1
|
Kato M, Iwakoshi-Ukena E, Narimatsu Y, Furumitsu M, Ukena K. Expression of mRNAs Encoding Hypothalamic Small Proteins, Neurosecretory Protein GL and Neurosecretory Protein GM, in the Japanese Quail, Coturnix japonica. Zoolog Sci 2024; 41:50-59. [PMID: 38587517 DOI: 10.2108/zs230070] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2023] [Accepted: 11/13/2023] [Indexed: 04/09/2024]
Abstract
Neurosecretory protein GL (NPGL) and neurosecretory protein GM (NPGM) are novel neuropeptides that have been discovered in the hypothalamic infundibulum of chickens. NPGL and NPGM play important roles in lipid metabolism in juvenile chickens. The physiological functions of NPGL and NPGM in sexually mature birds remain unknown. The Japanese quail (Coturnix japonica) seems to be an appropriate model for analyzing NPGL and NPGM during sexual maturity. However, studies on NPGL or NPGM have yet to be reported in the Japanese quail. In the present study, we identified cDNAs encoding precursor proteins of NPGL and NPGM in the quail hypothalamus. In situ hybridization revealed that NPGL mRNA-expressing cells in the hypothalamus were localized in the infundibular nucleus and median eminence, and NPGM mRNA-expressing cells were only found in the mammillary nucleus. Immunohistochemistry revealed that NPGM-like immunoreactive cells were distributed in the mammillary nucleus, whereas NPGL-like immunoreactive cells were not detected in the hypothalamus. Real-time PCR analysis indicated that the expression of NPGL mRNA was higher in the hypothalamus of females than in that of males, and NPGM mRNA expression showed no sex differences. NPGL and NPGM mRNA expression in males was upregulated after 24 h of food deprivation. In females, only NPGM mRNA expression was increased by fasting. These results suggest that the physiological functions of NPGL and NPGM are different in quail, and these factors are involved in sex differences in energy metabolism.
Collapse
Affiliation(s)
- Masaki Kato
- Laboratory of Neurometabolism, Graduate School of Integrated Sciences for Life, Hiroshima University, Higashi-Hiroshima, Hiroshima 739-8521, Japan
| | - Eiko Iwakoshi-Ukena
- Laboratory of Neurometabolism, Graduate School of Integrated Sciences for Life, Hiroshima University, Higashi-Hiroshima, Hiroshima 739-8521, Japan,
| | - Yuki Narimatsu
- Laboratory of Neurometabolism, Graduate School of Integrated Sciences for Life, Hiroshima University, Higashi-Hiroshima, Hiroshima 739-8521, Japan
| | - Megumi Furumitsu
- Laboratory of Neurometabolism, Graduate School of Integrated Sciences for Life, Hiroshima University, Higashi-Hiroshima, Hiroshima 739-8521, Japan
| | - Kazuyoshi Ukena
- Laboratory of Neurometabolism, Graduate School of Integrated Sciences for Life, Hiroshima University, Higashi-Hiroshima, Hiroshima 739-8521, Japan,
| |
Collapse
|
2
|
Kato M, Iwakoshi-Ukena E, Narimatsu Y, Furumitsu M, Ukena K. Effect of Stressors on the mRNA Expressions of Neurosecretory Protein GL and Neurosecretory Protein GM in Chicks. Front Physiol 2022; 13:860912. [PMID: 35370775 PMCID: PMC8964992 DOI: 10.3389/fphys.2022.860912] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2022] [Accepted: 02/24/2022] [Indexed: 11/13/2022] Open
Abstract
We recently discovered novel cDNAs encoding the precursors of two small secretory proteins, neurosecretory protein GL (NPGL) and neurosecretory protein GM (NPGM), in the mediobasal hypothalamus (MBH) of chickens. In addition, we found colocalization of NPGL, NPGM, and histidine decarboxylase (HDC; histamine-producing enzyme) in same neurons of the medial mammillary nucleus of the hypothalamus. In this study, we elucidated the effect of several stresses, including food deprivation, environmental heat, inflammation, and social isolation, on the mRNA expression of NPGL, NPGM, and HDC in chicks using real-time PCR. Food deprivation for 24 h increased NPGM mRNA expression in the MBH. On the other hand, an environmental temperature of 37°C for 24 h did not affect their mRNA expression. Six hours after intraperitoneal injection of lipopolysaccharide, an inducer of inflammation, the mRNA expression of NPGM, but not that of NPGL and HDC increased. Social isolation for 3 h induced an increase in the mRNA expression of NPGL, NPGM, and HDC. These results indicate that NPGM, but not NPGL or HDC, may participate in several physiological responses to stress in chicks.
Collapse
|
3
|
Chakraborty M, Mohanty M, Dinda R, Sengupta S, Kumar Chattopadhyay S. Cu(II) complexes of a bio-compatible aminoguanidine Schiff base: Histidine sensing and DNA-binding studies. Polyhedron 2022. [DOI: 10.1016/j.poly.2021.115554] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
|
4
|
Das C, Pakhira B, Rheingold AL, Kumar Chattopadhyay S. Turn on ESIPT based chemosensor for histidine: Application in urine analysis and live cell imaging. Inorganica Chim Acta 2018. [DOI: 10.1016/j.ica.2018.06.017] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
|
5
|
Shikano K, Bessho Y, Kato M, Iwakoshi-Ukena E, Taniuchi S, Furumitsu M, Tachibana T, Bentley GE, Kriegsfeld LJ, Ukena K. Localization and function of neurosecretory protein GM, a novel small secretory protein, in the chicken hypothalamus. Sci Rep 2018; 8:704. [PMID: 29335496 PMCID: PMC5768754 DOI: 10.1038/s41598-017-18822-9] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2017] [Accepted: 12/18/2017] [Indexed: 12/15/2022] Open
Abstract
Recently, we discovered a novel cDNA encoding the precursor of a small secretory protein, neurosecretory protein GL (NPGL), in the hypothalamic infundibulum of chickens. NPGL plays an important role in the regulation of growth and feeding. A database search indicated that the NPGL gene has a paralogous gene: neurosecretory protein GM (NPGM), also in chickens. We identified cDNA encoding the NPGM precursor in chickens. Morphological analysis showed that NPGM-containing cells are specifically localized in the medial mammillary nucleus (MM) and infundibular nucleus (IN) in the hypothalamus. In addition, we found that NPGM and NPGL are co-localized, especially in the MM. The expression levels of NPGM mRNA gradually decreased during post-hatch development, in contrast to those of NPGL mRNA. Moreover, we investigated the relationship between NPGM and other known factors. NPGM was found to be produced in histaminergic neurons in the MM. NPGM and histidine decarboxylase, a histamine-producing enzyme, displayed similar expression patterns during post-hatch development. Acute intracerebroventricular injection of NPGM decreased food intake, similar to the effect of histamine. To our knowledge, this is the first report of the localization and function of NPGM in the brain of vertebrates. These results will further advance the understanding mechanisms underlying energy homeostasis.
Collapse
Affiliation(s)
- Kenshiro Shikano
- Section of Behavioral Sciences, Graduate School of Integrated Arts and Sciences, Hiroshima University, Higashi, Hiroshima, 739-8521, Japan
| | - Yuki Bessho
- Section of Behavioral Sciences, Graduate School of Integrated Arts and Sciences, Hiroshima University, Higashi, Hiroshima, 739-8521, Japan
| | - Masaki Kato
- Section of Behavioral Sciences, Graduate School of Integrated Arts and Sciences, Hiroshima University, Higashi, Hiroshima, 739-8521, Japan
| | - Eiko Iwakoshi-Ukena
- Section of Behavioral Sciences, Graduate School of Integrated Arts and Sciences, Hiroshima University, Higashi, Hiroshima, 739-8521, Japan.,Department of Integrative Biology and the Helen Wills Neuroscience Institute, University of California at Berkeley, Berkeley, CA, 94720-3140, USA
| | - Shusuke Taniuchi
- Section of Behavioral Sciences, Graduate School of Integrated Arts and Sciences, Hiroshima University, Higashi, Hiroshima, 739-8521, Japan
| | - Megumi Furumitsu
- Section of Behavioral Sciences, Graduate School of Integrated Arts and Sciences, Hiroshima University, Higashi, Hiroshima, 739-8521, Japan
| | - Tetsuya Tachibana
- Department of Agrobiological Science, Faculty of Agriculture, Ehime University, Matsuyama, 790-8566, Japan
| | - George E Bentley
- Department of Integrative Biology and the Helen Wills Neuroscience Institute, University of California at Berkeley, Berkeley, CA, 94720-3140, USA
| | - Lance J Kriegsfeld
- Department of Psychology and the Helen Wills Neuroscience Institute, University of California at Berkeley, Berkeley, CA, 94720-3140, USA
| | - Kazuyoshi Ukena
- Section of Behavioral Sciences, Graduate School of Integrated Arts and Sciences, Hiroshima University, Higashi, Hiroshima, 739-8521, Japan. .,Department of Psychology and the Helen Wills Neuroscience Institute, University of California at Berkeley, Berkeley, CA, 94720-3140, USA.
| |
Collapse
|
6
|
Shikano K, Kato M, Iwakoshi-Ukena E, Furumitsu M, Matsuura D, Masuda K, Tachibana T, Bentley GE, Kriegsfeld LJ, Ukena K. Effects of chronic intracerebroventricular infusion of neurosecretory protein GL on body mass and food and water intake in chicks. Gen Comp Endocrinol 2018; 256:37-42. [PMID: 28554734 DOI: 10.1016/j.ygcen.2017.05.016] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/13/2017] [Revised: 05/17/2017] [Accepted: 05/24/2017] [Indexed: 12/17/2022]
Abstract
Recently, we discovered a novel cDNA encoding the precursor of a small secretory protein, neurosecretory protein GL (NPGL), in the chicken mediobasal hypothalamus. In this study, immunohistochemical analysis revealed that NPGL was produced in the infundibular and medial mammillary nuclei of the mediobasal hypothalamus, with immunoreactive fibers also detected in the hypothalamus and the median eminence. As it is known that these regions are involved in feeding behavior in chicks, we surveyed the effects of chronic intracerebroventricular infusion of NPGL on feeding behavior and body mass for a period of two weeks. NPGL stimulated food and water intake, with a concomitant increase in body mass. However, NPGL did not influence mRNA expression of several hypothalamic ingestion-related neuropeptides. Our data suggest that NPGL may be a novel neuronal regulator involved in growth processes in chicks.
Collapse
Affiliation(s)
- Kenshiro Shikano
- Section of Behavioral Sciences, Graduate School of Integrated Arts and Sciences, Hiroshima University, Higashi-Hiroshima 739-8521, Japan
| | - Masaki Kato
- Section of Behavioral Sciences, Graduate School of Integrated Arts and Sciences, Hiroshima University, Higashi-Hiroshima 739-8521, Japan
| | - Eiko Iwakoshi-Ukena
- Section of Behavioral Sciences, Graduate School of Integrated Arts and Sciences, Hiroshima University, Higashi-Hiroshima 739-8521, Japan; Department of Integrative Biology, The Helen Wills Neuroscience Institute, University of California at Berkeley, Berkeley, CA 94720-3140, USA
| | - Megumi Furumitsu
- Section of Behavioral Sciences, Graduate School of Integrated Arts and Sciences, Hiroshima University, Higashi-Hiroshima 739-8521, Japan
| | - Daichi Matsuura
- Section of Behavioral Sciences, Graduate School of Integrated Arts and Sciences, Hiroshima University, Higashi-Hiroshima 739-8521, Japan
| | - Keiko Masuda
- Section of Behavioral Sciences, Graduate School of Integrated Arts and Sciences, Hiroshima University, Higashi-Hiroshima 739-8521, Japan
| | - Tetsuya Tachibana
- Department of Agrobiological Science, Faculty of Agriculture, Ehime University, Matsuyama 790-8566, Japan
| | - George E Bentley
- Department of Integrative Biology, The Helen Wills Neuroscience Institute, University of California at Berkeley, Berkeley, CA 94720-3140, USA
| | - Lance J Kriegsfeld
- Department of Psychology, The Helen Wills Neuroscience Institute, University of California at Berkeley, Berkeley, CA 94720-3140, USA
| | - Kazuyoshi Ukena
- Section of Behavioral Sciences, Graduate School of Integrated Arts and Sciences, Hiroshima University, Higashi-Hiroshima 739-8521, Japan; Department of Psychology, The Helen Wills Neuroscience Institute, University of California at Berkeley, Berkeley, CA 94720-3140, USA.
| |
Collapse
|
7
|
Chen Z, He Q, Zhao M, Lin C, Luo F, Lin Z, Chen G. A fluorometric histidine biosensor based on the use of a quencher-labeled Cu(II)-dependent DNAzyme. Mikrochim Acta 2017. [DOI: 10.1007/s00604-017-2425-7] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
8
|
Kim KY, Jung SH, Lee JH, Lee SS, Jung JH. An imidazole-appended p-phenylene-Cu(II) ensemble as a chemoprobe for histidine in biological samples. Chem Commun (Camb) 2015; 50:15243-6. [PMID: 25347612 DOI: 10.1039/c4cc07274j] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
A tetra-imidazole-appended tetrakis(p-phenylene)ethylene 1-Cu(2+) ensemble was found to enhance fluorescence upon addition of histidine, but not with any other amino acids. The 1-Cu(2+) ensemble also selectively detected proteins containing histidine residues in a mixture of water and methanol (90 : 10, v/v%). The 1-Cu(2+) ensemble-coated thin-layered chromatography (TLC) plate could also detect histidine quantitatively. Furthermore, the fluorescence emission recovery upon addition of five concentrations of His was ~80% with good linearity.
Collapse
Affiliation(s)
- Ka Young Kim
- Department of Chemistry and Research Institute of Natural Sciences, Gyeongsang National University, Jinju, South Korea.
| | | | | | | | | |
Collapse
|
9
|
Kim KY, Jung SH, Jung JH. Electrospun nanofibrous membranes incorporating an imidazole-appended p-phenylene-Cu(ii) ensemble as fluoroprobes for the detection of His-proteins. J Mater Chem B 2015; 3:7222-7226. [DOI: 10.1039/c5tb01584g] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Tetra-imidazole-appendedp-phenylene-Cu(ii) doped nanofibrous membranes can function as “turn-on” portable fluorescence chemoprobes for Histidine.
Collapse
Affiliation(s)
- Ka Young Kim
- Department of Chemistry and Research Institute of Natural Sciences
- Gyeongsang National University
- Jinju
- South Korea
| | - Sung Ho Jung
- Department of Chemistry and Research Institute of Natural Sciences
- Gyeongsang National University
- Jinju
- South Korea
| | - Jong Hwa Jung
- Department of Chemistry and Research Institute of Natural Sciences
- Gyeongsang National University
- Jinju
- South Korea
| |
Collapse
|
10
|
Gao Q, Song B, Ye Z, Yang L, Liu R, Yuan J. A highly selective phosphorescence probe for histidine in living bodies. Dalton Trans 2015; 44:18671-6. [DOI: 10.1039/c5dt03319e] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A heterobimetallic ruthenium(ii)–nickel(ii) complex has been developed for phosphorescence imaging of histidine in live cells and bodies.
Collapse
Affiliation(s)
- Quankun Gao
- State Key Laboratory of Fine Chemicals
- School of Chemistry
- Dalian University of Technology
- Dalian 116024
- China
| | - Bo Song
- State Key Laboratory of Fine Chemicals
- School of Chemistry
- Dalian University of Technology
- Dalian 116024
- China
| | - Zhiqiang Ye
- State Key Laboratory of Fine Chemicals
- School of Chemistry
- Dalian University of Technology
- Dalian 116024
- China
| | - Liu Yang
- State Key Laboratory of Fine Chemicals
- School of Chemistry
- Dalian University of Technology
- Dalian 116024
- China
| | - Ruoyang Liu
- State Key Laboratory of Fine Chemicals
- School of Chemistry
- Dalian University of Technology
- Dalian 116024
- China
| | - Jingli Yuan
- State Key Laboratory of Fine Chemicals
- School of Chemistry
- Dalian University of Technology
- Dalian 116024
- China
| |
Collapse
|