1
|
Yazdanfar N, Ali Mard S, Mahmoudi J, Bakhtiari N, Sarkaki A, Farnam A. Maternal Morphine Exposure and Post-Weaning Social Isolation Impair Memory and Ventral Striatum Dopamine System in Male Offspring: Is an Enriched Environment Beneficial? Neuroscience 2021; 461:80-90. [PMID: 33662528 DOI: 10.1016/j.neuroscience.2021.02.024] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2020] [Revised: 02/18/2021] [Accepted: 02/19/2021] [Indexed: 12/19/2022]
Abstract
Maternal opioids abuse has some deleterious consequences on next generations. Besides, children's rearing conditions can affect the behavioral states and brain plasticity in their later life. In the present study, we investigated the effects of maternal morphine (MOR) treatment and post-weaning rearing conditions on memory, pain threshold, and the ventral striatum dopaminergic activity in male offspring. Female Wistar rats were treated twice daily either with escalating doses of MOR or with normal saline (NS) one week before mating, during pregnancy and lactation. After weaning, the male pups were assigned to six groups and then raised for an 8-week period under three different conditions: standard (STD), isolated (ISO) or enriched environment (EE). The behavioral tests, including passive avoidance task, novel object recognition, and tail-flick test, were also performed. Moreover, the ventral striatum dopamine's content (DA), mRNA expressions of dopamine receptor 1(D1R) and dopamine receptor 2 (D2R), and dopamine transporter (DAT) were evaluated. The obtained data showed that maternal MOR exposure and post-weaning social isolation could dramatically impair memory in offspring, while EE could reverse these adverse outcomes. Moreover, results of tail flick latency indicated the increased pain threshold in EE animals. At molecular level, maternal MOR injections and social isolation reduced DA levels and altered expressions of D1R, D2R, and DAT within the ventral striatum of these male offspring. However, post-weaning EE partially buffered these changes. Our finding signified the effects of maternal MOR exposure and social isolation on the behaviors and neurochemistry of brain in next generation, and it also provided evidence on reversibility of these alterations following EE.
Collapse
Affiliation(s)
- Neda Yazdanfar
- Department of Neuroscience and Cognition, Faculty of Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz, Iran; Neurosciences Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Seyed Ali Mard
- The Persian Gulf Physiology Research Center, Medical Basic Sciences Research Institute, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran; Department of Physiology, Faculty of Medicine, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Javad Mahmoudi
- Neurosciences Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Nima Bakhtiari
- Pain Research Center, Imam Khomeini Hospital, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Alireza Sarkaki
- The Persian Gulf Physiology Research Center, Medical Basic Sciences Research Institute, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran; Department of Physiology, Faculty of Medicine, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran.
| | - Alireza Farnam
- Research Center of Psychiatry and Behavioral Sciences, Tabriz University of Medical Sciences, Tabriz, Iran.
| |
Collapse
|
2
|
Understanding the effects of chronic benzodiazepine use in depression: a focus on neuropharmacology. Int Clin Psychopharmacol 2020; 35:243-253. [PMID: 32459725 DOI: 10.1097/yic.0000000000000316] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Benzodiazepines are frequently prescribed on an ongoing basis to individuals with depression, mainly to alleviate anxiety or insomnia, despite current guideline recommendations that continuous use should not exceed 4 weeks. Currently, there are no efficacy trials published beyond 8 weeks. Several antidepressant trials demonstrate that the concomitant use of a benzodiazepine is associated with poorer depressive outcomes and functional status; however, it is unclear why this is the case. Patients with depression receiving a benzodiazepine may reflect a more ill or high anxiety group, although even within anxiety disorders, the use of a benzodiazepine is associated with poorer outcomes. The neuroadaptive consequences of long-term benzodiazepine use may be a factor underlying these findings. Chronic benzodiazepine use results in decreased gamma-aminobutyric acid and monoaminergic function, as well as interference with neurogenesis, which are all purported to play a role in antidepressant efficacy. This review will discuss the oppositional neuropharmacological interactions between chronic benzodiazepine use and antidepressant mechanism of action, which could result in reduced antidepressant efficacy and function in depression.
Collapse
|
3
|
Haider S, Nawaz A, Batool Z, Tabassum S, Perveen T. Alleviation of diazepam-induced conditioned place preference and its withdrawal-associated neurobehavioral deficits following pre-exposure to enriched environment in rats. Physiol Behav 2019; 208:112564. [PMID: 31145918 DOI: 10.1016/j.physbeh.2019.112564] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2018] [Revised: 05/24/2019] [Accepted: 05/26/2019] [Indexed: 12/18/2022]
Abstract
Diazepam is one of the widely prescribed sedative drugs for the treatment of anxiety and sleep disorders. However, its continuous use can induce addiction, tolerance, and withdrawal symptoms and, therefore, the pharmacological use of diazepam is restricted. Exposure to enriched environment can reduce the addiction to stimulants including amphetamine, cocaine, and nicotine. However, the protective effect of enriched environment against preference of sedative drugs is not yet investigated. This study, therefore, determined the effects of enriched environment to prevent diazepam-preference using conditioned place preference (CPP) paradigm. Adult rats were reared in social (n = 12) or physically (n = 12) enriched environment for four weeks. Each group was then sub-divided into two groups and were administered either saline (Control; n = 6) or diazepam (1 mg/kg; n = 6) on alternate days for thirteen days. During the administration of diazepam, the CPP was conducted to monitor drug preference on 5th, 9th and 13th day of experiment. It was observed that the diazepam administration significantly (p < .01) induced preference in rats. Neurobehavioral deficits including hypolocomotor activity, depression-like behavior, impaired learning and memory functions were also observed after 24 h of drug abstinence. Exposure to enriched environment significantly reduced diazepam-preference and other neurobehavioral deficits. This study provides preliminary evidence to highlight the importance of enriched environment in the attenuation of diazepam-preference.
Collapse
Affiliation(s)
- Saida Haider
- Neurochemistry and Biochemical Neuropharmacology Research Unit, Department of Biochemistry, University of Karachi, Karachi 75270, Pakistan.
| | - Amber Nawaz
- Neurochemistry and Biochemical Neuropharmacology Research Unit, Department of Biochemistry, University of Karachi, Karachi 75270, Pakistan; Department of Biomedical Engineering, Sir Syed University of Engineering and Technology, Karachi 75300, Pakistan
| | - Zehra Batool
- Neurochemistry and Biochemical Neuropharmacology Research Unit, Department of Biochemistry, University of Karachi, Karachi 75270, Pakistan; Dr. Panjwani Center for Molecular Medicine and Drug Research, International Center for Chemical and Biological Sciences, University of Karachi, Karachi, Pakistan
| | - Saiqa Tabassum
- Neurochemistry and Biochemical Neuropharmacology Research Unit, Department of Biochemistry, University of Karachi, Karachi 75270, Pakistan; Department of Biosciences, Shaheed Zulfiqar Ali Bhutto Institute of Science and Technology, Karachi, Pakistan
| | - Tahira Perveen
- Neurochemistry and Biochemical Neuropharmacology Research Unit, Department of Biochemistry, University of Karachi, Karachi 75270, Pakistan
| |
Collapse
|
4
|
Wei NL, Quan ZF, Zhao T, Yu XD, Xie Q, Zeng J, Ma FK, Wang F, Tang QS, Wu H, Zhu JH. Chronic stress increases susceptibility to food addiction by increasing the levels of DR2 and MOR in the nucleus accumbens. Neuropsychiatr Dis Treat 2019; 15:1211-1229. [PMID: 31190828 PMCID: PMC6512647 DOI: 10.2147/ndt.s204818] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/11/2019] [Accepted: 03/28/2019] [Indexed: 12/20/2022] Open
Abstract
Background: Stress-related obesity might be related to the suppression of the hypothalamic-pituitary- adrenocortical axis and dysregulation of the metabolic system. Chronic stress also induces the dysregulation of the reward system and increases the risk of food addiction, according to recent clinical findings. However, few studies have tested the effect of chronic stress on food addiction in animal models. Purpose: The objective of this study was to identify whether chronic stress promotes food addiction or not and explore the possible mechanisms. Method: We applied adaily 2 hrsflashing LED irradiation stress to mice fed chow or palatable food to mimic the effect of chronic stress on feeding. After 1 month of chronic stress exposure, we tested their binge eating behaviors, cravings for palatable food, responses for palatable food, and compulsive eating behaviors to evaluate the effect of chronic stress on food addiction-like behaviors. We detected changes in the levels of various genes and proteins in the nucleus accumbens (NAc), ventral tegmental area (VTA) and lateral hypothalamus using qPCR and immunofluorescence staining, respectively. Results: Behaviors results indicated chronic stress obviously increased food addiction score (FAS) in the palatable food feeding mice. Moreover, the FAS had astrong relationship with the extent of the increase in body weight. Chronic stress increased the expression of corticotropin-releasing factor receptor 1(CRFR1) was increased in the NAc shell and core but decreased in the VTA of the mice fed with palatable food. Chronic stress also increased expression of both dopamine receptor 2 (DR2) and mu-opioid receptor (MOR) in the NAc. Conclusion: Chronic stress aggravates the FAS and contributed to the development of stress-related obesity. Chronic stress drives the dysregulation of the CRF signaling pathway in the reward system and increases the expression of DR2 and MOR in the nucleus accumbens.
Collapse
Affiliation(s)
- Nai-Li Wei
- Fudan University Huashan Hospital, Department of Neurosurgery, State Key Laboratory for Medical neurobiology, Institutes of Brain Science, Shanghai Medical College-Fudan University, Shanghai, 20040, People's Republic of China.,Department of Neurosurgery, The Second Hospital of Lanzhou University, Lanzhou Gansu China, 730030, People's Republic of China
| | - Zi-Fang Quan
- Department of Neurology, The First Affiliated Hospital, University of South China, Hengyang, Hunan, 421001, People's Republic of China.,Institute of Neuroscience, Medical College, University of South China, Hengyang, Hunan, 421001, People's Republic of China
| | - Tong Zhao
- Fudan University Huashan Hospital, Department of Neurosurgery, State Key Laboratory for Medical neurobiology, Institutes of Brain Science, Shanghai Medical College-Fudan University, Shanghai, 20040, People's Republic of China
| | - Xu-Dong Yu
- Institute of Neuroscience, Medical College, University of South China, Hengyang, Hunan, 421001, People's Republic of China
| | - Qiang Xie
- Fudan University Huashan Hospital, Department of Neurosurgery, State Key Laboratory for Medical neurobiology, Institutes of Brain Science, Shanghai Medical College-Fudan University, Shanghai, 20040, People's Republic of China
| | - Jun Zeng
- Fudan University Huashan Hospital, Department of Neurosurgery, State Key Laboratory for Medical neurobiology, Institutes of Brain Science, Shanghai Medical College-Fudan University, Shanghai, 20040, People's Republic of China
| | - Fu-Kai Ma
- Fudan University Huashan Hospital, Department of Neurosurgery, State Key Laboratory for Medical neurobiology, Institutes of Brain Science, Shanghai Medical College-Fudan University, Shanghai, 20040, People's Republic of China
| | - Fan Wang
- Fudan University Huashan Hospital, Department of Neurosurgery, State Key Laboratory for Medical neurobiology, Institutes of Brain Science, Shanghai Medical College-Fudan University, Shanghai, 20040, People's Republic of China
| | - Qi-Sheng Tang
- Fudan University Huashan Hospital, Department of Neurosurgery, State Key Laboratory for Medical neurobiology, Institutes of Brain Science, Shanghai Medical College-Fudan University, Shanghai, 20040, People's Republic of China
| | - Heng Wu
- Department of Neurology, The First Affiliated Hospital, University of South China, Hengyang, Hunan, 421001, People's Republic of China
| | - Jian-Hong Zhu
- Fudan University Huashan Hospital, Department of Neurosurgery, State Key Laboratory for Medical neurobiology, Institutes of Brain Science, Shanghai Medical College-Fudan University, Shanghai, 20040, People's Republic of China
| |
Collapse
|
5
|
Ali EF, MacKay JC, Graitson S, James JS, Cayer C, Audet MC, Kent P, Abizaid A, Merali Z. Palatable Food Dampens the Long-Term Behavioral and Endocrine Effects of Juvenile Stressor Exposure but May Also Provoke Metabolic Syndrome in Rats. Front Behav Neurosci 2018; 12:216. [PMID: 30283308 PMCID: PMC6156124 DOI: 10.3389/fnbeh.2018.00216] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2018] [Accepted: 08/27/2018] [Indexed: 12/31/2022] Open
Abstract
The juvenile period is marked by a reorganization and growth of important brain regions including structures associating with reward seeking behaviors such as the nucleus accumbens (NA) and prefrontal cortex (PFC). These changes are impacted by stressors during the juvenile period and may lead to a predisposition to stress induced psychopathology and abnormal development of brain reward systems. Like in humans, adult rodents engage certain coping mechanisms such as increases in the consumption of calorie-rich palatable foods to reduce stress, but this behavior can lead to obesity and metabolic disorders. In this study, we examined whether stressors during the juvenile period led to increased caloric intake when a palatable diet was accessible, and whether this diet attenuated adult stress responses. In addition, we examined if the stress buffering effects produced by the palatable diet were also accompanied by an offset propensity towards obesity, and by alterations in mRNA expression of dopamine (DA) receptors in the NA and PFC in adulthood. To this end, juvenile male Wistar rats underwent episodic stressor exposure (forced swim, elevated platform stress and restraint) on postnatal days (PD) 27-29 and received access to regular chow or daily limited access to a palatable diet until adulthood. At the age of 2 months, rats were tested on a social interaction test that screens for anxiety-like behaviors and their endocrine responses to an acute stressor. Animals were sacrificed, and their brains processed to detect differences in DA receptor subtype expression in the PFC and NA using qPCR. Results showed that rats that were stressed during the juvenile period displayed higher social anxiety and a sensitized corticosterone response as adults and these effects were attenuated by access to the palatable diet. Nevertheless, rats that experienced juvenile stress and consumed a palatable diet showed greater adiposity in adulthood. Interestingly, the same group displayed greater mRNA expression of DA receptors at the NA. This suggests that access to a palatable diet mitigates the behavioral and endocrine effects of juvenile stressor exposure in adulthood, but at the cost of metabolic imbalances and a sensitized dopaminergic system.
Collapse
Affiliation(s)
- Eliza Fatima Ali
- The Royal’s Institute of Mental Health Research, University of Ottawa, Ottawa, ON, Canada
- Department of Neuroscience, Carleton University, Ottawa, ON, Canada
| | | | - Samantha Graitson
- The Royal’s Institute of Mental Health Research, University of Ottawa, Ottawa, ON, Canada
| | - Jonathan Stewart James
- The Royal’s Institute of Mental Health Research, University of Ottawa, Ottawa, ON, Canada
| | - Christian Cayer
- The Royal’s Institute of Mental Health Research, University of Ottawa, Ottawa, ON, Canada
- School of Psychology, University of Ottawa, Ottawa, ON, Canada
| | - Marie-Claude Audet
- The Royal’s Institute of Mental Health Research, University of Ottawa, Ottawa, ON, Canada
- Department of Neuroscience, Carleton University, Ottawa, ON, Canada
- School of Nutrition Sciences, University of Ottawa, Ottawa, ON, Canada
| | - Pamela Kent
- The Royal’s Institute of Mental Health Research, University of Ottawa, Ottawa, ON, Canada
| | - Alfonso Abizaid
- Department of Neuroscience, Carleton University, Ottawa, ON, Canada
| | - Zul Merali
- The Royal’s Institute of Mental Health Research, University of Ottawa, Ottawa, ON, Canada
- Department of Neuroscience, Carleton University, Ottawa, ON, Canada
- School of Psychology, University of Ottawa, Ottawa, ON, Canada
- Department of Cellular and Molecular Medicine, University of Ottawa, Ottawa, ON, Canada
| |
Collapse
|
6
|
Majcher‐Maślanka I, Solarz A, Wędzony K, Chocyk A. The effects of early‐life stress on dopamine system function in adolescent female rats. Int J Dev Neurosci 2017; 57:24-33. [DOI: 10.1016/j.ijdevneu.2017.01.001] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2016] [Revised: 01/02/2017] [Accepted: 01/03/2017] [Indexed: 12/16/2022] Open
Affiliation(s)
- Iwona Majcher‐Maślanka
- Institute of Pharmacology, Polish Academy of SciencesLaboratory of Pharmacology and Brain Biostructure31‐343KrakówSmętna Street 12Poland
| | - Anna Solarz
- Institute of Pharmacology, Polish Academy of SciencesLaboratory of Pharmacology and Brain Biostructure31‐343KrakówSmętna Street 12Poland
| | - Krzysztof Wędzony
- Institute of Pharmacology, Polish Academy of SciencesLaboratory of Pharmacology and Brain Biostructure31‐343KrakówSmętna Street 12Poland
| | - Agnieszka Chocyk
- Institute of Pharmacology, Polish Academy of SciencesLaboratory of Pharmacology and Brain Biostructure31‐343KrakówSmętna Street 12Poland
| |
Collapse
|
7
|
Lakehayli S, Said N, El Khachibi M, El Ouahli M, Nadifi S, Hakkou F, Tazi A. Prenatal stress alters diazepam withdrawal syndrome and 5HT1A receptor expression in the raphe nuclei of adult rats. Neuroscience 2016; 330:50-6. [DOI: 10.1016/j.neuroscience.2016.05.035] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2016] [Revised: 05/17/2016] [Accepted: 05/17/2016] [Indexed: 10/21/2022]
|
8
|
Wu B, Liang Y, Dong Z, Chen Z, Zhang G, Lin W, Wang S, Wang B, Ge RS, Lian Q. Glucocorticoid receptor mediated the propofol self-administration by dopamine D1 receptor in nucleus accumbens. Neuroscience 2016; 328:184-93. [PMID: 27126557 DOI: 10.1016/j.neuroscience.2016.04.029] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2015] [Revised: 04/18/2016] [Accepted: 04/18/2016] [Indexed: 11/29/2022]
Abstract
Propofol, a widely used anesthetic, can cause addictive behaviors in both human and experimental animals. In the present study, we examined the involvement of glucocorticoid receptor (GR) signaling in the molecular process by which propofol may cause addiction. The propofol self-administration model was established by a fixed ratio 1 (FR1) schedule of reinforced dosing over successive 14days in rats. On day 15, the rats were treated with dexamethasone, a GR agonist (10-100μg/kg), or RU486, a GR antagonist (10-100μg/kg) at 1h prior to the last training. The animal behaviors were recorded automatically by the computer. The expression of dopamine D1 receptor in the nucleus accumbens (NAc) was examined by Western blot and the concentrations of plasma corticosterone were measured by enzyme-linked immunosorbent assay (ELISA). To further examine the specificity of GR in the process, mineralocorticoid receptor (MR) antagonist, spironolactone, and dexamethasone plus MR agonist, aldosterone, were also tested. Administration of dexamethasone (100μg/kg) or RU486 (⩾10mg/kg) significantly attenuated the rate of propofol maintained active nose-poke responses and infusions, which were accompanied by reductions in both plasma corticosterone level and the expression of D1 receptor in the NAc. Neither spironolactone alone nor dexamethasone combined with aldosterone affected the propofol-maintaining self-administrative behavior, indicating GR, but not MR, modulates the propofol reward in rats. In addition, neither the food-maintaining sucrose responses under FR1 schedule nor the locomotor activity was affected by any doses of dexamethasone or RU486 tested. These findings provide evidence that GR signaling may play an important role in propofol reward.
Collapse
Affiliation(s)
- Binbin Wu
- Department of Anesthesiology and Pain Medicine, the Second Affiliated Hospital of Wenzhou Medical University, Wenzhou 325027, China
| | - Yuyuan Liang
- Department of Anesthesiology and Pain Medicine, the Second Affiliated Hospital of Wenzhou Medical University, Wenzhou 325027, China
| | - Zhanglei Dong
- Department of Anesthesiology and Pain Medicine, the Second Affiliated Hospital of Wenzhou Medical University, Wenzhou 325027, China
| | - Zhichuan Chen
- Department of Anesthesiology and Pain Medicine, the Second Affiliated Hospital of Wenzhou Medical University, Wenzhou 325027, China
| | - Gaolong Zhang
- Department of Anesthesiology and Pain Medicine, the Second Affiliated Hospital of Wenzhou Medical University, Wenzhou 325027, China
| | - Wenxuan Lin
- Department of Anesthesiology and Pain Medicine, the Second Affiliated Hospital of Wenzhou Medical University, Wenzhou 325027, China
| | - Sicong Wang
- Department of Anesthesiology and Pain Medicine, the Second Affiliated Hospital of Wenzhou Medical University, Wenzhou 325027, China
| | - Benfu Wang
- Department of Anesthesiology and Pain Medicine, the Second Affiliated Hospital of Wenzhou Medical University, Wenzhou 325027, China
| | - Ren-Shan Ge
- Department of Anesthesiology and Pain Medicine, the Second Affiliated Hospital of Wenzhou Medical University, Wenzhou 325027, China.
| | - Qingquan Lian
- Department of Anesthesiology and Pain Medicine, the Second Affiliated Hospital of Wenzhou Medical University, Wenzhou 325027, China.
| |
Collapse
|