1
|
Sakurai M, Imaizumi M, Sakai Y, Morimoto M. Rolipram promotes hippocampal regeneration in mice after trimethyltin-induced neurodegeneration. Neuroreport 2024; 35:832-838. [PMID: 38973498 DOI: 10.1097/wnr.0000000000002072] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/09/2024]
Abstract
This study aimed to investigate the effects of rolipram, a phosphodiesterase inhibitor, on brain tissue regeneration. Trimethyltin-injected mice, an animal model of hippocampal tissue regeneration, was created by a single injection of trimethyltin chloride (2.2 mg/kg, intraperitoneally). Daily rolipram administration (10 mg/kg, intraperitoneally) was performed from the day after trimethyltin injection until the day before sampling. In Experiment 1, brain samples were collected on day 7 postinjection of trimethyltin following the forced swim test. In Experiment 2, bromodeoxyuridine (150 mg/kg, intraperitoneally/day) was administered on days 3-5 and sampling was on day 21 postinjection of trimethyltin. Samples were routinely embedded in paraffin and sections were obtained for histopathological investigation. In Experiment 1, rolipram-treated mice showed shortened immobility times in the forced swim test. Histopathology revealed that rolipram treatment had improved the replenishment of neuronal nuclei-positive neurons in the dentate gyrus, which was accompanied by an increase in the percentage of phosphorylated cyclic AMP response element-binding protein-positive cells. In addition, rolipram had decreased the percentage of ionized calcium-binding adapter protein 1-positive microglia with activated morphology and the number of tumor necrosis factor-alpha-expressing cells. In Experiment 2, double immunofluorescence for bromodeoxyuridine/neuronal nuclei revealed an increase of double-positive cells in rolipram-treated mice. These results demonstrate that rolipram effectively promotes brain tissue regeneration by enhancing the survival of newborn neurons and inhibiting neuroinflammation.
Collapse
Affiliation(s)
- Masashi Sakurai
- Laboratory of Veterinary Pathology, Joint Faculty of Veterinary Medicine, Yamaguchi University, Yamaguchi
| | - Miko Imaizumi
- Laboratory of Veterinary Pathology, Joint Faculty of Veterinary Medicine, Yamaguchi University, Yamaguchi
| | - Yusuke Sakai
- Department of Pathology, National Institute of Infectious Diseases, Tokyo, Japan
| | - Masahiro Morimoto
- Laboratory of Veterinary Pathology, Joint Faculty of Veterinary Medicine, Yamaguchi University, Yamaguchi
| |
Collapse
|
2
|
Li F, Wu C, Wang G. Targeting NAD Metabolism for the Therapy of Age-Related Neurodegenerative Diseases. Neurosci Bull 2024; 40:218-240. [PMID: 37253984 PMCID: PMC10838897 DOI: 10.1007/s12264-023-01072-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2023] [Accepted: 04/10/2023] [Indexed: 06/01/2023] Open
Abstract
As the aging population continues to grow rapidly, age-related diseases are becoming an increasing burden on the healthcare system and a major concern for the well-being of elderly individuals. While aging is an inevitable process for all humans, it can be slowed down and age-related diseases can be treated or alleviated. Nicotinamide adenine dinucleotide (NAD) is a critical coenzyme or cofactor that plays a central role in metabolism and is involved in various cellular processes including the maintenance of metabolic homeostasis, post-translational protein modifications, DNA repair, and immune responses. As individuals age, their NAD levels decline, and this decrease has been suggested to be a contributing factor to the development of numerous age-related diseases, such as cancer, diabetes, cardiovascular diseases, and neurodegenerative diseases. In pursuit of healthy aging, researchers have investigated approaches to boost or maintain NAD levels. Here, we provide an overview of NAD metabolism and the role of NAD in age-related diseases and summarize recent progress in the development of strategies that target NAD metabolism for the treatment of age-related diseases, particularly neurodegenerative diseases.
Collapse
Affiliation(s)
- Feifei Li
- School of Pharmaceutical Sciences, Ministry of Education Key Laboratory of Bioorganic Phosphorus Chemistry and Chemical Biology, Tsinghua University, Beijing, 100084, China
| | - Chou Wu
- School of Pharmaceutical Sciences, Ministry of Education Key Laboratory of Bioorganic Phosphorus Chemistry and Chemical Biology, Tsinghua University, Beijing, 100084, China
- Tsinghua-Peking Joint Center for Life Sciences, Tsinghua University, Beijing, 100084, China
| | - Gelin Wang
- School of Pharmaceutical Sciences, Ministry of Education Key Laboratory of Bioorganic Phosphorus Chemistry and Chemical Biology, Tsinghua University, Beijing, 100084, China.
| |
Collapse
|
3
|
Jastrzębski MK, Wójcik P, Stępnicki P, Kaczor AA. Effects of small molecules on neurogenesis: Neuronal proliferation and differentiation. Acta Pharm Sin B 2024; 14:20-37. [PMID: 38239239 PMCID: PMC10793103 DOI: 10.1016/j.apsb.2023.10.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2023] [Revised: 09/06/2023] [Accepted: 09/13/2023] [Indexed: 01/22/2024] Open
Abstract
Neurons are believed to be non-proliferating cells. However, neuronal stem cells are still present in certain areas of the adult brain, although their proliferation diminishes with age. Just as with other cells, their proliferation and differentiation are modulated by various mechanisms. These mechanisms are foundational to the strategies developed to induce neuronal proliferation and differentiation, with potential therapeutic applications for neurodegenerative diseases. The most common among these diseases are Parkinson's disease and Alzheimer's disease, associated with the formation of β -amyloid (Aβ ) aggregates which cause a reduction in the number of neurons. Compounds such as LiCl, 4-aminothiazoles, Pregnenolone, ACEA, harmine, D2AAK1, methyl 3,4-dihydroxybenzoate, and shikonin may induce neuronal proliferation/differentiation through the activation of pathways: MAPK ERK, PI3K/AKT, NFκ B, Wnt, BDNF, and NPAS3. Moreover, combinations of these compounds can potentially transform somatic cells into neurons. This transformation process involves the activation of neuron-specific transcription factors such as NEUROD1, NGN2, ASCL1, and SOX2, which subsequently leads to the transcription of downstream genes, culminating in the transformation of somatic cells into neurons. Neurodegenerative diseases are not the only conditions where inducing neuronal proliferation could be beneficial. Consequently, the impact of pro-proliferative compounds on neurons has also been researched in mouse models of Alzheimer's disease.
Collapse
Affiliation(s)
- Michał K. Jastrzębski
- Department of Synthesis and Chemical Technology of Pharmaceutical Substances with Computer Modeling Laboratory, Medical University of Lublin, Faculty of Pharmacy, Lublin PL-20093, Poland
| | - Piotr Wójcik
- Department of Synthesis and Chemical Technology of Pharmaceutical Substances with Computer Modeling Laboratory, Medical University of Lublin, Faculty of Pharmacy, Lublin PL-20093, Poland
| | - Piotr Stępnicki
- Department of Synthesis and Chemical Technology of Pharmaceutical Substances with Computer Modeling Laboratory, Medical University of Lublin, Faculty of Pharmacy, Lublin PL-20093, Poland
| | - Agnieszka A. Kaczor
- Department of Synthesis and Chemical Technology of Pharmaceutical Substances with Computer Modeling Laboratory, Medical University of Lublin, Faculty of Pharmacy, Lublin PL-20093, Poland
- School of Pharmacy, University of Eastern Finland, Kuopio FI-70211, Finland
| |
Collapse
|
4
|
Sridharan PS, Miller E, Pieper AA. Application of P7C3 Compounds to Investigating and Treating Acute and Chronic Traumatic Brain Injury. Neurotherapeutics 2023; 20:1616-1628. [PMID: 37651054 PMCID: PMC10684439 DOI: 10.1007/s13311-023-01427-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/16/2023] [Indexed: 09/01/2023] Open
Abstract
Traumatic brain injury (TBI) is a leading worldwide cause of disability, and there are currently no medicines that prevent, reduce, or reverse acute or chronic neurodegeneration in TBI patients. Here, we review the target-agnostic discovery of nicotinamide adenine dinucleotide (NAD+)/NADH-stabilizing P7C3 compounds through a phenotypic screen in mice and describe how P7C3 compounds have been applied to advance understanding of the pathophysiology and potential treatment of TBI. We summarize how P7C3 compounds have been shown across multiple laboratories to mitigate disease progression safely and effectively in a broad range of preclinical models of disease related to impaired NAD+/NADH metabolism, including acute and chronic TBI, and note the reported safety and neuroprotective efficacy of P7C3 compounds in nonhuman primates. We also describe how P7C3 compounds facilitated the recent first demonstration that chronic neurodegeneration 1 year after TBI in mice, the equivalent of many decades in people, can be reversed to restore normal neuropsychiatric function. We additionally review how P7C3 compounds have facilitated discovery of new pathophysiologic mechanisms of neurodegeneration after TBI. This includes the role of rapid TBI-induced tau acetylation that drives axonal degeneration, and the discovery of brain-derived acetylated tau as the first blood-based biomarker of neurodegeneration after TBI that directly correlates with the abundance of a therapeutic target in the brain. We additionally review the identification of TBI-induced tau acetylation as a potential mechanistic link between TBI and increased risk of Alzheimer's disease. Lastly, we summarize historical accounts of other successful phenotypic-based drug discoveries that advanced medical care without prior recognition of the specific molecular target needed to achieve the desired therapeutic effect.
Collapse
Affiliation(s)
- Preethy S Sridharan
- Brain Health Medicines Center, Harrington Discovery Institute, University Hospitals Cleveland Medical Center, Cleveland, OH, USA
- Department of Psychiatry, Case Western Reserve University, Cleveland, OH, USA
- Geriatric Psychiatry, GRECC, Louis Stokes Cleveland VA Medical Center, Cleveland, OH, USA
- Institute for Transformative Molecular Medicine, School of Medicine, Case Western Reserve University, Cleveland, OH, USA
- Department of Neurosciences, School of Medicine, Case Western Reserve University, Cleveland, OH, USA
| | - Emiko Miller
- Brain Health Medicines Center, Harrington Discovery Institute, University Hospitals Cleveland Medical Center, Cleveland, OH, USA
- Department of Psychiatry, Case Western Reserve University, Cleveland, OH, USA
- Geriatric Psychiatry, GRECC, Louis Stokes Cleveland VA Medical Center, Cleveland, OH, USA
- Institute for Transformative Molecular Medicine, School of Medicine, Case Western Reserve University, Cleveland, OH, USA
- Department of Neurosciences, School of Medicine, Case Western Reserve University, Cleveland, OH, USA
| | - Andrew A Pieper
- Brain Health Medicines Center, Harrington Discovery Institute, University Hospitals Cleveland Medical Center, Cleveland, OH, USA.
- Department of Psychiatry, Case Western Reserve University, Cleveland, OH, USA.
- Geriatric Psychiatry, GRECC, Louis Stokes Cleveland VA Medical Center, Cleveland, OH, USA.
- Institute for Transformative Molecular Medicine, School of Medicine, Case Western Reserve University, Cleveland, OH, USA.
- Department of Neurosciences, School of Medicine, Case Western Reserve University, Cleveland, OH, USA.
- Department of Pathology, School of Medicine, Case Western Reserve University, Cleveland, OH, USA.
| |
Collapse
|
5
|
Tur J, Badole SL, Manickam R, Chapalamadugu KC, Xuan W, Guida W, Crews JJ, Bisht KS, Tipparaju SM. Cardioprotective Effects of 1-(3,6-Dibromo-carbazol-9-yl)-3-Phenylamino-Propan-2-Ol in Diabetic Hearts via Nicotinamide Phosphoribosyltransferase Activation. J Pharmacol Exp Ther 2022; 382:233-245. [PMID: 35680376 PMCID: PMC9372916 DOI: 10.1124/jpet.122.001122] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2022] [Accepted: 05/03/2022] [Indexed: 11/22/2022] Open
Abstract
Diabetes is associated with increased cardiac injury and sudden death. Nicotinamide phosphoribosyltransferase (Nampt) is an essential enzyme for the NAD+ salvage pathway and is dysregulated in diabetes. Nampt activation results in rescued NADH/NAD+ ratios and provides pharmacological changes necessary for diabetic cardioprotection. Computer docking shows that 1-(3,6-Dibromo-carbazol-9-yl)-3-phenylamino-propan-2-ol (P7C3) allows for enhanced Nampt dimerization and association. To test the pharmacological application, we used male leptin receptor-deficient (db/db) mice and treated them with Nampt activator P7C3. The effects of 4-week P7C3 treatment on cardiac function were evaluated along with molecular signaling changes for phosphorylated protein kinase B (p-AKT), phosphorylated endothelial nitric oxide synthase (p-eNOS), and sirtuin 1 (SIRT1). The cardiac function evaluated by ECG and echocardiography were significantly improved after 4 weeks of P7C3 treatment. Biochemically, higher NADH/NAD+ ratios in diabetic hearts were rescued by P7C3 treatment. Moreover, activities of Nampt and SIRT1 were significantly increased in P7C3-treated diabetic hearts. P7C3 treatment significantly decreased the blood glucose in diabetic mice with 4-week treatment as noted by glucose tolerance test and fasting blood glucose measurements compared with vehicle-treated mice. P7C3 activated Nampt enzymatic activity both in vitro and in the 4-week diabetic mouse hearts, demonstrating the specificity of the small molecule. P7C3 treatment significantly enhanced the expression of cardioprotective signaling of p-AKT, p-eNOS, and Beclin 1 in diabetic hearts. Nampt activator P7C3 allows for decreased infarct size with decreased Troponin I and lactose dehydrogenase (LDH) release, which is beneficial to the heart. Overall, the present study shows that P7C3 activates Nampt and SIRT1 activity and decreases NADH/NAD+ ratio, resulting in improved biochemical signaling providing cardioprotection. SIGNIFICANCE STATEMENT: This study shows that 1-(3,6-Dibromo-carbazol-9-yl)-3-phenylamino-propan-2-ol (P7C3) is effective in treating diabetes and cardiovascular diseases. The novel small molecule is antiarrhythmic and improves the ejection fraction in diabetic hearts. The study successfully demonstrated that P7C3 decreases the infarct size in hearts during myocardial infarction and ischemia-reperfusion injury. Biochemical and cellular signaling show increased NAD+ levels, along with Nampt activity involved in upregulating protective signaling in the diabetic heart. P7C3 has high therapeutic potential for rescuing heart disease.
Collapse
Affiliation(s)
- Jared Tur
- Department of Pharmaceutical Sciences, Taneja College of Pharmacy (J.T., S.L.B., R.M., K.C.C., W.X., S.M.T.) and Department of Chemistry, College of Arts and Sciences (W.G., J.J.C., K.S.B.), University of South Florida, Tampa, Florida, USA
| | - Sachin L Badole
- Department of Pharmaceutical Sciences, Taneja College of Pharmacy (J.T., S.L.B., R.M., K.C.C., W.X., S.M.T.) and Department of Chemistry, College of Arts and Sciences (W.G., J.J.C., K.S.B.), University of South Florida, Tampa, Florida, USA
| | - Ravikumar Manickam
- Department of Pharmaceutical Sciences, Taneja College of Pharmacy (J.T., S.L.B., R.M., K.C.C., W.X., S.M.T.) and Department of Chemistry, College of Arts and Sciences (W.G., J.J.C., K.S.B.), University of South Florida, Tampa, Florida, USA
| | - Kalyan C Chapalamadugu
- Department of Pharmaceutical Sciences, Taneja College of Pharmacy (J.T., S.L.B., R.M., K.C.C., W.X., S.M.T.) and Department of Chemistry, College of Arts and Sciences (W.G., J.J.C., K.S.B.), University of South Florida, Tampa, Florida, USA
| | - Wanling Xuan
- Department of Pharmaceutical Sciences, Taneja College of Pharmacy (J.T., S.L.B., R.M., K.C.C., W.X., S.M.T.) and Department of Chemistry, College of Arts and Sciences (W.G., J.J.C., K.S.B.), University of South Florida, Tampa, Florida, USA
| | - Wayne Guida
- Department of Pharmaceutical Sciences, Taneja College of Pharmacy (J.T., S.L.B., R.M., K.C.C., W.X., S.M.T.) and Department of Chemistry, College of Arts and Sciences (W.G., J.J.C., K.S.B.), University of South Florida, Tampa, Florida, USA
| | - Jaret J Crews
- Department of Pharmaceutical Sciences, Taneja College of Pharmacy (J.T., S.L.B., R.M., K.C.C., W.X., S.M.T.) and Department of Chemistry, College of Arts and Sciences (W.G., J.J.C., K.S.B.), University of South Florida, Tampa, Florida, USA
| | - Kirpal S Bisht
- Department of Pharmaceutical Sciences, Taneja College of Pharmacy (J.T., S.L.B., R.M., K.C.C., W.X., S.M.T.) and Department of Chemistry, College of Arts and Sciences (W.G., J.J.C., K.S.B.), University of South Florida, Tampa, Florida, USA
| | - Srinivas M Tipparaju
- Department of Pharmaceutical Sciences, Taneja College of Pharmacy (J.T., S.L.B., R.M., K.C.C., W.X., S.M.T.) and Department of Chemistry, College of Arts and Sciences (W.G., J.J.C., K.S.B.), University of South Florida, Tampa, Florida, USA
| |
Collapse
|
6
|
Bartesaghi R, Vicari S, Mobley WC. Prenatal and Postnatal Pharmacotherapy in Down Syndrome: The Search to Prevent or Ameliorate Neurodevelopmental and Neurodegenerative Disorders. Annu Rev Pharmacol Toxicol 2022; 62:211-233. [PMID: 34990205 PMCID: PMC9632639 DOI: 10.1146/annurev-pharmtox-041521-103641] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
Those with Down syndrome (DS)-trisomy for chromosome 21-are routinely impacted by cognitive dysfunction and behavioral challenges in children and adults and Alzheimer's disease in older adults. No proven treatments specifically address these cognitive or behavioral changes. However, advances in the establishment of rodent models and human cell models promise to support development of such treatments. A research agenda that emphasizes the identification of overexpressed genes that contribute demonstrably to abnormalities in cognition and behavior in model systems constitutes a rational next step. Normalizing expression of such genes may usher in an era of successful treatments applicable across the life span for those with DS.
Collapse
Affiliation(s)
- Renata Bartesaghi
- Department of Biomedical and Neuromotor Sciences, University of Bologna, 40126 Bologna, Italy
| | - Stefano Vicari
- Department of Life Sciences and Public Health, Catholic University of the Sacred Heart, 00168 Rome, Italy,Child and Adolescent Neuropsychiatry Unit, Department of Neuroscience, Bambino Gesù Children’s Hospital, IRCCS, 00165-00146 Rome, Italy
| | - William C. Mobley
- Department of Neurosciences, University of California, San Diego, La Jolla, California 92093, USA
| |
Collapse
|
7
|
The flavonoid 7,8-DHF fosters prenatal brain proliferation potency in a mouse model of Down syndrome. Sci Rep 2021; 11:6300. [PMID: 33737521 PMCID: PMC7973813 DOI: 10.1038/s41598-021-85284-5] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2020] [Accepted: 02/24/2021] [Indexed: 12/17/2022] Open
Abstract
Neurogenesis impairment is a key determinant of intellectual disability in Down syndrome (DS), a genetic pathology due to triplication of chromosome 21. Since neurogenesis ceases after birth, apart in the hippocampus and olfactory bulb, the only means to tackle the problem of neurogenesis impairment in DS at its root is to intervene during gestation. A few studies in DS mouse models show that this is possible, although the drugs used may raise caveats in terms of safety. We previously found that neonatal treatment with 7,8-dihydroxyflavone (7,8-DHF), a flavonoid present in plants, restores hippocampal neurogenesis in the Ts65Dn model of DS. The goal of the current study was to establish whether prenatal treatment with 7,8-DHF improves/restores overall brain proliferation potency. Pregnant Ts65Dn females received 7,8-DHF from embryonic day 10 until delivery. On postnatal day 2 (P2) the pups were injected with BrdU and were killed after either 2 h or 52–60 days (P52–60). Evaluation of the number of proliferating (BrdU+) cells in various forebrain neurogenic niches of P2 mice showed that in treated Ts65Dn mice proliferation potency was improved or even restored in most of the examined regions, including the hippocampus. Quantification of the surviving BrdU+ cells in the dentate gyrus of P52–60 mice showed no difference between treated and untreated Ts65Dn mice. At P52–60, however, treated Ts65Dn mice exhibited a larger number of granule cells in comparison with their untreated counterparts, although their number did not reach that of euploid mice. Results show that 7,8-DHF has a widespread impact on prenatal proliferation potency in Ts65Dn mice and exerts mild long-term effects. It remains to be established whether treatment extending into the neonatal period can lead to an improvement in brain development that is retained in adulthood.
Collapse
|
8
|
Koszła O, Sołek P, Woźniak S, Kędzierska E, Wróbel TM, Kondej M, Archała A, Stępnicki P, Biała G, Matosiuk D, Kaczor AA. The Antipsychotic D2AAK1 as a Memory Enhancer for Treatment of Mental and Neurodegenerative Diseases. Int J Mol Sci 2020; 21:E8849. [PMID: 33238370 PMCID: PMC7700684 DOI: 10.3390/ijms21228849] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2020] [Revised: 11/15/2020] [Accepted: 11/19/2020] [Indexed: 11/23/2022] Open
Abstract
The treatment of memory impairments associated with the central nervous system diseases remains an unmet medical need with social and economic implications. Here we show, that a multi-target ligand of aminergic G protein-coupled receptors with antipsychotic activity in vivo (D2AAK1) stimulates neuron growth and survival and promotes neuron integrity. We focused on the multilevel evaluation of the D2AAK1-related effects on neurons in terms of behavioral, cellular, molecular, and biochemical features in vivo and in vitro, such as memory-related responses, locomotor activity, tissue sections analysis, metabolic activity, proliferation level, neurons morphology, and proteins level involved in intracellular signaling pathways. In silico studies indicate that activation of calcium/calmodulin-dependent protein kinase I (CaMKI) may underline some of the observed activities of the compound. Furthermore, the compound increases hippocampal neuron proliferation via the activation of neurotrophic factors and cooperating signals responsible for cell growth and proliferation. D2AAK1 improves memory and learning processes in mice after both acute and chronic administration. D2AAK1 also causes an increase in the number of hippocampal pyramidal neurons after chronic administration. Because of its neuroprotective properties and pro-cognitive activity in behavioral studies D2AAK1 has the potential for the treatment of memory disturbances in neurodegenerative and mental diseases.
Collapse
Affiliation(s)
- Oliwia Koszła
- Department of Synthesis and Chemical Technology of Pharmaceutical Substances with Computer Modeling Laboratory, Faculty of Pharmacy, Medical University of Lublin, 4A Chodzki St., 20-093 Lublin, Poland; (S.W.); (T.M.W.); (M.K.); (P.S.); (D.M.)
| | - Przemysław Sołek
- Department of Biotechnology, Institute of Biology and Biotechnology, University of Rzeszow, 1 Pigonia St., 35-310 Rzeszow, Poland;
| | - Sylwia Woźniak
- Department of Synthesis and Chemical Technology of Pharmaceutical Substances with Computer Modeling Laboratory, Faculty of Pharmacy, Medical University of Lublin, 4A Chodzki St., 20-093 Lublin, Poland; (S.W.); (T.M.W.); (M.K.); (P.S.); (D.M.)
| | - Ewa Kędzierska
- Department of Pharmacology and Pharmacodynamics, Faculty of Pharmacy, Medical University of Lublin, 4A Chodzki St., 20-093 Lublin, Poland; (E.K.); (G.B.)
| | - Tomasz M. Wróbel
- Department of Synthesis and Chemical Technology of Pharmaceutical Substances with Computer Modeling Laboratory, Faculty of Pharmacy, Medical University of Lublin, 4A Chodzki St., 20-093 Lublin, Poland; (S.W.); (T.M.W.); (M.K.); (P.S.); (D.M.)
- Department of Drug Design and Pharmacology, University of Copenhagen, Universitetsparken 2, DK-2100 Copenhagen, Denmark
| | - Magda Kondej
- Department of Synthesis and Chemical Technology of Pharmaceutical Substances with Computer Modeling Laboratory, Faculty of Pharmacy, Medical University of Lublin, 4A Chodzki St., 20-093 Lublin, Poland; (S.W.); (T.M.W.); (M.K.); (P.S.); (D.M.)
| | - Aneta Archała
- Department of Biopharmacy, Medical University of Lublin, 4A Chodzki St., 20-093 Lublin, Poland;
| | - Piotr Stępnicki
- Department of Synthesis and Chemical Technology of Pharmaceutical Substances with Computer Modeling Laboratory, Faculty of Pharmacy, Medical University of Lublin, 4A Chodzki St., 20-093 Lublin, Poland; (S.W.); (T.M.W.); (M.K.); (P.S.); (D.M.)
| | - Grażyna Biała
- Department of Pharmacology and Pharmacodynamics, Faculty of Pharmacy, Medical University of Lublin, 4A Chodzki St., 20-093 Lublin, Poland; (E.K.); (G.B.)
| | - Dariusz Matosiuk
- Department of Synthesis and Chemical Technology of Pharmaceutical Substances with Computer Modeling Laboratory, Faculty of Pharmacy, Medical University of Lublin, 4A Chodzki St., 20-093 Lublin, Poland; (S.W.); (T.M.W.); (M.K.); (P.S.); (D.M.)
| | - Agnieszka A. Kaczor
- Department of Synthesis and Chemical Technology of Pharmaceutical Substances with Computer Modeling Laboratory, Faculty of Pharmacy, Medical University of Lublin, 4A Chodzki St., 20-093 Lublin, Poland; (S.W.); (T.M.W.); (M.K.); (P.S.); (D.M.)
- School of Pharmacy, University of Eastern Finland, Yliopistonranta 1, P.O. Box 1627, FI-70211 Kuopio, Finland
| |
Collapse
|
9
|
Hua X, Sun D, Zhang W, Fu J, Tong J, Sun S, Zeng F, Ouyang S, Zhang G, Wang S, Li D, Miao C, Wang P. P7C3‐A20 alleviates fatty liver by shaping gut microbiota and inducing FGF21/FGF1, via the AMP‐activated protein kinase/CREB regulated transcription coactivator 2 pathway. Br J Pharmacol 2020; 178:2111-2130. [PMID: 32037512 DOI: 10.1111/bph.15008] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2019] [Revised: 12/30/2019] [Accepted: 01/22/2020] [Indexed: 12/11/2022] Open
Affiliation(s)
- Xia Hua
- Department of Pharmacology, School of Pharmacy Second Military Medical University/Naval Medical University Shanghai China
| | - Di‐Yang Sun
- Department of Pharmacology, School of Pharmacy Second Military Medical University/Naval Medical University Shanghai China
| | - Wen‐Jie Zhang
- Department of Pharmacology, School of Pharmacy Second Military Medical University/Naval Medical University Shanghai China
| | - Jiang‐Tao Fu
- Department of Pharmacology, School of Pharmacy Second Military Medical University/Naval Medical University Shanghai China
| | - Jie Tong
- Department of Pharmacy Shanghai Tenth People's Hospital affiliated to School of Medicine, Tongji University Shanghai China
| | - Si‐Jia Sun
- Department of Pharmacy Shanghai Tenth People's Hospital affiliated to School of Medicine, Tongji University Shanghai China
| | - Fei‐Yan Zeng
- Department of Pharmacy Shanghai Tenth People's Hospital affiliated to School of Medicine, Tongji University Shanghai China
| | - Shen‐Xi Ouyang
- Department of Pharmacy Shanghai Tenth People's Hospital affiliated to School of Medicine, Tongji University Shanghai China
| | - Guo‐Yan Zhang
- Department of Pharmacy Shanghai Tenth People's Hospital affiliated to School of Medicine, Tongji University Shanghai China
| | - Shu‐Na Wang
- Department of Pharmacology, School of Pharmacy Second Military Medical University/Naval Medical University Shanghai China
| | - Dong‐Jie Li
- Department of Pharmacy Shanghai Tenth People's Hospital affiliated to School of Medicine, Tongji University Shanghai China
| | - Chao‐Yu Miao
- Department of Pharmacology, School of Pharmacy Second Military Medical University/Naval Medical University Shanghai China
| | - Pei Wang
- Department of Pharmacology, School of Pharmacy Second Military Medical University/Naval Medical University Shanghai China
| |
Collapse
|
10
|
Jain S, LaFrancois JJ, Botterill JJ, Alcantara-Gonzalez D, Scharfman HE. Adult neurogenesis in the mouse dentate gyrus protects the hippocampus from neuronal injury following severe seizures. Hippocampus 2019; 29:683-709. [PMID: 30672046 PMCID: PMC6640126 DOI: 10.1002/hipo.23062] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2018] [Revised: 10/29/2018] [Accepted: 11/30/2018] [Indexed: 01/20/2023]
Abstract
Previous studies suggest that reducing the numbers of adult-born neurons in the dentate gyrus (DG) of the mouse increases susceptibility to severe continuous seizures (status epilepticus; SE) evoked by systemic injection of the convulsant kainic acid (KA). However, it was not clear if the results would be the same for other ways to induce seizures, or if SE-induced damage would be affected. Therefore, we used pilocarpine, which induces seizures by a different mechanism than KA. Also, we quantified hippocampal damage after SE. In addition, we used both loss-of-function and gain-of-function methods in adult mice. We hypothesized that after loss-of-function, mice would be more susceptible to pilocarpine-induced SE and SE-associated hippocampal damage, and after gain-of-function, mice would be more protected from SE and hippocampal damage after SE. For loss-of-function, adult neurogenesis was suppressed by pharmacogenetic deletion of dividing radial glial precursors. For gain-of-function, adult neurogenesis was increased by conditional deletion of pro-apoptotic gene Bax in Nestin-expressing progenitors. Fluoro-Jade C (FJ-C) was used to quantify neuronal injury and video-electroencephalography (video-EEG) was used to quantify SE. Pilocarpine-induced SE was longer in mice with reduced adult neurogenesis, SE had more power and neuronal damage was greater. Conversely, mice with increased adult-born neurons had shorter SE, SE had less power, and there was less neuronal damage. The results suggest that adult-born neurons exert protective effects against SE and SE-induced neuronal injury.
Collapse
Affiliation(s)
- Swati Jain
- Center for Dementia Research, The Nathan Kline Institute of Psychiatric Research, 140 Old Orangeburg Rd., Orangeburg, NY 10962, USA
| | - John J. LaFrancois
- Center for Dementia Research, The Nathan Kline Institute of Psychiatric Research, 140 Old Orangeburg Rd., Orangeburg, NY 10962, USA
| | - Justin J. Botterill
- Center for Dementia Research, The Nathan Kline Institute of Psychiatric Research, 140 Old Orangeburg Rd., Orangeburg, NY 10962, USA
| | - David Alcantara-Gonzalez
- Center for Dementia Research, The Nathan Kline Institute of Psychiatric Research, 140 Old Orangeburg Rd., Orangeburg, NY 10962, USA
| | - Helen E. Scharfman
- Center for Dementia Research, The Nathan Kline Institute of Psychiatric Research, 140 Old Orangeburg Rd., Orangeburg, NY 10962, USA
- Departments of Child & Adolescent Psychiatry, Neuroscience & Physiology, and Psychiatry, New York Langone Medical Center, New York, NY 10016, USA
| |
Collapse
|
11
|
Selvaraj UM, Zuurbier KR, Whoolery CW, Plautz EJ, Chambliss KL, Kong X, Zhang S, Kim SH, Katzenellenbogen BS, Katzenellenbogen JA, Mineo C, Shaul PW, Stowe AM. Selective Nonnuclear Estrogen Receptor Activation Decreases Stroke Severity and Promotes Functional Recovery in Female Mice. Endocrinology 2018; 159:3848-3859. [PMID: 30256928 PMCID: PMC6203892 DOI: 10.1210/en.2018-00600] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/20/2018] [Accepted: 09/18/2018] [Indexed: 12/21/2022]
Abstract
Estrogens provide neuroprotection in animal models of stroke, but uterotrophic effects and cancer risk limit translation. Classic estrogen receptors (ERs) serve as transcription factors, whereas nonnuclear ERs govern numerous cell processes and exert beneficial cardiometabolic effects without uterine or breast cancer growth in mice. Here, we determined how nonnuclear ER stimulation with pathway-preferential estrogen (PaPE)-1 affects stroke outcome in mice. Ovariectomized female mice received vehicle, estradiol (E2), or PaPE-1 before and after transient middle cerebral artery occlusion (tMCAo). Lesion severity was assessed with MRI, and poststroke motor function was evaluated through 2 weeks after tMCAo. Circulating, spleen, and brain leukocyte subpopulations were quantified 3 days after tMCAo by flow cytometry, and neurogenesis and angiogenesis were evaluated histologically 2 weeks after tMCAo. Compared with vehicle, E2 and PaPE-1 reduced infarct volumes at 3 days after tMCAo, though only PaPE-1 reduced leukocyte infiltration into the ischemic brain. Unlike E2, PaPE-1 had no uterotrophic effect. Both interventions had negligible effect on long-term poststroke neuronal or vascular plasticity. All mice displayed a decline in motor performance at 2 days after tMCAo, and vehicle-treated mice did not improve thereafter. In contrast, E2 and PaPE-1 treatment afforded functional recovery at 6 days after tMCAo and beyond. Thus, the selective activation of nonnuclear ER by PaPE-1 decreased stroke severity and improved functional recovery in mice without undesirable uterotrophic effects. The beneficial effects of PaPE-1 are also associated with attenuated neuroinflammation in the brain. PaPE-1 and similar molecules may warrant consideration as efficacious ER modulators providing neuroprotection without detrimental effects on the uterus or cancer risk.
Collapse
Affiliation(s)
- Uma Maheswari Selvaraj
- Department of Neurology and Neurotherapeutics, University of Texas Southwestern Medical Center, Dallas, Texas
| | - Kielen R Zuurbier
- Department of Neurology and Neurotherapeutics, University of Texas Southwestern Medical Center, Dallas, Texas
| | - Cody W Whoolery
- Department of Neurology and Neurotherapeutics, University of Texas Southwestern Medical Center, Dallas, Texas
| | - Erik J Plautz
- Department of Neurology and Neurotherapeutics, University of Texas Southwestern Medical Center, Dallas, Texas
| | - Ken L Chambliss
- Center for Pulmonary and Vascular Biology, Department of Pediatrics, University of Texas Southwestern Medical Center, Dallas, Texas
| | - Xiangmei Kong
- Department of Neurology and Neurotherapeutics, University of Texas Southwestern Medical Center, Dallas, Texas
| | - Shanrong Zhang
- Advanced Imaging Research Center, University of Texas Southwestern Medical Center, Dallas, Texas
| | - Sung Hoon Kim
- Department of Chemistry, University of Illinois at Urbana-Champaign, Urbana, Illinois
| | - Benita S Katzenellenbogen
- Department of Molecular and Integrative Physiology, University of Illinois at Urbana-Champaign, Urbana, Illinois
| | | | - Chieko Mineo
- Center for Pulmonary and Vascular Biology, Department of Pediatrics, University of Texas Southwestern Medical Center, Dallas, Texas
| | - Philip W Shaul
- Center for Pulmonary and Vascular Biology, Department of Pediatrics, University of Texas Southwestern Medical Center, Dallas, Texas
| | - Ann M Stowe
- Department of Neurology and Neurotherapeutics, University of Texas Southwestern Medical Center, Dallas, Texas
- Department of Neurology, University of Kentucky, Lexington, Kentucky
| |
Collapse
|
12
|
Herault Y, Delabar JM, Fisher EMC, Tybulewicz VLJ, Yu E, Brault V. Rodent models in Down syndrome research: impact and future opportunities. Dis Model Mech 2018; 10:1165-1186. [PMID: 28993310 PMCID: PMC5665454 DOI: 10.1242/dmm.029728] [Citation(s) in RCA: 132] [Impact Index Per Article: 18.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Down syndrome is caused by trisomy of chromosome 21. To date, a multiplicity of mouse models with Down-syndrome-related features has been developed to understand this complex human chromosomal disorder. These mouse models have been important for determining genotype-phenotype relationships and identification of dosage-sensitive genes involved in the pathophysiology of the condition, and in exploring the impact of the additional chromosome on the whole genome. Mouse models of Down syndrome have also been used to test therapeutic strategies. Here, we provide an overview of research in the last 15 years dedicated to the development and application of rodent models for Down syndrome. We also speculate on possible and probable future directions of research in this fast-moving field. As our understanding of the syndrome improves and genome engineering technologies evolve, it is necessary to coordinate efforts to make all Down syndrome models available to the community, to test therapeutics in models that replicate the whole trisomy and design new animal models to promote further discovery of potential therapeutic targets. Summary: Mouse models have boosted therapeutic options for Down syndrome, and improved models are being developed to better understand the pathophysiology of this genetic condition.
Collapse
Affiliation(s)
- Yann Herault
- Institut de Génétique et de Biologie Moléculaire et Cellulaire, Illkirch, 1 rue Laurent Fries, 67404 Illkirch, France .,Centre National de la Recherche Scientifique, UMR7104, Illkirch, France.,Institut National de la Santé et de la Recherche Médicale, U964, Illkirch, France.,Université de Strasbourg, 67404 Illkirch, France.,T21 Research Society, Brain and Spine Institute (ICM), 75013 Paris
| | - Jean M Delabar
- T21 Research Society, Brain and Spine Institute (ICM), 75013 Paris.,Université Paris Diderot, Sorbonne Paris Cité, Unité de Biologie Fonctionnelle et Adaptative, UMR8251, CNRS, 75205 Paris, France.,INSERM U 1127, CNRS UMR 7225, Sorbonne Universités, UPMC Univ Paris 06 UMR S 1127, Institut du Cerveau et la Moelle épinière, ICM, 75013 Paris, France.,Brain and Spine Institute (ICM) CNRS UMR7225, INSERM UMRS 975, 75013 Paris, France
| | - Elizabeth M C Fisher
- T21 Research Society, Brain and Spine Institute (ICM), 75013 Paris.,Department of Neurodegenerative Disease, Institute of Neurology, University College London, London, WC1N 3BG, UK.,LonDownS Consortium, London, W1T 7NF UK
| | - Victor L J Tybulewicz
- T21 Research Society, Brain and Spine Institute (ICM), 75013 Paris.,LonDownS Consortium, London, W1T 7NF UK.,The Francis Crick Institute, 1 Midland Road, London, NW1 1AT, UK.,Department of Medicine, Imperial College, London, SW7 2AZ, UK
| | - Eugene Yu
- T21 Research Society, Brain and Spine Institute (ICM), 75013 Paris.,The Children's Guild Foundation Down Syndrome Research Program, Department of Cancer Genetics and Genetics Program, Roswell Park Cancer Institute, Buffalo, NY 14263, USA.,Department of Cellular and Molecular Biology, Roswell Park Division of Graduate School, Genetics, Genomics and Bioinformatics Program, State University of New York at Buffalo, Buffalo, NY 14263, USA
| | - Veronique Brault
- Institut de Génétique et de Biologie Moléculaire et Cellulaire, Illkirch, 1 rue Laurent Fries, 67404 Illkirch, France.,Centre National de la Recherche Scientifique, UMR7104, Illkirch, France.,Institut National de la Santé et de la Recherche Médicale, U964, Illkirch, France.,Université de Strasbourg, 67404 Illkirch, France
| |
Collapse
|
13
|
Dogan HO, Alcigir ME. The Protective effect of P7C3 against DNA and neuron damage in rat pups with congenital hypothyroidism. Biomed Pharmacother 2018; 99:499-503. [DOI: 10.1016/j.biopha.2018.01.058] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2017] [Revised: 01/03/2018] [Accepted: 01/05/2018] [Indexed: 10/18/2022] Open
|
14
|
Abstract
Vascular repair plays important roles in postischemic remodeling and rehabilitation in cardiovascular and cerebrovascular disease, such as stroke and myocardial infarction. Nicotinamide adenine dinucleotide (NAD), a well-known coenzyme involved in electron transport chain for generation of adenosine triphosphate, has emerged as an important controller regulating various biological signaling pathways. Nicotinamide phosphoribosyltransferase (NAMPT) is the rate-limiting enzyme for NAD biosynthesis in mammals. NAMPT may also act in a nonenzymatic manner, presumably mediated by unknown receptor(s). Rapidly accumulating data in the past decade show that NAMPT and NAMPT-controlled NAD metabolism regulate fundamental biological functions in endothelial cells, vascular smooth muscle cells, and endothelial progenitor cells. The NAD-consuming proteins, including sirtuins, poly-ADP-ribose polymerases (PARPs), and CD38, may contribute to the regulatory effects of NAMPT-NAD axis in these cells and vascular repair. This review discusses the current data regarding NAMPT and NAMPT-controlled NAD metabolism in vascular repair and the clinical potential translational application of NAMPT-related products in treatment of cardiovascular and cerebrovascular disease.
Collapse
|
15
|
Culig L, Surget A, Bourdey M, Khemissi W, Le Guisquet AM, Vogel E, Sahay A, Hen R, Belzung C. Increasing adult hippocampal neurogenesis in mice after exposure to unpredictable chronic mild stress may counteract some of the effects of stress. Neuropharmacology 2017; 126:179-189. [PMID: 28890366 DOI: 10.1016/j.neuropharm.2017.09.009] [Citation(s) in RCA: 51] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2017] [Revised: 08/30/2017] [Accepted: 09/06/2017] [Indexed: 01/03/2023]
Abstract
Major depression is hypothesized to be associated with dysregulations of the hypothalamic-pituitary-adrenal (HPA) axis and impairments in adult hippocampal neurogenesis. Adult-born hippocampal neurons are required for several effects of antidepressants and increasing the rate of adult hippocampal neurogenesis (AHN) before exposure to chronic corticosterone is sufficient to protect against its harmful effects on behavior. However, it is an open question if increasing AHN after the onset of chronic stress exposure would be able to rescue behavioral deficits and which mechanisms might be involved in recovery. We investigated this question by using a 10-week unpredictable chronic mild stress (UCMS) model on a transgenic mouse line (iBax mice), in which the pro-apoptotic gene Bax can be inducibly ablated in neural stem cells following Tamoxifen injection, therefore enhancing the survival of newborn neurons in the adult brain. We did not observe any effect of our treatment in non-stress conditions, but we did find that increasing AHN after 2 weeks of UCMS is sufficient to counteract the effects of UCMS on certain behaviors (splash test and changes in coat state) and endocrine levels and thus to display some antidepressant-like effects. We observed that increasing AHN lowered the elevated basal corticosterone levels in mice exposed to UCMS. This was accompanied by a tamoxifen-induced reversal of the lack of stress-induced decrease in neuronal activation in the anteromedial division of the bed nucleus of the stria terminalis (BSTMA) after intrahippocampal dexamethasone infusion, pointing to a possible mechanism through which adult-born neurons might have exerted their effects. Our results contribute to the neurogenesis hypothesis of depression by suggesting that increasing AHN may be beneficial not just before, but also after exposure to stress by counteracting several of its effects, in part through regulating the HPA axis.
Collapse
Affiliation(s)
- Luka Culig
- U930 "Imaging and Brain", Inserm, Tours, France; UFR Sciences et Techniques, Université François Rabelais, Tours, France
| | - Alexandre Surget
- U930 "Imaging and Brain", Inserm, Tours, France; UFR Sciences et Techniques, Université François Rabelais, Tours, France
| | - Marlene Bourdey
- UFR Sciences et Techniques, Université François Rabelais, Tours, France
| | - Wahid Khemissi
- U930 "Imaging and Brain", Inserm, Tours, France; UFR Sciences et Techniques, Université François Rabelais, Tours, France
| | - Anne-Marie Le Guisquet
- U930 "Imaging and Brain", Inserm, Tours, France; UFR Sciences et Techniques, Université François Rabelais, Tours, France
| | - Elise Vogel
- U930 "Imaging and Brain", Inserm, Tours, France; UFR Sciences et Techniques, Université François Rabelais, Tours, France
| | - Amar Sahay
- Center for Regenerative Medicine, Department of Psychiatry, Massachusetts General Hospital, Boston, MA, USA; Harvard Stem Cell Institute, Boston, MA, USA; Harvard Medical School, Boston, MA, USA
| | - René Hen
- Department of Neuroscience, Department of Psychiatry, Department of Pharmacology, Columbia University, New York, NY, USA; Division of Integrative Neuroscience, The New York State Psychiatric Institute, New York, NY, USA
| | - Catherine Belzung
- U930 "Imaging and Brain", Inserm, Tours, France; UFR Sciences et Techniques, Université François Rabelais, Tours, France.
| |
Collapse
|
16
|
Clark CA, Fernandez F, Sakhon S, Spanò G, Edgin JO. The medial temporal memory system in Down syndrome: Translating animal models of hippocampal compromise. Hippocampus 2017; 27:683-691. [PMID: 28346765 PMCID: PMC8109260 DOI: 10.1002/hipo.22724] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2016] [Revised: 09/06/2016] [Accepted: 03/07/2017] [Indexed: 01/19/2023]
Abstract
Recent studies have highlighted the dentate gyrus as a region of increased vulnerability in mouse models of Down syndrome (DS). It is unclear to what extent these findings are reflected in the memory profile of people with the condition. We developed a series of novel tasks to probe distinct medial temporal functions in children and young adults with DS, including object, spatial, and temporal order memory. Relative to mental age-matched controls (n = 45), individuals with DS (n = 28) were unimpaired on subtests involving short-term object or configural recall that was divorced from spatial or temporal contexts. By contrast, the DS group had difficulty recalling spatial locations when contextual information was salient and recalling the order in which objects were serially presented. Results are consistent with dysfunction of spatial and temporal contextual pattern separation abilities in individuals with DS, mediated by the hippocampus, including the dentate gyrus. Amidst increasing calls to bridge human and animal work, the memory profile demonstrated here in humans with DS is strikingly similar to that of the Ts65Dn mouse model of DS. The study highlights the trisynaptic circuit as a potentially fruitful intervention target to mitigate cognitive impairments associated with DS.
Collapse
Affiliation(s)
- Caron A.C. Clark
- Department of Psychology, Memory Development and Disorders Laboratory, University of Arizona, Tucson, Arizona
- Department of Educational Psychology, University of Nebraska, Lincoln, Nebraska
| | - Fabian Fernandez
- Department of Psychology, BIO5 and McKnight Brain Research Institutes, University of Arizona, Tucson, Arizona
- Department of Neurology, BIO5 and McKnight Brain Research Institutes, University of Arizona, Tucson, Arizona
| | - Stella Sakhon
- Department of Psychology, Memory Development and Disorders Laboratory, University of Arizona, Tucson, Arizona
| | - Goffredina Spanò
- Department of Psychology, Memory Development and Disorders Laboratory, University of Arizona, Tucson, Arizona
| | - Jamie O. Edgin
- Department of Psychology, Memory Development and Disorders Laboratory, University of Arizona, Tucson, Arizona
| |
Collapse
|
17
|
Recent Advances in Neurogenic Small Molecules as Innovative Treatments for Neurodegenerative Diseases. Molecules 2016; 21:molecules21091165. [PMID: 27598108 PMCID: PMC6273783 DOI: 10.3390/molecules21091165] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2016] [Revised: 08/22/2016] [Accepted: 08/29/2016] [Indexed: 12/20/2022] Open
Abstract
The central nervous system of adult mammals has long been considered as a complex static structure unable to undergo any regenerative process to refurbish its dead nodes. This dogma was challenged by Altman in the 1960s and neuron self-renewal has been demonstrated ever since in many species, including humans. Aging, neurodegenerative, and some mental diseases are associated with an exponential decrease in brain neurogenesis. Therefore, the controlled pharmacological stimulation of the endogenous neural stem cells (NSCs) niches might counteract the neuronal loss in Alzheimer’s disease (AD) and other pathologies, opening an exciting new therapeutic avenue. In the last years, druggable molecular targets and signalling pathways involved in neurogenic processes have been identified, and as a consequence, different drug types have been developed and tested in neuronal plasticity. This review focuses on recent advances in neurogenic agents acting at serotonin and/or melatonin systems, Wnt/β-catenin pathway, sigma receptors, nicotinamide phosphoribosyltransferase (NAMPT) and nuclear erythroid 2-related factor (Nrf2).
Collapse
|
18
|
Wang SN, Xu TY, Wang X, Guan YF, Zhang SL, Wang P, Miao CY. Neuroprotective Efficacy of an Aminopropyl Carbazole Derivative P7C3-A20 in Ischemic Stroke. CNS Neurosci Ther 2016; 22:782-8. [PMID: 27333812 DOI: 10.1111/cns.12576] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2016] [Revised: 05/11/2016] [Accepted: 05/13/2016] [Indexed: 12/15/2022] Open
Abstract
AIM NAMPT is a novel therapeutic target of ischemic stroke. The aim of this study was to investigate the effect of a potential NAMPT activator, P7C3-A20, an aminopropyl carbazole derivative, on ischemic stroke. METHODS In vitro study, neuron protection effect of P7C3-A20 was investigated by co-incubation with primary neurons subjected to oxygen-glucose deprivation (OGD) or oxygen-glucose deprivation/reperfusion (OGD/R) injury. In vivo experiment, P7C3-A20 was administrated in middle cerebral artery occlusion (MCAO) rats and infarct volume was examined. Lastly, the brain tissue nicotinamide adenine dinucleotide (NAD) levels were detected in P7C3-A20 treated normal or MCAO mice. RESULTS Cell viability, morphology, and Tuj-1 staining confirmed the neuroprotective effect of P7C3-A20 in OGD or OGD/R model. P7C3-A20 administration significantly reduced cerebral infarction in MCAO rats. Moreover, brain NAD levels were elevated both in normal and MCAO mice after P7C3-A20 treatment. CONCLUSIONS P7C3-A20 has neuroprotective effect in cerebral ischemia. The study contributes to the development of NAMPT activators against ischemic stroke and expands the horizon of the neuroprotective effect of aminopropyl carbazole chemicals.
Collapse
Affiliation(s)
- Shu-Na Wang
- Department of Pharmacology, Second Military Medical University, Shanghai, China
| | - Tian-Ying Xu
- Department of Pharmacology, Second Military Medical University, Shanghai, China
| | - Xia Wang
- Department of Pharmacology, Second Military Medical University, Shanghai, China
| | - Yun-Feng Guan
- Department of Pharmacology, Second Military Medical University, Shanghai, China
| | - Sai-Long Zhang
- Department of Pharmacology, Second Military Medical University, Shanghai, China
| | - Pei Wang
- Department of Pharmacology, Second Military Medical University, Shanghai, China
| | - Chao-Yu Miao
- Department of Pharmacology, Second Military Medical University, Shanghai, China.,Center of Stroke, Beijing Institute for Brain Disorders, Beijing, China
| |
Collapse
|
19
|
Wang SN, Xu TY, Li WL, Miao CY. Targeting Nicotinamide Phosphoribosyltransferase as a Potential Therapeutic Strategy to Restore Adult Neurogenesis. CNS Neurosci Ther 2016; 22:431-9. [PMID: 27018006 DOI: 10.1111/cns.12539] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2016] [Revised: 02/23/2016] [Accepted: 02/23/2016] [Indexed: 12/19/2022] Open
Abstract
Adult neurogenesis is the process of generating new neurons throughout life in the olfactory bulb and hippocampus of most mammalian species, which is closely related to aging and disease. Nicotinamide phosphoribosyltransferase (NAMPT), also an adipokine known as visfatin, is the rate-limiting enzyme for mammalian nicotinamide adenine dinucleotide (NAD) salvage synthesis by generating nicotinamide mononucleotide (NMN) from nicotinamide. Recent findings from our laboratory and other laboratories have provided much evidence that NAMPT might serve as a therapeutic target to restore adult neurogenesis. NAMPT-mediated NAD biosynthesis in neural stem/progenitor cells is important for their proliferation, self-renewal, and formation of oligodendrocytes in vivo and in vitro. Therapeutic interventions by the administration of NMN, NAD, or recombinant NAMPT are effective for restoring adult neurogenesis in several neurological diseases. We summarize adult neurogenesis in aging, ischemic stroke, traumatic brain injury, and neurodegenerative disease and review the advances of targeting NAMPT in restoring neurogenesis. Specifically, we provide emphasis on the P7C3 family, a class of proneurogenic compounds that are potential NAMPT activators, which might shed light on future drug development in neurogenesis restoration.
Collapse
Affiliation(s)
- Shu-Na Wang
- Department of Pharmacology, Second Military Medical University, Shanghai, China
| | - Tian-Ying Xu
- Department of Pharmacology, Second Military Medical University, Shanghai, China
| | - Wen-Lin Li
- Department of Cell Biology, Second Military Medical University, Shanghai, China
| | - Chao-Yu Miao
- Department of Pharmacology, Second Military Medical University, Shanghai, China.,Center of Stroke, Beijing Institute for Brain Disorders, Beijing, China
| |
Collapse
|
20
|
Wang P, Miao CY. NAMPT as a Therapeutic Target against Stroke. Trends Pharmacol Sci 2015; 36:891-905. [DOI: 10.1016/j.tips.2015.08.012] [Citation(s) in RCA: 52] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2015] [Revised: 08/20/2015] [Accepted: 08/20/2015] [Indexed: 12/20/2022]
|
21
|
Zitko J, Dolezal M. Indole-2-carboxamide derivatives: a patent evaluation of WO2015036412A1. Expert Opin Ther Pat 2015; 25:1487-94. [PMID: 26536813 DOI: 10.1517/13543776.2015.1101066] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
INTRODUCTION Hippocampal neurogenesis in adults is a new and attractive target for the treatment and prevention of neurodegenerative and neuro-psychiatric diseases. Recently, neurogenesis stimulating activity was observed in some of the commonly used small molecule drugs such as antidepressants and atypical antipsychotics. Stimulation of neurogenesis is attractive mainly due to its wide scope of application, ranging from depressions, schizophrenia, dementia, Parkinson`s and Alzheimer`s Disease to various brain injuries. AREAS COVERED New compounds based on 7-phenyl or 7-pyridinyl-1H-indole-2-carboxamide showed interesting neural stem cell proliferation inducing activity in vitro and were claimed as potential therapeutics for various neurodegenerative and neuropsychiatric diseases as well as brain injuries. The potential of the presented compounds is evaluated with respect to other small molecule neurogenesis inducers in literature. EXPERT OPINION Nanomolar in vitro activities of presented compounds and their favorable physico-chemical properties, giving a fair chance of good oral bioavailability and sufficient CNS penetration, make these compounds promising drug candidates. The biggest drawback of the presented application is the absence of pharmacokinetics, toxicity and in vivo activity data. On the other hand, the high number of applications in this area (seven published in last two years) indicates that Hoffmann-La Roche takes it seriously.
Collapse
Affiliation(s)
- Jan Zitko
- a Department of Pharmaceutical Chemistry and Pharmaceutical Analysis, Faculty of Pharmacy in Hradec Kralove , Charles University in Prague , Hradec Kralove , Czech Republic
| | - Martin Dolezal
- b Department of Pharmaceutical Chemistry and Pharmaceutical Analysis, Faculty of Pharmacy in Hradec Kralove , Charles University in Prague , Heyrovskeho 1203, Hradec Kralove 50005 , Czech Republic
| |
Collapse
|
22
|
Stagni F, Giacomini A, Guidi S, Ciani E, Bartesaghi R. Timing of therapies for Down syndrome: the sooner, the better. Front Behav Neurosci 2015; 9:265. [PMID: 26500515 PMCID: PMC4594009 DOI: 10.3389/fnbeh.2015.00265] [Citation(s) in RCA: 80] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2015] [Accepted: 09/15/2015] [Indexed: 11/13/2022] Open
Abstract
Intellectual disability (ID) is the unavoidable hallmark of Down syndrome (DS), with a heavy impact on public health. Accumulating evidence shows that DS is characterized by numerous neurodevelopmental alterations among which the reduction of neurogenesis, dendritic hypotrophy and connectivity alterations appear to play a particularly prominent role. Although the mechanisms whereby gene triplication impairs brain development in DS have not been fully clarified, it is theoretically possible to correct trisomy-dependent defects with targeted pharmacotherapies. This review summarizes what we know about the effects of pharmacotherapies during different life stages in mouse models of DS. Since brain alterations in DS start to be present prenatally, the prenatal period represents an optimum window of opportunity for therapeutic interventions. Importantly, recent studies clearly show that treatment during the prenatal period can rescue overall brain development and behavior and that this effect outlasts treatment cessation. Although late therapies are unlikely to exert drastic changes in the brain, they may have an impact on the hippocampus, a brain region where neurogenesis continues throughout life. Indeed, treatment at adult life stages improves or even rescues hippocampal neurogenesis and connectivity and hippocampal-dependent learning and memory, although the duration of these effects still remains, in the majority of cases, a matter of investigation. The exciting discovery that trisomy-linked brain abnormalities can be prevented with early interventions gives us reason to believe that treatments during pregnancy may rescue brain development in fetuses with DS. For this reason we deem it extremely important to expedite the discovery of additional therapies practicable in humans in order to identify the best treatment/s in terms of efficacy and paucity of side effects. Prompt achievement of this goal is the big challenge for the scientific community of researchers interested in DS.
Collapse
Affiliation(s)
| | | | | | | | - Renata Bartesaghi
- Department of Biomedical and Neuromotor Sciences, University of BolognaBologna, Italy
| |
Collapse
|