion of the PKA inhibitors H-89 and Rp-cAMP, but not by intracellular administration of the PKA inhibitor PKI. Our present results indicate that ethanol inhibits the facial stimulation-evoked outward currents by activating presynaptic CB1 receptors via the PKA signaling pathway. These findings suggest that ethanol overdose impairs sensory information processing, at least in part, by inhibiting GABA release from molecular layer interneurons onto PCs.
Collapse
|
8
|
Bing YH, Zhang GJ, Sun L, Chu CP, Qiu DL. Dynamic properties of sensory stimulation evoked responses in mouse cerebellar granule cell layer and molecular layer. Neurosci Lett 2015; 585:114-8. [DOI: 10.1016/j.neulet.2014.11.037] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2014] [Revised: 11/10/2014] [Accepted: 11/25/2014] [Indexed: 10/24/2022]
|