1
|
Li Y, Hao P, Duan H, Hao F, Zhao W, Gao Y, Yang Z, So KF, Li X. Activation of adult endogenous neurogenesis by a hyaluronic acid collagen gel containing basic fibroblast growth factor promotes remodeling and functional recovery of the injured cerebral cortex. Neural Regen Res 2025; 20:2923-2937. [PMID: 39610105 PMCID: PMC11826446 DOI: 10.4103/nrr.nrr-d-23-01706] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2023] [Revised: 02/02/2024] [Accepted: 04/20/2024] [Indexed: 11/30/2024] Open
Abstract
JOURNAL/nrgr/04.03/01300535-202510000-00024/figure1/v/2024-11-26T163120Z/r/image-tiff The presence of endogenous neural stem/progenitor cells in the adult mammalian brain suggests that the central nervous system can be repaired and regenerated after injury. However, whether it is possible to stimulate neurogenesis and reconstruct cortical layers II to VI in non-neurogenic regions, such as the cortex, remains unknown. In this study, we implanted a hyaluronic acid collagen gel loaded with basic fibroblast growth factor into the motor cortex immediately following traumatic injury. Our findings reveal that this gel effectively stimulated the proliferation and migration of endogenous neural stem/progenitor cells, as well as their differentiation into mature and functionally integrated neurons. Importantly, these new neurons reconstructed the architecture of cortical layers II to VI, integrated into the existing neural circuitry, and ultimately led to improved brain function. These findings offer novel insight into potential clinical treatments for traumatic cerebral cortex injuries.
Collapse
Affiliation(s)
- Yan Li
- Department of Neurobiology, School of Basic Medical Sciences, Capital Medical University, Beijing, China
- China Rehabilitation Science Institute, China Rehabilitation Research Center, Beijing Key Laboratory of Neural Injury and Rehabilitation, Beijing, China
- Center of Neural Injury and Repair, Beijing Institute for Brain Disorders, Beijing, China
| | - Peng Hao
- Department of Neurobiology, School of Basic Medical Sciences, Capital Medical University, Beijing, China
| | - Hongmei Duan
- Department of Neurobiology, School of Basic Medical Sciences, Capital Medical University, Beijing, China
| | - Fei Hao
- Beijing Key Laboratory for Biomaterials and Neural Regeneration, School of Engineering Medicine, Beihang University, Beijing, China
| | - Wen Zhao
- Department of Neurobiology, School of Basic Medical Sciences, Capital Medical University, Beijing, China
| | - Yudan Gao
- Department of Neurobiology, School of Basic Medical Sciences, Capital Medical University, Beijing, China
| | - Zhaoyang Yang
- Department of Neurobiology, School of Basic Medical Sciences, Capital Medical University, Beijing, China
| | - Kwok-Fai So
- Guangdong–HongKong–Macau Institute of CNS Regeneration, Ministry of Education CNS Regeneration Collaborative Joint Laboratory, Jinan University, Guangzhou, Guangdong Province, China
- Bioland Laboratory (Guangzhou Regenerative Medicine and Health Guangdong Laboratory), Guangzhou, Guangdong Province, China
- Department of Ophthalmology and State Key Laboratory of Brain and Cognitive Sciences, The University of Hong Kong, Hong Kong Special Administration Region, China
- Center for Brain Science and Brain-Inspired Intelligence, Guangdong–HongKong–Macao Greater Bay Area, Guangzhou, Guangdong Province, China
- Co-innovation Center of Neuroregeneration, Nantong University, Nantong, Jiangsu Province, China
| | - Xiaoguang Li
- Department of Neurobiology, School of Basic Medical Sciences, Capital Medical University, Beijing, China
- Department of Biomedical Engineering, School of Biological Science and Medical Engineering, Beihang University, Beijing, China
| |
Collapse
|
2
|
Karakaya D, Lampe K, Encinas JL, Duru S, Peiro L, Oge HK, Sanchez-Margallo FM, Oria M, Peiro JL. Neurogenesis and glial impairments in congenital hydrocephalus: insights from a BioGlue-induced fetal lamb model. Fluids Barriers CNS 2025; 22:20. [PMID: 39994758 PMCID: PMC11849300 DOI: 10.1186/s12987-025-00630-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2024] [Accepted: 02/10/2025] [Indexed: 02/26/2025] Open
Abstract
BACKGROUND Congenital hydrocephalus (HCP) is a prevalent condition, that leads to fetal cerebral ventricle dilation and increased intracranial pressure. It is associated with significant neurological impairments, partly due to the disruption of neurogenesis and gliogenesis. This study aims to investigate alterations in the proliferation and differentiation of neural progenitor cells (NPCs) in a fetal lamb model of obstructive HCP induced by intracisternal BioGlue injection, to identify the potential optimal intervention time for prenatal surgery. METHODS This study involved 22 fetal lambs, divided into control (n = 10) and HCP (n = 12) groups with hydrocephalus induced at approximately 85-90 gestational days. Histological and molecular techniques, including hematoxylin and eosin staining, triple immunofluorescence, Western blot analysis, and RT-qPCR, were utilized to assess changes in NPCs, astrocytes, and oligodendrocytes across three different gestational stages (E105, E125, and E140). The analysis of data was done by using multiple (unpaired) two-sample t-test and was represented as mean and standard deviation. RESULTS HCP led to significant disruptions in the ventricular zone (VZ), with the translocation of NPCs into the intraventricular CSF and formation of periventricular heterotopias. This study revealed an initial surge in the expression of NPC markers (Pax6 and Sox2), which decreased as HCP progressed. Astroglia reaction intensified, as indicated by increased expression of GFAP, vimentin, and aquaporin 4, particularly at later stages of pregnancy (p < 0.001, p < 0.001 and p < 0.001, control and HCP E140, respectively). Myelin formation was also adversely affected, with reduced expression of oligodendrocyte markers (Olig2 and Sox10, p = 0.01 and p = 0.009, control and HCP E140, respectively) and myelin proteins (MOBP, MOG and MBP, p = 0.02, p = 0.049 and p = 0.02 control and HCP E140, respectively). CONCLUSIONS This study contributed to clarify the profound impact of congenital HCP on neurogenesis and gliogenesis in an experimental fetal lamb model. The VZ disruption and altered expression of key neurogenic and glial markers suggested a significant pathological process underlying neurodevelopmental abnormalities. The findings suggested a potential window for prenatal surgical intervention between E105 and E125 in the sheep model, offering new avenues for prenatal therapeutic approaches and improving surgical outcomes in affected fetuses and neonates.
Collapse
Affiliation(s)
- Dicle Karakaya
- The Center for Fetal and Placental Research, Cincinnati Children'S Hospital Medical Center (CCHMC), 3333 Burnet Avenue, MLC 11025, T8.605, Cincinnati, OH, 45229-3039, USA
- Department of Neurosurgery, Hacettepe University, Ankara, Turkey
| | - Kristin Lampe
- The Center for Fetal and Placental Research, Cincinnati Children'S Hospital Medical Center (CCHMC), 3333 Burnet Avenue, MLC 11025, T8.605, Cincinnati, OH, 45229-3039, USA
| | - Jose L Encinas
- Pediatric Surgery Division, Hospital Universitario La Paz, Madrid, Spain
| | - Soner Duru
- The Center for Fetal and Placental Research, Cincinnati Children'S Hospital Medical Center (CCHMC), 3333 Burnet Avenue, MLC 11025, T8.605, Cincinnati, OH, 45229-3039, USA
| | - Lucas Peiro
- The Center for Fetal and Placental Research, Cincinnati Children'S Hospital Medical Center (CCHMC), 3333 Burnet Avenue, MLC 11025, T8.605, Cincinnati, OH, 45229-3039, USA
| | - Halil Kamil Oge
- Department of Neurosurgery, Hacettepe University, Ankara, Turkey
| | | | - Marc Oria
- The Center for Fetal and Placental Research, Cincinnati Children'S Hospital Medical Center (CCHMC), 3333 Burnet Avenue, MLC 11025, T8.605, Cincinnati, OH, 45229-3039, USA
- Department of Radiation Oncology, College of Medicine, University of Cincinnati, Cincinnati, OH, USA
- University of Cincinnati Cancer Center (UCCC), Cincinnati, OH, USA
- University of Cincinnati Brain Tumor Center (BTC), Cincinnati, OH, USA
| | - Jose L Peiro
- The Center for Fetal and Placental Research, Cincinnati Children'S Hospital Medical Center (CCHMC), 3333 Burnet Avenue, MLC 11025, T8.605, Cincinnati, OH, 45229-3039, USA.
- Department of Surgery, College of Medicine, University of Cincinnati, Cincinnati, OH, USA.
| |
Collapse
|
3
|
Horgos B, Mecea M, Boer A, Buruiana A, Ciortea R, Mihu CM, Florian IS, Florian AI, Stamatian F, Szabo B, Albu C, Susman S, Pascalau R. White matter changes in fetal brains with ventriculomegaly. Front Neuroanat 2023; 17:1160742. [PMID: 37389403 PMCID: PMC10303118 DOI: 10.3389/fnana.2023.1160742] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2023] [Accepted: 05/10/2023] [Indexed: 07/01/2023] Open
Abstract
Introduction Ventriculomegaly (VM) is a fetal brain malformation which may present independently (isolated form) or in association with different cerebral malformations, genetic syndromes or other pathologies (non-isolated form). Methods This paper aims to study the effect of ventriculomegaly on the internal tridimensional architecture of fetal brains by way of Klingler's dissection. Ventriculomegaly was diagnosed using fetal ultrasonography during pregnancy and subsequently confirmed by necropsy. Taking into consideration the diameter of the lateral ventricle (measured at the level of the atrium), the brains were divided into two groups: moderate ventriculomegaly (with atrial diameter between 13 and 15 mm) and severe ventriculomegaly (with atrial diameter above 15 mm). Results and discussion The results of each dissection were described and illustrated, then compared with age-matched reference brains. In the pathological brains, fascicles in direct contact with the enlarged ventricles were found to be thinner and displaced inferiorly, the opening of the uncinate fasciculus was wider, the fornix was no longer in contact with the corpus callosum and the convexity of the corpus callosum was inverted. We have studied the prevalence of neurodevelopmental delay in children born with ventriculomegaly in the literature and discovered that a normal developmental outcome was found in over 90% of the mild VM cases, approximately 75% of the moderate and 60% in severe VM, with the correlated neurological impairments ranging from attention deficits to psychiatric disorders.
Collapse
Affiliation(s)
- Bianca Horgos
- Faculty of Medicine, “Iuliu Haţieganu” University of Medicine and Pharmacy, Cluj-Napoca, Romania
| | - Miruna Mecea
- Faculty of Medicine, “Iuliu Haţieganu” University of Medicine and Pharmacy, Cluj-Napoca, Romania
| | - Armand Boer
- Faculty of Medicine, “Iuliu Haţieganu” University of Medicine and Pharmacy, Cluj-Napoca, Romania
| | - Andrei Buruiana
- Department of Oncology, “Ion Chiricuţă” Institute of Oncology, Cluj-Napoca, Romania
| | - Razvan Ciortea
- Department of Obstetrics and Gynecology, “Iuliu Haţieganu” University of Medicine and Pharmacy, Cluj-Napoca, Romania
- Department of Obstetrics and Gynecology, Emergency County Hospital, Cluj-Napoca, Romania
| | - Carmen-Mihaela Mihu
- Department of Morphological Sciences—Histology, “Iuliu Haţieganu” University of Medicine and Pharmacy, Cluj-Napoca, Romania
| | - Ioan Stefan Florian
- Department of Neuroscience—Neurosurgery, “Iuliu Haţieganu” University of Medicine and Pharmacy, Cluj-Napoca, Romania
- Department of Neurosurgery, Emergency County Hospital, Cluj-Napoca, Romania
| | - Alexandru Ioan Florian
- Department of Neuroscience—Neurosurgery, “Iuliu Haţieganu” University of Medicine and Pharmacy, Cluj-Napoca, Romania
- Department of Neurosurgery, Emergency County Hospital, Cluj-Napoca, Romania
| | - Florin Stamatian
- Department of Obstetrics and Gynecology, IMOGEN Centre of Advanced Research Studies, Cluj-Napoca, Romania
| | - Bianca Szabo
- Department of Morphological Sciences—Anatomy and Embryology, “Iuliu Haţieganu” University of Medicine and Pharmacy, Cluj-Napoca, Romania
| | - Camelia Albu
- Department of Morphological Sciences—Pathology, “Iuliu Haţieganu” University of Medicine and Pharmacy, Cluj-Napoca, Romania
- Department of Pathology, IMOGEN Centre of Advanced Research Studies, Emergency County Hospital, Cluj-Napoca, Romania
| | - Sergiu Susman
- Department of Morphological Sciences—Histology, “Iuliu Haţieganu” University of Medicine and Pharmacy, Cluj-Napoca, Romania
- Department of Pathology, IMOGEN Centre of Advanced Research Studies, Emergency County Hospital, Cluj-Napoca, Romania
| | - Raluca Pascalau
- Department of Ophthalmology, Emergency County Hospital, Cluj-Napoca, Romania
- Research and Development Institute, Transilvania University of Brasov, Brasov, Romania
| |
Collapse
|
4
|
Istiaq A, Umemoto T, Ito N, Suda T, Shimamura K, Ohta K. Tsukushi proteoglycan maintains RNA splicing and developmental signaling network in GFAP-expressing subventricular zone neural stem/progenitor cells. Front Cell Dev Biol 2022; 10:994588. [DOI: 10.3389/fcell.2022.994588] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2022] [Accepted: 11/07/2022] [Indexed: 11/22/2022] Open
Abstract
Tsukushi (TSK) proteoglycan dysfunction leads to hydrocephalus, a condition defined by excessive fluid collection in the ventricles and lateral ventricular enlargement. TSK injections into the LV at birth are effective at rescuing the lateral ventricle (LV). TSK regulates the activation of the Wnt signaling to facilitate the proper expansion of the LV and maintain the fate of the neural stem cell lineage. However, the molecular mechanism by which TSK acts on neural stem/progenitor cells (NSCs) during LV development is unknown. We demonstrated that TSK is crucial for the splicing and development-associated gene regulation of GFAP-expressing subventricular zone (SVZ) NSCs. We isolated GFAP-expressing NSCs from the SVZ of wild-type (GFAPGFP/+/TSK+/+) and TSK knock-out (GFAPGFP/+/TSK−/−) mice on postnatal day 3 and compared their transcriptome and splicing profiles. TSK deficiency in NSCs resulted in genome-wide missplicing (alteration in exon usage) and transcriptional dysregulation affecting the post-transcriptional regulatory processes (including splicing, cell cycle, and circadian rhythm) and developmental signaling networks specific to the cell (including Wnt, Sonic Hedgehog, and mTOR signaling). Furthermore, TSK deficiency prominently affected the splicing of genes encoding RNA and DNA binding proteins in the nervous SVZ and non-nervous muscle tissues. These results suggested that TSK is involved in the maintenance of correct splicing and gene regulation in GFAP-expressing NSCs, thereby protecting cell fate and LV development. Hence, our study provides a critical insight on hydrocephalus development.
Collapse
|
5
|
Garcia-Bonilla M, Castaneyra-Ruiz L, Zwick S, Talcott M, Otun A, Isaacs AM, Morales DM, Limbrick DD, McAllister JP. Acquired hydrocephalus is associated with neuroinflammation, progenitor loss, and cellular changes in the subventricular zone and periventricular white matter. Fluids Barriers CNS 2022; 19:17. [PMID: 35193620 PMCID: PMC8864805 DOI: 10.1186/s12987-022-00313-3] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2021] [Accepted: 02/06/2022] [Indexed: 01/11/2023] Open
Abstract
BACKGROUND Hydrocephalus is a neurological disease with an incidence of 80-125 per 100,000 births in the United States. Neuropathology comprises ventriculomegaly, periventricular white matter (PVWM) alterations, inflammation, and gliosis. We hypothesized that hydrocephalus in a pig model is associated with subventricular and PVWM cellular alterations and neuroinflammation that could mimic the neuropathology described in hydrocephalic infants. METHODS Hydrocephalus was induced by intracisternal kaolin injections in 35-day old female pigs (n = 7 for tissue analysis, n = 10 for CSF analysis). Age-matched sham controls received saline injections (n = 6). After 19-40 days, MRI scanning was performed to measure the ventricular volume. Stem cell proliferation was studied in the Subventricular Zone (SVZ), and cell death and oligodendrocytes were examined in the PVWM. The neuroinflammatory reaction was studied by quantifying astrocytes and microglial cells in the PVWM, and inflammatory cytokines in the CSF. RESULTS The expansion of the ventricles was especially pronounced in the body of the lateral ventricle, where ependymal disruption occurred. PVWM showed a 44% increase in cell death and a 67% reduction of oligodendrocytes. In the SVZ, the number of proliferative cells and oligodendrocyte decreased by 75% and 57% respectively. The decrease of the SVZ area correlated significantly with ventricular volume increase. Neuroinflammation occurred in the hydrocephalic pigs with a significant increase of astrocytes and microglia in the PVWM, and high levels of inflammatory interleukins IL-6 and IL-8 in the CSF. CONCLUSION The induction of acquired hydrocephalus produced alterations in the PVWM, reduced cell proliferation in the SVZ, and neuroinflammation.
Collapse
Affiliation(s)
- Maria Garcia-Bonilla
- Department of Neurosurgery, Washington University in St. Louis School of Medicine, St. Louis, MO, 63110, USA.
| | - Leandro Castaneyra-Ruiz
- Department of Neurosurgery, Washington University in St. Louis School of Medicine, St. Louis, MO, 63110, USA
| | - Sarah Zwick
- Department of Neurosurgery, Washington University in St. Louis School of Medicine, St. Louis, MO, 63110, USA
| | - Michael Talcott
- Department of Neurosurgery, Washington University in St. Louis School of Medicine, St. Louis, MO, 63110, USA.,Division of Comparative Medicine, Washington University in St. Louis School of Medicine, St. Louis, MO, 63110, USA
| | - Ayodamola Otun
- Department of Neurosurgery, Washington University in St. Louis School of Medicine, St. Louis, MO, 63110, USA
| | - Albert M Isaacs
- Division of Neurosurgery, Department of Clinical Neurosciences, University of Calgary, Alberta, T2N 2T9, Canada
| | - Diego M Morales
- Department of Neurosurgery, Washington University in St. Louis School of Medicine, St. Louis, MO, 63110, USA
| | - David D Limbrick
- Department of Neurosurgery, Washington University in St. Louis School of Medicine, St. Louis, MO, 63110, USA
| | - James P McAllister
- Department of Neurosurgery, Washington University in St. Louis School of Medicine, St. Louis, MO, 63110, USA
| |
Collapse
|
6
|
Suryaningtyas W, Arifin M, Rantam FA, Bajamal AH, Dahlan YP, Dewa Gede Ugrasena I, Maliawan S. Erythropoietin protects the subventricular zone and inhibits reactive astrogliosis in kaolin-induced hydrocephalic rats. Childs Nerv Syst 2019; 35:469-476. [PMID: 30661113 DOI: 10.1007/s00381-019-04063-w] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/04/2018] [Accepted: 01/14/2019] [Indexed: 01/08/2023]
Abstract
PURPOSE To elucidate the potential role of erythropoietin (EPO) as a neuroprotective agent against reactive astrogliosis and reducing the thinning rate of subventricular zone (SVZ) in kaolin-induced hydrocephalic rats. METHOD Thirty-six ten-week-old Sprague-Dawley rats were used in this study. Hydrocephalus was induced with 20% kaolin suspension injected into the cistern of thirty rats and leaving the six rats as normal group. The hydrocephalic rats were randomly divided into hydrocephalic and treatment group. The treatment group received daily dose of recombinant human erythropoietin (rhEPO) from day 7 to day 21 after induction. The animals were sacrificed at 7 (only for hydrocephalic group) and 14 or 21 (for both groups) days after induction. Brain was removed and was prepared for histological analysis by hematoxylin and eosin staining as well as immunohistochemistry for 4-HNE, GFAP, Iba-1, and Ki-67. RESULTS Histopathological analysis showed that animals treated with rhEPO had a reduced astrocyte reactivity displayed by lower GFAP expression. Hydrocephalic rats received rhEPO also displayed reduced microglial activation shown by lower Iba-1 protein expression. Exogenous rhEPO exerted its protective action in reducing astrogliosis by inhibiting lipid peroxidation that was documented in this study as lower expression of 4-HNE than non-treated group. The SVZ thickness was progressively declining in hydrocephalus group, while the progression rate could be reduced by rhEPO. CONCLUSION Erythropoietin has a potential use for inhibiting lipid peroxidation, and reactive astrogliosis in hydrocephalic animal model. The reduced thinning rate of SVZ demonstrated that EPO also had effect in reducing the hydrocephalus progressivity. Further research is warranted to explore its efficacy and safety to use in clinical setting.
Collapse
Affiliation(s)
- Wihasto Suryaningtyas
- Department of Neurosurgery, Faculty of Medicine Universitas Airlangga - Dr. Soetomo General Hospital, Gedung Pusat Diagnostik Terpadu (GDC) Lantai 5, RSUD Dr. Soetomo, Jl. Mayjen Prof Moestopo 6-8, Surabaya, Indonesia.
| | - Muhammad Arifin
- Department of Neurosurgery, Faculty of Medicine Universitas Airlangga - Dr. Soetomo General Hospital, Gedung Pusat Diagnostik Terpadu (GDC) Lantai 5, RSUD Dr. Soetomo, Jl. Mayjen Prof Moestopo 6-8, Surabaya, Indonesia
| | - Fedik Abdul Rantam
- Department of Veterinary Microbiology - Faculty of Veterinary Medicine And Laboratory for Stem Cell Research - Institute of Tropical Disease, Universitas Airlangga, Surabaya, Indonesia
| | - Abdul Hafid Bajamal
- Department of Neurosurgery, Faculty of Medicine Universitas Airlangga - Dr. Soetomo General Hospital, Gedung Pusat Diagnostik Terpadu (GDC) Lantai 5, RSUD Dr. Soetomo, Jl. Mayjen Prof Moestopo 6-8, Surabaya, Indonesia
| | - Yoes Prijatna Dahlan
- Department of Parasitology, Faculty of Medicine Universitas Airlangga, Surabaya, Indonesia
| | - I Dewa Gede Ugrasena
- Department of Child Health, Faculty of Medicine Universitas Airlangga - Dr. Soetomo General Hospital, Surabaya, Indonesia
| | - Sri Maliawan
- Department of Neurosurgery, Faculty of Medicine Universitas Udayana - Sanglah General Hospital, Denpasar, Indonesia
| |
Collapse
|
7
|
Whitehead MT, Lee B, McCarron A, Fricke ST, Vezina G. Reduced subarachnoid fluid diffusion in enlarged subarachnoid spaces of infancy. Neuroradiol J 2017; 30:418-424. [PMID: 28195509 DOI: 10.1177/1971400916689803] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Background and purpose Enlargement of the subarachnoid spaces in infancy (ESSI) is a common cause of macrocephaly without proven explanation. We have observed subarachnoid diffusion to be decreased in these patients. We aim to quantify the diffusivity of ventricular and subarachnoid cerebrospinal fluid in ESSI patients, to determine if diffusion characteristics deviate from normocephalic infants, and to propose a unique mechanism for ESSI. Materials and methods 227 consecutive brain magnetic resonance exams from different macrocephalic children were retrospectively reviewed after institutional review board waiver. Patients with noncommunicating hydrocephalus, substantial ventriculomegaly, atrophy, structural bone and/parenchymal abnormalities, abnormal brain signal, hemorrhages, meningitis, and normal imaging were excluded. A total of 53 exams from macrocephalic patients and 21 normocephalic subjects were analyzed. Mean quantitative apparent diffusion coefficient (ADC) values were obtained from the ventricular frontal horn and frontal subarachnoid spaces. The subarachnoid:ventricular ADC ratios were compared using a Mann-Whitney U-test. Results The mean age was 13 +/-8 months (macrocephalic cohort) and 13 +/- 6 months (normocephalic cohort). The subarachnoid fluid mean ADC was 2.50+/-0.26 × 10-3 mm2/s in the macrocephalic group and 2.84+/-0.29 × 10-3 mm2/s in the normocephalic group. The ventricular fluid mean ADC was 2.97+/-0.37 × 10-3 mm2/s and 2.74 +/-0.32 × 10-6 mm2/s, respectively. The mean quantitative ADC ratios in the macrocephalic group were 0.85, significantly smaller than the normocephalic group (1) ( z = -6.3; p = 0). Conclusion Subarachnoid space fluid diffusivity is reduced in patients with enlarged subarachnoid spaces of infancy. We propose insufficient frontotemporal capillary protein resorption to be the initiating factor in ESSI, leading to unbalanced osmotic/hydrostatic pressures, and secondary congestion.
Collapse
Affiliation(s)
- Matthew T Whitehead
- 1 Department of Radiology, Children's National Medical Center, USA.,2 The George Washington University School of Medicine, USA
| | - Bonmyong Lee
- 3 Department of Radiology, The Johns Hopkins Medical Institute, USA
| | - Audrey McCarron
- 1 Department of Radiology, Children's National Medical Center, USA
| | - Stanley T Fricke
- 1 Department of Radiology, Children's National Medical Center, USA.,2 The George Washington University School of Medicine, USA
| | - Gilbert Vezina
- 1 Department of Radiology, Children's National Medical Center, USA.,2 The George Washington University School of Medicine, USA
| |
Collapse
|
8
|
Chang EH, Adorjan I, Mundim MV, Sun B, Dizon MLV, Szele FG. Traumatic Brain Injury Activation of the Adult Subventricular Zone Neurogenic Niche. Front Neurosci 2016; 10:332. [PMID: 27531972 PMCID: PMC4969304 DOI: 10.3389/fnins.2016.00332] [Citation(s) in RCA: 73] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2016] [Accepted: 06/30/2016] [Indexed: 01/07/2023] Open
Abstract
Traumatic brain injury (TBI) is common in both civilian and military life, placing a large burden on survivors and society. However, with the recognition of neural stem cells in adult mammals, including humans, came the possibility to harness these cells for repair of damaged brain, whereas previously this was thought to be impossible. In this review, we focus on the rodent adult subventricular zone (SVZ), an important neurogenic niche within the mature brain in which neural stem cells continue to reside. We review how the SVZ is perturbed following various animal TBI models with regards to cell proliferation, emigration, survival, and differentiation, and we review specific molecules involved in these processes. Together, this information suggests next steps in attempting to translate knowledge from TBI animal models into human therapies for TBI.
Collapse
Affiliation(s)
- Eun Hyuk Chang
- Samsung Biomedical Research Institute, Samsung Advanced Institute of Technology, Samsung Electronics Co., Ltd. Seoul, South Korea
| | - Istvan Adorjan
- Department of Physiology, Anatomy and Genetics, University of OxfordOxford, UK; Department of Anatomy, Histology and Embryology, Semmelweis UniversityBudapest, Hungary
| | - Mayara V Mundim
- Department of Biochemistry, Universidade Federal de São Paulo São Paulo, Brazil
| | - Bin Sun
- Department of Physiology, Anatomy and Genetics, University of Oxford Oxford, UK
| | - Maria L V Dizon
- Department of Pediatrics, Prentice Women's Hospital, Northwestern University Feinberg School of Medicine Chicago, IL, USA
| | - Francis G Szele
- Department of Physiology, Anatomy and Genetics, University of Oxford Oxford, UK
| |
Collapse
|
9
|
Li QQ, Qiao GQ, Ma J, Fan HW, Li YB. Cortical neurogenesis in adult rats after ischemic brain injury: most new neurons fail to mature. Neural Regen Res 2015; 10:277-85. [PMID: 25883628 PMCID: PMC4392677 DOI: 10.4103/1673-5374.152383] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/13/2014] [Indexed: 11/04/2022] Open
Abstract
The present study examines the hypothesis that endogenous neural progenitor cells isolated from the neocortex of ischemic brain can differentiate into neurons or glial cells and contribute to neural regeneration. We performed middle cerebral artery occlusion to establish a model of cerebral ischemia/reperfusion injury in adult rats. Immunohistochemical staining of the cortex 1, 3, 7, 14 or 28 days after injury revealed that neural progenitor cells double-positive for nestin and sox-2 appeared in the injured cortex 1 and 3 days post-injury, and were also positive for glial fibrillary acidic protein. New neurons were labeled using bromodeoxyuridine and different stages of maturity were identified using doublecortin, microtubule-associated protein 2 and neuronal nuclei antigen immunohistochemistry. Immature new neurons coexpressing doublecortin and bromodeoxyuridine were observed in the cortex at 3 and 7 days post-injury, and semi-mature and mature new neurons double-positive for microtubule-associated protein 2 and bromodeoxyuridine were found at 14 days post-injury. A few mature new neurons coexpressing neuronal nuclei antigen and bromodeoxyuridine were observed in the injured cortex 28 days post-injury. Glial fibrillary acidic protein/bromodeoxyuridine double-positive astrocytes were also found in the injured cortex. Our findings suggest that neural progenitor cells are present in the damaged cortex of adult rats with cerebral ischemic brain injury, and that they differentiate into astrocytes and immature neurons, but most neurons fail to reach the mature stage.
Collapse
Affiliation(s)
- Qing-Quan Li
- Department of Neurosurgery, the Second Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu Province, China
| | - Guan-Qun Qiao
- Department of Neurosurgery, the Second Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu Province, China
| | - Jun Ma
- Department of Neurosurgery, the Second Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu Province, China
| | - Hong-Wei Fan
- Department of Neurosurgery, the First Hospital of Nanjing Medical University, Nanjing, Jiangsu Province, China
| | - Ying-Bin Li
- Department of Neurosurgery, the Second Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu Province, China
| |
Collapse
|