1
|
Wang B, Geng L, Wang J, Wei Y, Yan C, Wu N, Yue Y, Zhang Q. Optimization of the Preparation Process of Glucuronomannan Oligosaccharides and Their Effects on the Gut Microbiota in MPTP-Induced PD Model Mice. Mar Drugs 2024; 22:193. [PMID: 38786584 PMCID: PMC11123026 DOI: 10.3390/md22050193] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2024] [Revised: 04/10/2024] [Accepted: 04/22/2024] [Indexed: 05/25/2024] Open
Abstract
Parkinson's disease (PD) is a prevalent neurodegenerative disorder, and accumulating evidence suggests a link between dysbiosis of the gut microbiota and the onset and progression of PD. In our previous investigations, we discovered that intraperitoneal administration of glucuronomannan oligosaccharides (GMn) derived from Saccharina japonica exhibited neuroprotective effects in a 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP)-induced PD mouse model. However, the complicated preparation process, difficulties in isolation, and remarkably low yield have constrained further exploration of GMn. In this study, we optimized the degradation conditions in the preparation process of GMn through orthogonal experiments. Subsequently, an MPTP-induced PD model was established, followed by oral administration of GMn. Through a stepwise optimization, we successfully increased the yield of GMn, separated from crude fucoidan, from 1~2/10,000 to 4~8/1000 and indicated the effects on the amelioration of MPTP-induced motor deficits, preservation of dopamine neurons, and elevation in striatal neurotransmitter levels. Importantly, GMn mitigated gut microbiota dysbiosis induced by MPTP in mice. In particular, GM2 significantly reduced the levels of Akkermansia, Verrucomicrobiota, and Lactobacillus, while promoting the abundance of Roseburia and Prevotella compared to the model group. These findings suggest that GM2 can potentially suppress PD by modulating the gut microbiota, providing a foundation for the development of a novel and effective anti-PD marine drug.
Collapse
Affiliation(s)
- Baoxiang Wang
- College of Life Sciences, Qingdao University, 308 Ningxia Road, Qingdao 266003, China; (B.W.); (Y.W.)
- CAS and Shandong Province Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China; (J.W.); (C.Y.); (N.W.); (Y.Y.)
| | - Lihua Geng
- CAS and Shandong Province Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China; (J.W.); (C.Y.); (N.W.); (Y.Y.)
- Laboratory for Marine Biology and Biotechnology, Qingdao Marine Science and Technology Center, Qingdao 266237, China
- Center for Ocean Mega-Science, Chinese Academy of Sciences, Qingdao 266071, China
| | - Jing Wang
- CAS and Shandong Province Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China; (J.W.); (C.Y.); (N.W.); (Y.Y.)
- Laboratory for Marine Biology and Biotechnology, Qingdao Marine Science and Technology Center, Qingdao 266237, China
- Center for Ocean Mega-Science, Chinese Academy of Sciences, Qingdao 266071, China
| | - Yuxi Wei
- College of Life Sciences, Qingdao University, 308 Ningxia Road, Qingdao 266003, China; (B.W.); (Y.W.)
| | - Changhui Yan
- CAS and Shandong Province Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China; (J.W.); (C.Y.); (N.W.); (Y.Y.)
- Key Laboratory of Optic-Electric Sensing and Analytical Chemistry for Life Science, MOE, College of Chemistry and Molecular Engineering, Qingdao University of Science and Technology, Qingdao 266042, China
| | - Ning Wu
- CAS and Shandong Province Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China; (J.W.); (C.Y.); (N.W.); (Y.Y.)
- Center for Ocean Mega-Science, Chinese Academy of Sciences, Qingdao 266071, China
| | - Yang Yue
- CAS and Shandong Province Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China; (J.W.); (C.Y.); (N.W.); (Y.Y.)
- Laboratory for Marine Biology and Biotechnology, Qingdao Marine Science and Technology Center, Qingdao 266237, China
- Center for Ocean Mega-Science, Chinese Academy of Sciences, Qingdao 266071, China
| | - Quanbin Zhang
- CAS and Shandong Province Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China; (J.W.); (C.Y.); (N.W.); (Y.Y.)
- Laboratory for Marine Biology and Biotechnology, Qingdao Marine Science and Technology Center, Qingdao 266237, China
- Center for Ocean Mega-Science, Chinese Academy of Sciences, Qingdao 266071, China
| |
Collapse
|
2
|
Stemazole Promotes Oligodendrocyte Precursor Cell Survival In Vitro and Remyelination In Vivo. Int J Mol Sci 2022; 23:ijms231810756. [PMID: 36142668 PMCID: PMC9500784 DOI: 10.3390/ijms231810756] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2022] [Revised: 09/07/2022] [Accepted: 09/12/2022] [Indexed: 11/28/2022] Open
Abstract
Maintaining the normal function of oligodendrocyte precursor cells (OPCs) and protecting OPCs from damage is the basis of myelin regeneration in multiple sclerosis (MS). In this paper, we investigated the effect of stemazole, a novel small molecule, on the promotion of oligodendrocyte precursor cell survival and remyelination. The results show that stemazole enhanced the survival rate and the number of clone formation in a dose-dependent manner and decreased the percentage of cell apoptosis. In particular, the number of cell clones was increased up to 6-fold (p < 0.001) in the stemazole group compared with the control group. In vivo, we assessed the effect of stemazole on recovering the motor dysfunction and demyelination induced by cuprizone (CPZ). The results show that stemazole promoted the recovery of motor dysfunction and the repair of myelin sheaths. Compared with the CPZ group, the stemazole group showed a 30.46% increase in the myelin area (p < 0.001), a 37.08% increase in MBP expression (p < 0.01), and a 1.66-fold increase in Olig2 expression (p < 0.001). Histologically, stemazole had a better effect than the positive control drugs. In conclusion, stemazole promoted OPC survival in vitro and remyelination in vivo, suggesting that this compound may be used as a therapeutic agent against demyelinating disease.
Collapse
|
3
|
A Quantitative Proteomic Approach Explores the Possible Mechanisms by Which the Small Molecule Stemazole Promotes the Survival of Human Neural Stem Cells. Brain Sci 2022; 12:brainsci12060690. [PMID: 35741576 PMCID: PMC9221083 DOI: 10.3390/brainsci12060690] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2022] [Revised: 05/16/2022] [Accepted: 05/21/2022] [Indexed: 02/07/2023] Open
Abstract
Neurodegenerative disorders have become a serious healthcare problem worldwide and there is no efficacious cure. However, regulating the fate of stem cells is an effective way to treat these neurological diseases. In previous work, stemazole was reported to maintain the survival of human neural stem cells in the absence of growth factors and to have therapeutic effects on neurodegenerative diseases. However, although it is a promising small molecule, the molecular mechanisms against apoptosis are ambiguous. In this study, tandem mass tag (TMT)-based proteomics were performed to obtain whole protein expression profiles of human neural stem cells in different groups under extreme conditions. Bioinformatics analysis based on protein–protein interaction (PPI) network construction, gene ontology (GO) and the Kyoto Encyclopaedia of Genes and Genomes (KEGG) pathway enrichment analysis were adopted to explore crucial proteins and possible pharmacological mechanisms. A total of 77 differentially expressed proteins were identified, comprising 38 upregulated proteins and 39 downregulated proteins. Combined with a diseases database of Alzheimer’s disease (AD), caspase-2 (CASP2), PKA C-alpha (PRKACA), fibronectin (FN1), large neutral amino acid transporter small subunit 1 (SLC7A5), which are involved in cell proliferation and apoptosis, this was further validated by enzyme activity assay and molecular docking, and regarded as putative targets regulated by stemazole. The present results give an insight into this small molecule and a better understanding for further elucidating the underlying mechanisms in the treatment of stem cells and neurodegenerative diseases.
Collapse
|
4
|
Li Q, Mo J, Xiong B, Liao Q, Chen Y, Wang Y, Xing S, He S, Lyu W, Zhang N, Sun H. Discovery of Resorcinol-Based Polycyclic Structures as Tyrosinase Inhibitors for Treatment of Parkinson's Disease. ACS Chem Neurosci 2022; 13:81-96. [PMID: 34882402 DOI: 10.1021/acschemneuro.1c00560] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Tyrosinase is involved in the synthesis of neuromelanin in the substantia nigra, which is closely correlated with the pathogenesis of Parkinson's disease. Herein, we identified S05014 (l-Tyr, IC50 = 6.25 ± 1.43 nM; l-Dopa, IC50 = 0.64 ± 0.40 μM) as a highly effective tyrosinase inhibitor. It could inhibit the tyrosinase function from different origins and decrease the expression of tyrosinase. S05014 presented good medication safety and inhibited melanogenesis in a dose-dependent manner. Moreover, as a resorcinol derivative, S05014 could scavenge the 2,2-diphenyl-1-picrylhydrazyl (DPPH) free radical and significantly reduce the overproduction of LPS-induced reactive oxidative species (ROS), indicating its antioxidative profile. S05014 exhibited an excellent neuroprotective effect against methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) impairment in vitro and could remarkably alleviate movement abnormalities and exploratory activities in vivo. Altogether, S05014 is considered as a promising inhibitor for tyrosinase, melanogenesis, and oxidative stress and has great potential to be utilized in anti-Parkinsonian syndrome. From this point of view, tyrosinase inhibition has been further confirmed to be a novel strategy to improve locomotor capacity and treat Parkinson's disease.
Collapse
Affiliation(s)
- Qi Li
- Department of Medical Pharmacy, School of Basic Medicine, Qingdao University, Qingdao 266071, People’s Republic of China
| | - Jun Mo
- ZJU-ENS Joint Laboratory of Medicinal Chemistry, Zhejiang Province Key Laboratory of Anti-Cancer Drug Research, Hangzhou Institute of Innovative Medicine, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, People’s Republic of China
| | - Baichen Xiong
- School of Pharmacy, China Pharmaceutical University, Nanjing 211198, People’s Republic of China
| | - Qinghong Liao
- Department of Natural Medicinal Chemistry, China Pharmaceutical University, Nanjing 211198, People’s Republic of China
| | - Ying Chen
- Department of Natural Medicinal Chemistry, China Pharmaceutical University, Nanjing 211198, People’s Republic of China
| | - Yuanyuan Wang
- School of Pharmacy, China Pharmaceutical University, Nanjing 211198, People’s Republic of China
| | - Shuaishuai Xing
- School of Pharmacy, China Pharmaceutical University, Nanjing 211198, People’s Republic of China
| | - Siyu He
- School of Basic Medicine and Clinical Pharmacy, China Pharmaceutical University, Nanjing 210009, People’s Republic of China
| | - Weiping Lyu
- School of Basic Medicine and Clinical Pharmacy, China Pharmaceutical University, Nanjing 210009, People’s Republic of China
| | - Ning Zhang
- Department of Natural Medicinal Chemistry, China Pharmaceutical University, Nanjing 211198, People’s Republic of China
| | - Haopeng Sun
- School of Pharmacy, China Pharmaceutical University, Nanjing 211198, People’s Republic of China
| |
Collapse
|
5
|
Li H, Zhang Y, Zhang J, Zhao C, Zhu Y, Han M. A quantitative proteomics analysis for small molecule Stemazole's effect on human neural stem cells. Proteome Sci 2020; 18:12. [PMID: 33298084 PMCID: PMC7724819 DOI: 10.1186/s12953-020-00168-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2020] [Accepted: 11/26/2020] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Stemazole is a novel small molecule that has been suggested to have the ability to protect multiple stem cells. The proliferation-promoting activity and promising neuroprotective effects of stemazole make it a prospective drug for neurodegenerative disease treatment. METHODS Since previous studies have shown that it protective effect in extreme conditions, to understand more aspects of stemazole, in this study, a systematic tandem mass tags (TMT)-labelled proteomics approach was used to address the whole proteome expression profile with or without stemazole in normal conditions instead of extreme conditions. Bioinformatics analyses, including Gene Ontology (GO), Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway enrichment and protein-protein interaction (PPI) network analyses, were employed. RESULTS The effect of stemazole on the expression profiles of neural stem cells was obtained. A total of 408 proteins with changes at the abundance level of two groups were identified: 178 proteins increase in abundance and 240 proteins decrease in abundance, respectively. Low abundance of some mitochondrial respiratory chain enzyme, overproduction of reactive oxygen species (ROS) and reduction of mitochondrial membrane potential may indicate stemazole has cytotoxicity. CONCLUSIONS It is the first proteomics research about stemazole, and the possible cytotoxicity of stemazole has been reported for the first time. The information about proteins that were affected by stemazole and more characteristics of stemazole will help obtain a complete picture of this small molecule drug. These findings provide a scientific basis for further stemazole treatment research.
Collapse
Affiliation(s)
- Huajun Li
- Key Laboratory of Radiopharmaceuticals, Ministry of Education, College of Chemistry, Beijing Normal University, Beijing, 100875, China
| | - Yubo Zhang
- Key Laboratory of Radiopharmaceuticals, Ministry of Education, College of Chemistry, Beijing Normal University, Beijing, 100875, China
| | - Jing Zhang
- Key Laboratory of Radiopharmaceuticals, Ministry of Education, College of Chemistry, Beijing Normal University, Beijing, 100875, China
| | - Chaoran Zhao
- Key Laboratory of Radiopharmaceuticals, Ministry of Education, College of Chemistry, Beijing Normal University, Beijing, 100875, China
| | - Yizi Zhu
- Key Laboratory of Radiopharmaceuticals, Ministry of Education, College of Chemistry, Beijing Normal University, Beijing, 100875, China
| | - Mei Han
- Key Laboratory of Radiopharmaceuticals, Ministry of Education, College of Chemistry, Beijing Normal University, Beijing, 100875, China.
| |
Collapse
|
6
|
Liao JF, Cheng YF, You ST, Kuo WC, Huang CW, Chiou JJ, Hsu CC, Hsieh-Li HM, Wang S, Tsai YC. Lactobacillus plantarum PS128 alleviates neurodegenerative progression in 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine-induced mouse models of Parkinson's disease. Brain Behav Immun 2020; 90:26-46. [PMID: 32739365 DOI: 10.1016/j.bbi.2020.07.036] [Citation(s) in RCA: 95] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/16/2020] [Revised: 07/22/2020] [Accepted: 07/27/2020] [Indexed: 02/07/2023] Open
Abstract
Evidence suggests that the Parkinson's disease (PD) pathogenesis is strongly associated with bidirectional pathways in the microbiota-gut-brain axis (MGBA), and psychobiotics may inhibit PD progression. We previously reported that the novel psychobiotic strain, Lactobacillus plantarum PS128 (PS128), ameliorated abnormal behaviors and modulated neurotransmissions in dopaminergic pathways in rodent models. Here, we report that orally administering PS128 for 4 weeks significantly alleviated the motor deficits, elevation in corticosterone, nigrostriatal dopaminergic neuronal death, and striatal dopamine reduction in 1-methyl-4-phenyl-1,2,3,6-tetrathydropyridine (MPTP)-induced PD mouse models. PS128 ingestion suppressed glial cell hyperactivation and increased norepinephrine and neurotrophic factors in the striatum of the PD-model mice. PS128 administration also attenuated MPTP-induced oxidative stress and neuroinflammation in the nigrostriatal pathway. Fecal analysis showed that PS128 modulated the gut microbiota. L. plantarum abundance was significantly increased along with methionine biosynthesis-related microbial modules. PS128 also suppressed the increased family Enterobacteriaceae and lipopolysaccharide and peptidoglycan biosynthesis-related microbial modules caused by MPTP. In conclude, PS128 ingestion alleviated MPTP-induced motor deficits and neurotoxicity.PS128 supplementation inhibited neurodegenerative processes in PD-model mice and may help prevent PD.
Collapse
Affiliation(s)
- Jian-Fu Liao
- Institute of Biochemistry and Molecular Biology, National Yang-Ming University, 155, Section 2, Linong Street, Beitou Dist., Taipei City 11221, Taiwan, ROC
| | - Yun-Fang Cheng
- Institute of Biochemistry and Molecular Biology, National Yang-Ming University, 155, Section 2, Linong Street, Beitou Dist., Taipei City 11221, Taiwan, ROC; Microbiome Research Center, National Yang-Ming University, 155, Section 2, Linong Street, Beitou Dist., Taipei City 11221, Taiwan, ROC; Bened Biomedical Co. Ltd., 2F-2, No.129, Sec. 2, Zhongshan N. Rd., Zhongshan Dist., Taipei City 104, Taiwan, ROC
| | - Shu-Ting You
- Institute of Biochemistry and Molecular Biology, National Yang-Ming University, 155, Section 2, Linong Street, Beitou Dist., Taipei City 11221, Taiwan, ROC
| | - Wen-Chun Kuo
- Institute of Biochemistry and Molecular Biology, National Yang-Ming University, 155, Section 2, Linong Street, Beitou Dist., Taipei City 11221, Taiwan, ROC
| | - Chi-Wei Huang
- Center for Systems and Synthetic Biology, National Yang-Ming University, 155, Section 2, Linong Street, Beitou Dist., Taipei City 11221, Taiwan, ROC
| | - Jen-Jie Chiou
- Center for Systems and Synthetic Biology, National Yang-Ming University, 155, Section 2, Linong Street, Beitou Dist., Taipei City 11221, Taiwan, ROC
| | - Chih-Chieh Hsu
- Bened Biomedical Co. Ltd., 2F-2, No.129, Sec. 2, Zhongshan N. Rd., Zhongshan Dist., Taipei City 104, Taiwan, ROC
| | - Hsiu-Mei Hsieh-Li
- Department of Life Science, National Taiwan Normal University, 88, Section 4, Tingchow Rd., Wenshan Dist., Taipei City 116, Taiwan, ROC
| | - Sabrina Wang
- Institute of Anatomy and Cell Biology, National Yang-Ming University, 155, Section 2, Linong Street, Beitou Dist., Taipei City 11221, Taiwan, ROC.
| | - Ying-Chieh Tsai
- Institute of Biochemistry and Molecular Biology, National Yang-Ming University, 155, Section 2, Linong Street, Beitou Dist., Taipei City 11221, Taiwan, ROC; Microbiome Research Center, National Yang-Ming University, 155, Section 2, Linong Street, Beitou Dist., Taipei City 11221, Taiwan, ROC.
| |
Collapse
|
7
|
Prasad EM, Hung SY. Behavioral Tests in Neurotoxin-Induced Animal Models of Parkinson's Disease. Antioxidants (Basel) 2020; 9:E1007. [PMID: 33081318 PMCID: PMC7602991 DOI: 10.3390/antiox9101007] [Citation(s) in RCA: 53] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2020] [Revised: 09/21/2020] [Accepted: 09/22/2020] [Indexed: 02/06/2023] Open
Abstract
Currently, neurodegenerative diseases are a major cause of disability around the world. Parkinson's disease (PD) is the second-leading cause of neurodegenerative disorder after Alzheimer's disease. In PD, continuous loss of dopaminergic neurons in the substantia nigra causes dopamine depletion in the striatum, promotes the primary motor symptoms of resting tremor, bradykinesia, muscle rigidity, and postural instability. The risk factors of PD comprise environmental toxins, drugs, pesticides, brain microtrauma, focal cerebrovascular injury, aging, and hereditary defects. The pathologic features of PD include impaired protein homeostasis, mitochondrial dysfunction, nitric oxide, and neuroinflammation, but the interaction of these factors contributing to PD is not fully understood. In neurotoxin-induced PD models, neurotoxins, for instance, 6-hydroxydopamine (6-OHDA), 1-Methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP), 1-Methyl-4-phenylpyridinium (MPP+), paraquat, rotenone, and permethrin mainly impair the mitochondrial respiratory chain, activate microglia, and generate reactive oxygen species to induce autooxidation and dopaminergic neuronal apoptosis. Since no current treatment can cure PD, using a suitable PD animal model to evaluate PD motor symptoms' treatment efficacy and identify therapeutic targets and drugs are still needed. Hence, the present review focuses on the latest scientific developments in different neurotoxin-induced PD animal models with their mechanisms of pathogenesis and evaluation methods of PD motor symptoms.
Collapse
Affiliation(s)
- E. Maruthi Prasad
- Graduate Institute of Acupuncture Science, College of Chinese Medicine, China Medical University, No.91, Hsueh-Shih Road, Taichung 40402, Taiwan;
| | - Shih-Ya Hung
- Graduate Institute of Acupuncture Science, College of Chinese Medicine, China Medical University, No.91, Hsueh-Shih Road, Taichung 40402, Taiwan;
- Department of Medical Research, China Medical University Hospital, No. 2, Yude Road, Taichung 40447, Taiwan
| |
Collapse
|
8
|
Ultrasound-responsive neurotrophic factor-loaded microbubble- liposome complex: Preclinical investigation for Parkinson's disease treatment. J Control Release 2020; 321:519-528. [DOI: 10.1016/j.jconrel.2020.02.044] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2019] [Revised: 02/19/2020] [Accepted: 02/26/2020] [Indexed: 02/08/2023]
|
9
|
Uncovering the Pharmacological Mechanism of Stemazole in the Treatment of Neurodegenerative Diseases Based on a Network Pharmacology Approach. Int J Mol Sci 2020; 21:ijms21020427. [PMID: 31936558 PMCID: PMC7013392 DOI: 10.3390/ijms21020427] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2019] [Revised: 01/05/2020] [Accepted: 01/07/2020] [Indexed: 12/17/2022] Open
Abstract
Stemazole exerts potent pharmacological effects against neurodegenerative diseases and protective effects in stem cells. However, on the basis of the current understanding, the molecular mechanisms underlying the effects of stemazole in the treatment of Alzheimer's disease and Parkinson's disease have not been fully elucidated. In this study, a network pharmacology-based strategy integrating target prediction, network construction, gene ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway enrichment analyses, and molecular docking was adopted to predict the targets of stemazole relevant to the treatment of neurodegenerative diseases and to further explore the involved pharmacological mechanisms. The majority of the predicted targets were highly involved in the mitogen-activated protein kinase (MAPK) signaling pathway. RAC-alpha serine/threonine-protein kinase (AKT1), caspase-3 (CASP3), caspase-8 (CASP8), mitogen-activated protein kinase 8 (MAPK8), and mitogen-activated protein kinase 14 (MAPK14) are the core targets regulated by stemazole and play a central role in its anti-apoptosis effects. This work provides a scientific basis for further elucidating the mechanism underlying the effects of stemazole in the treatment of neurodegenerative diseases.
Collapse
|
10
|
Ghanta MK, Elango P, L V K S B. Current Therapeutic Strategies and Perspectives for Neuroprotection in Parkinson's Disease. Curr Pharm Des 2020; 26:4738-4746. [PMID: 32065086 DOI: 10.2174/1381612826666200217114658] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2019] [Accepted: 02/10/2020] [Indexed: 02/04/2023]
Abstract
Parkinson's disease is a progressive neurodegenerative disorder of dopaminergic striatal neurons in basal ganglia. Treatment of Parkinson's disease (PD) through dopamine replacement strategies may provide improvement in early stages and this treatment response is related to dopaminergic neuronal mass which decreases in advanced stages. This treatment failure was revealed by many studies and levodopa treatment became ineffective or toxic in chronic stages of PD. Early diagnosis and neuroprotective agents may be a suitable approach for the treatment of PD. The essentials required for early diagnosis are biomarkers. Characterising the striatal neurons, understanding the status of dopaminergic pathways in different PD stages may reveal the effects of the drugs used in the treatment. This review updates on characterisation of striatal neurons, electrophysiology of dopaminergic pathways in PD, biomarkers of PD, approaches for success of neuroprotective agents in clinical trials. The literature was collected from the articles in database of PubMed, MedLine and other available literature resources.
Collapse
Affiliation(s)
- Mohan K Ghanta
- Department of Pharmacology, Sri Ramachandra Medical College and Research Institute, Sri Ramachandra Institute of Higher Education and Research (DU), Porur, Chennai-600116, Tamil Nadu, India
| | - P Elango
- Department of Pharmacology, Panimalar Medical College Hospital & Research Institute, Poonamallee, Chennai-600123, Tamil Nadu, India
| | - Bhaskar L V K S
- Department of Zoology, Guru Ghasidas University, Bilaspur, 495009 (CG), India
| |
Collapse
|
11
|
Tripathi MK, Rasheed MSU, Mishra AK, Patel DK, Singh MP. Silymarin Protects Against Impaired Autophagy Associated with 1-Methyl-4-phenyl-1,2,3,6-tetrahydropyridine-Induced Parkinsonism. J Mol Neurosci 2019; 70:276-283. [PMID: 31732923 DOI: 10.1007/s12031-019-01431-8] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2019] [Accepted: 10/18/2019] [Indexed: 12/28/2022]
Abstract
1-Methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) exacerbates mitochondrial impairment and α-synuclein expression leading to Parkinsonism. Impaired mitochondria and over-expressed α-synuclein are degraded and eliminated via macroautophagy and chaperone-mediated autophagy. Owing to multiple properties, silymarin protects from oxidative stress-mediated cellular injury. However, its effect on MPTP-induced changes in autophagy is not yet known. The study aimed to decipher the effect of silymarin on MPTP-induced changes in autophagy. Male mice (20-25 g) were treated with silymarin (intraperitoneally, daily, 40 mg/kg) for 2 weeks. On day 7, a few animals were also administered with MPTP (intraperitoneally, 20 mg/kg, 4 injections at 2-h interval) along with vehicles. Striatal dopamine content was determined. Western blot analysis was done to assess α-synuclein, beclin-1, sequestosome, phosphorylated 5' adenosine monophosphate-activated protein kinase (p-AMPK), lysosome-associated membrane protein-2 (LAMP-2), heat shock cognate-70 (Hsc-70), LAMP-2A, phosphorylated unc-51-like autophagy activating kinase (p-Ulk1), and phosphorylated mechanistic target of rapamycin (p-mTOR) levels in the nigrostriatal tissue. Silymarin rescued from MPTP-induced increase in beclin-1, sequestosome, p-AMPK, and p-Ulk1 and decrease in LAMP-2, p-mTOR, and LAMP-2A levels. Silymarin defended against MPTP-induced increase in α-synuclein and reduction in dopamine content. The results demonstrate that silymarin protects against MPTP-induced changes in autophagy leading to Parkinsonism.
Collapse
Affiliation(s)
- Manish Kumar Tripathi
- Toxicogenomics and Predictive Toxicology Laboratory, Systems Toxicology and Health Risk Assessment Group, CSIR-Indian Institute of Toxicology Research (CSIR-IITR), Vishvigyan Bhawan, 31, Mahatma Gandhi Marg, Lucknow, Uttar Pradesh, 226001, India.,Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, Uttar Pradesh, 201002, India
| | - Mohd Sami Ur Rasheed
- Toxicogenomics and Predictive Toxicology Laboratory, Systems Toxicology and Health Risk Assessment Group, CSIR-Indian Institute of Toxicology Research (CSIR-IITR), Vishvigyan Bhawan, 31, Mahatma Gandhi Marg, Lucknow, Uttar Pradesh, 226001, India.,Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, Uttar Pradesh, 201002, India
| | - Abhishek Kumar Mishra
- Toxicogenomics and Predictive Toxicology Laboratory, Systems Toxicology and Health Risk Assessment Group, CSIR-Indian Institute of Toxicology Research (CSIR-IITR), Vishvigyan Bhawan, 31, Mahatma Gandhi Marg, Lucknow, Uttar Pradesh, 226001, India.,Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, Uttar Pradesh, 201002, India
| | - Devendra Kumar Patel
- Analytical Chemistry Laboratory, Regulatory Toxicology Group, CSIR-IITR, Vishvigyan Bhawan, 31, Mahatma Gandhi Marg, Lucknow, Uttar Pradesh, 226001, India
| | - Mahendra Pratap Singh
- Toxicogenomics and Predictive Toxicology Laboratory, Systems Toxicology and Health Risk Assessment Group, CSIR-Indian Institute of Toxicology Research (CSIR-IITR), Vishvigyan Bhawan, 31, Mahatma Gandhi Marg, Lucknow, Uttar Pradesh, 226001, India. .,Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, Uttar Pradesh, 201002, India.
| |
Collapse
|
12
|
Li H, Tan Q, Zhang Y, Zhang J, Zhao C, Lu S, Qiao J, Han M. Pharmacokinetics and absolute oral bioavailability of stemazole by UPLC-MS/MS and its bio-distribution through tritium labeling. Drug Test Anal 2019; 12:101-108. [PMID: 31486294 DOI: 10.1002/dta.2694] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2019] [Revised: 08/28/2019] [Accepted: 08/29/2019] [Indexed: 11/08/2022]
Abstract
The small molecule, stemazole, has significant therapeutic effects on neurodegenerative diseases, such as Alzheimer's disease (AD), due to its neuroprotective effects and remarkable survival-promoting activity in stem cells. However, pharmacokinetic properties of stemazole were unclear. In this study, a rapid and effective ultra-performance liquid chromatography-tandem mass spectrometry (UPLC-MS/MS) method was developed to detect stemazole. The detector was operated in the positive-ion mode with an electrospray ionization (ESI) interface in multiple reaction monitoring (MRM) mode. Chromatographic separation was performed on an Acquity UPLC® BEH C18 column with gradient elution. Stemazole was extracted from plasma following a one-step protein precipitation method. The method was fully validated for its selectivity, specificity, and sensitivity. The calibration curve range of 5-1125 ng/mL showed good linearity for stemazole. Intra-day and inter-day precision rates were less than 10%, and accuracy ranged from 95.87% to 105.23%. The pharmacokinetic profiles were illustrated through the newly developed method for the first time. The absolute oral bioavailability of stemazole is 32.10%. Therefore, it is feasible as an oral medication, which greatly facilitates its broad application. The biological distribution of tritium-labeled stemazole in mice was studied, and the results showed that stemazole was absorbed rapidly and distributed widely, mainly in the liver and kidneys. A specific amount was also detected in the brain, which provides a prerequisite for the use of stemazole to treat neurodegenerative diseases. This work represents first description of the pharmacokinetics, bioavailability, and tissue distribution of stemazole and will lay the foundation for further investigation and drug development.
Collapse
Affiliation(s)
- Huajun Li
- Key Laboratory of Radiopharmaceuticals, Ministry of Education, College of Chemistry, Beijing Normal University, Beijing, China
| | - Qi Tan
- Key Laboratory of Radiopharmaceuticals, Ministry of Education, College of Chemistry, Beijing Normal University, Beijing, China
| | - Yubo Zhang
- Key Laboratory of Radiopharmaceuticals, Ministry of Education, College of Chemistry, Beijing Normal University, Beijing, China
| | - Jing Zhang
- Key Laboratory of Radiopharmaceuticals, Ministry of Education, College of Chemistry, Beijing Normal University, Beijing, China
| | - Chaoran Zhao
- Key Laboratory of Radiopharmaceuticals, Ministry of Education, College of Chemistry, Beijing Normal University, Beijing, China
| | - Shuai Lu
- Key Laboratory of Radiopharmaceuticals, Ministry of Education, College of Chemistry, Beijing Normal University, Beijing, China
| | - Jinping Qiao
- Key Laboratory of Radiopharmaceuticals, Ministry of Education, College of Chemistry, Beijing Normal University, Beijing, China
| | - Mei Han
- Key Laboratory of Radiopharmaceuticals, Ministry of Education, College of Chemistry, Beijing Normal University, Beijing, China
| |
Collapse
|
13
|
Wang Y, Chen AQ, Xue Y, Liu MF, Liu C, Liu YH, Pan YP, Diao HL, Chen L. Orexins alleviate motor deficits via increasing firing activity of pallidal neurons in a mouse model of Parkinson's disease. Am J Physiol Cell Physiol 2019; 317:C800-C812. [PMID: 31365289 DOI: 10.1152/ajpcell.00125.2019] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Orexin is a peptide neurotransmitter released in the globus pallidus. Morphological evidence reveals that both orexin 1 receptor (OX1R) and orexin 2 receptor (OX2R) exist in the globus pallidus. Here we showed that bilateral microinjection of both orexin-A and orexin-B into the globus pallidus alleviated motor deficits in 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP)-induced parkinsonian mice. Further in vivo extracellular single-unit recording revealed that the basal spontaneous firing rate of the globus pallidus neurons in MPTP parkinsonian mice was slower than that of normal mice. Application of orexin-A or orexin-B significantly increased the spontaneous firing rate of pallidal neurons. The influx of Ca2+ through the L-type Ca2+ channel is the major mechanism involved in orexin-induced excitation in the globus pallidus. Orexin-A-induced increase in firing rate of pallidal neurons in MPTP parkinsonian mice was stronger than that of normal mice. Orexin-A exerted both electrophysiological and behavioral effects mainly via OX1R, and orexin-B exerted the effects via OX2R. Endogenous orexins modulated the excitability of globus pallidus neurons mainly through OX1R. The present behavioral and electrophysiological results suggest that orexins ameliorate parkinsonian motor deficits through increasing the spontaneous firing of globus pallidus neurons.
Collapse
Affiliation(s)
- Ying Wang
- Department of Physiology, School of Basic Medicine, Qingdao University, Qingdao, China
| | - An-Qi Chen
- Department of Physiology, School of Basic Medicine, Qingdao University, Qingdao, China
| | - Yan Xue
- Department of Physiology, School of Basic Medicine, Qingdao University, Qingdao, China
| | - Mei-Fang Liu
- Department of Physiology, School of Basic Medicine, Qingdao University, Qingdao, China
| | - Cui Liu
- Department of Physiology, School of Basic Medicine, Qingdao University, Qingdao, China
| | - Yun-Hai Liu
- Department of Physiology, School of Basic Medicine, Qingdao University, Qingdao, China
| | - Yi-Peng Pan
- Department of Physiology, School of Basic Medicine, Qingdao University, Qingdao, China
| | - Hui-Ling Diao
- Department of Physiology, School of Basic Medicine, Qingdao University, Qingdao, China
| | - Lei Chen
- Department of Physiology, School of Basic Medicine, Qingdao University, Qingdao, China
| |
Collapse
|
14
|
Tosato M, Di Marco V. Metal Chelation Therapy and Parkinson's Disease: A Critical Review on the Thermodynamics of Complex Formation between Relevant Metal Ions and Promising or Established Drugs. Biomolecules 2019; 9:E269. [PMID: 31324037 PMCID: PMC6681387 DOI: 10.3390/biom9070269] [Citation(s) in RCA: 40] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2019] [Revised: 07/03/2019] [Accepted: 07/04/2019] [Indexed: 12/14/2022] Open
Abstract
The present review reports a list of approximately 800 compounds which have been used, tested or proposed for Parkinson's disease (PD) therapy in the year range 2014-2019 (April): name(s), chemical structure and references are given. Among these compounds, approximately 250 have possible or established metal-chelating properties towards Cu(II), Cu(I), Fe(III), Fe(II), Mn(II), and Zn(II), which are considered to be involved in metal dyshomeostasis during PD. Speciation information regarding the complexes formed by these ions and the 250 compounds has been collected or, if not experimentally available, has been estimated from similar molecules. Stoichiometries and stability constants of the complexes have been reported; values of the cologarithm of the concentration of free metal ion at equilibrium (pM), and of the dissociation constant Kd (both computed at pH = 7.4 and at total metal and ligand concentrations of 10-6 and 10-5 mol/L, respectively), charge and stoichiometry of the most abundant metal-ligand complexes existing at physiological conditions, have been obtained. A rigorous definition of the reported amounts is given, the possible usefulness of this data is described, and the need to characterize the metal-ligand speciation of PD drugs is underlined.
Collapse
Affiliation(s)
- Marianna Tosato
- Analytical Chemistry Research Group, Department of Chemical Sciences, University of Padova, via Marzolo 1, 35131 Padova, Italy
| | - Valerio Di Marco
- Analytical Chemistry Research Group, Department of Chemical Sciences, University of Padova, via Marzolo 1, 35131 Padova, Italy.
| |
Collapse
|
15
|
Sidorova YA, Volcho KP, Salakhutdinov NF. Neuroregeneration in Parkinson's Disease: From Proteins to Small Molecules. Curr Neuropharmacol 2019; 17:268-287. [PMID: 30182859 PMCID: PMC6425072 DOI: 10.2174/1570159x16666180905094123] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2018] [Revised: 08/16/2018] [Accepted: 08/30/2018] [Indexed: 01/07/2023] Open
Abstract
Background: Parkinson’s disease (PD) is the second most common neurodegenerative disorder worldwide, the lifetime risk of developing this disease is 1.5%. Motor diagnostic symptoms of PD are caused by degeneration of nigrostria-tal dopamine neurons. There is no cure for PD and current therapy is limited to supportive care that partially alleviates dis-ease signs and symptoms. As diagnostic symptoms of PD result from progressive degeneration of dopamine neurons, drugs restoring these neurons may significantly improve treatment of PD. Method: A literature search was performed using the PubMed, Web of Science and Scopus databases to discuss the pro-gress achieved in the development of neuroregenerative agents for PD. Papers published before early 2018 were taken into account. Results: Here, we review several groups of potential agents capable of protecting and restoring dopamine neurons in cul-tures or animal models of PD including neurotrophic factors and small molecular weight compounds. Conclusion: Despite the promising results of in vitro and in vivo experiments, none of the found agents have yet shown conclusive neurorestorative properties in PD patients. Meanwhile, a few promising biologicals and small molecules have been identified. Their further clinical development can eventually give rise to disease-modifying drugs for PD. Thus, inten-sive research in the field is justified.
Collapse
Affiliation(s)
- Yulia A Sidorova
- Laboratory of Molecular Neuroscience, Institute of Biotechnology, University of Helsinki, Helsinki, Finland
| | - Konstantin P Volcho
- Novosibirsk Institute of Organic Chemistry, Novosibirsk, Russian Federation.,Novosibirsk State University, Novosibirsk, Russian Federation
| | - Nariman F Salakhutdinov
- Novosibirsk Institute of Organic Chemistry, Novosibirsk, Russian Federation.,Novosibirsk State University, Novosibirsk, Russian Federation
| |
Collapse
|
16
|
Selvaraj V, Venkatasubramanian H, Ilango K, Santhakumar K. A simple method to study motor and non-motor behaviors in adult zebrafish. J Neurosci Methods 2019; 320:16-25. [DOI: 10.1016/j.jneumeth.2019.03.008] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2018] [Revised: 02/19/2019] [Accepted: 03/09/2019] [Indexed: 11/15/2022]
|
17
|
Ghanta M, Panchanathan E, Lakkakula BV, Narayanaswamy A, Murkunde Y, Tamrakar S. 1H-[1,2,4]oxadiazolo[4,3-a]quinoxalin-1-one Attenuates Oxidative Trauma and Recuperate Beam Walk and Adhesive Removal Behavior in MPTP Parkinsonian Mice Model. BIOMEDICAL AND PHARMACOLOGY JOURNAL 2018; 11:2011-2017. [DOI: 10.13005/bpj/1576] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/12/2025]
Abstract
Recent researches have suggested 1H-[1,2,4] oxadiazolo [4,3-a]quinoxalin-1-one (ODQ), a soluble guanylate cyclase inhibitor may attenuate motor impairments in Parkinson's disease (PD). The antiparkinsonian activity of ODQ were studied on motor abnormalities induced by 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) to provide a better understanding of this drug group. The objective of the present study is to evaluate the effect of ODQ on behavioral parameters such as Beam walk test, Adhesive removal test and to assess the biochemical changes due to ODQ against MPTP induced PD mice model. Eighteen C57BL/6J male mice were included in the study, divided into three groups of 6 each. Group A mice were treated with vehicle (Normal saline). Group B mice were subjected to MPTP sub acute protocol. Group C mice were treated with MPTP as according to sub acute protocol and administered with ODQ subcutaneous injection after final MPTP dose. Behavioral tests like Beam walk test, Adhesive removal test, along with Biochemical correlation were done using standard methods. Narrow beam walk and adhesive removal behavior were significantly reversed, and Superoxide dismutase (SOD) levels were enhanced in ODQ treated group compared to MPTP intoxicated mice group. Soluble guanylate cyclase inhibitor ODQ, could be a potential treatment for maintaining the balance of antioxidant and oxidant biochemical environment during oxidative stress which may be helpful for treating PD, targeting one or more factors of its multiple etiological factors.
Collapse
Affiliation(s)
- Mohankrishna Ghanta
- Department of Pharmacology, Sri Ramachandra Medical College, Sri Ramachandra Institute of Higher Education and Research - DU, Chennai-600116, Tamil Nadu, India
| | - Elango Panchanathan
- Department of Pharmacology, Sri Ramachandra Medical College, Sri Ramachandra Institute of Higher Education and Research - DU, Chennai-600116, Tamil Nadu, India
| | - Bhaskar V.K.S. Lakkakula
- Department of Molecular Genetics, Research Division, Sickle Cell Institute Chhattisgarh, Raipur- 492001, Chhattisgarh, India
| | - Anbumani Narayanaswamy
- Department of Microbiology, Sri Ramachandra Medical College, Sri Ramachandra Institute of Higher Education and Research - DU, Chennai-600116, Tamil Nadu, India
| | - Yogeshkumar Murkunde
- CEFTE, Sri Ramachandra Institute of Higher Education and Research - DU, Chennai-600116, Tamil Nadu, India
| | - Shonam Tamrakar
- CEFTE, Sri Ramachandra Institute of Higher Education and Research - DU, Chennai-600116, Tamil Nadu, India
| |
Collapse
|
18
|
Klemann CJHM, Xicoy H, Poelmans G, Bloem BR, Martens GJM, Visser JE. Physical Exercise Modulates L-DOPA-Regulated Molecular Pathways in the MPTP Mouse Model of Parkinson's Disease. Mol Neurobiol 2018; 55:5639-5657. [PMID: 29019056 PMCID: PMC5994219 DOI: 10.1007/s12035-017-0775-0] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2017] [Accepted: 09/15/2017] [Indexed: 12/18/2022]
Abstract
Parkinson's disease (PD) is characterized by the degeneration of dopaminergic (DA) neurons in the substantia nigra pars compacta (SNpc), resulting in motor and non-motor dysfunction. Physical exercise improves these symptoms in PD patients. To explore the molecular mechanisms underlying the beneficial effects of physical exercise, we exposed 1-methyl-4-phenyl-1,2,3,6-tetrahydropyrimidine (MPTP)-treated mice to a four-week physical exercise regimen, and subsequently explored their motor performance and the transcriptome of multiple PD-linked brain areas. MPTP reduced the number of DA neurons in the SNpc, whereas physical exercise improved beam walking, rotarod performance, and motor behavior in the open field. Further, enrichment analyses of the RNA-sequencing data revealed that in the MPTP-treated mice physical exercise predominantly modulated signaling cascades that are regulated by the top upstream regulators L-DOPA, RICTOR, CREB1, or bicuculline/dalfampridine, associated with movement disorders, mitochondrial dysfunction, and epilepsy-related processes. To elucidate the molecular pathways underlying these cascades, we integrated the proteins encoded by the exercise-induced differentially expressed mRNAs for each of the upstream regulators into a molecular landscape, for multiple key brain areas. Most notable was the opposite effect of physical exercise compared to previously reported effects of L-DOPA on the expression of mRNAs in the SN and the ventromedial striatum that are involved in-among other processes-circadian rhythm and signaling involving DA, neuropeptides, and endocannabinoids. Altogether, our findings suggest that physical exercise can improve motor function in PD and may, at the same time, counteract L-DOPA-mediated molecular mechanisms. Further, we hypothesize that physical exercise has the potential to improve non-motor symptoms of PD, some of which may be the result of (chronic) L-DOPA use.
Collapse
Affiliation(s)
- Cornelius J H M Klemann
- Department of Molecular Animal Physiology, Donders Institute for Brain, Cognition and Behaviour, Radboud University, Nijmegen, The Netherlands
| | - Helena Xicoy
- Department of Molecular Animal Physiology, Donders Institute for Brain, Cognition and Behaviour, Radboud University, Nijmegen, The Netherlands
- Department of Cell Biology, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Geert Poelmans
- Department of Molecular Animal Physiology, Donders Institute for Brain, Cognition and Behaviour, Radboud University, Nijmegen, The Netherlands
- Department of Human Genetics, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Bas R Bloem
- Department of Neurology, Donders Institute for Brain, Cognition and Behaviour, Radboud University Medical Center, P.O. Box 9101, 6500 HB, Nijmegen, The Netherlands
| | - Gerard J M Martens
- Department of Molecular Animal Physiology, Donders Institute for Brain, Cognition and Behaviour, Radboud University, Nijmegen, The Netherlands
| | - Jasper E Visser
- Department of Molecular Animal Physiology, Donders Institute for Brain, Cognition and Behaviour, Radboud University, Nijmegen, The Netherlands.
- Department of Neurology, Donders Institute for Brain, Cognition and Behaviour, Radboud University Medical Center, P.O. Box 9101, 6500 HB, Nijmegen, The Netherlands.
- Department of Neurology, Amphia Hospital, Breda, The Netherlands.
| |
Collapse
|
19
|
Ginsenoside Rb1 confers neuroprotection via promotion of glutamate transporters in a mouse model of Parkinson's disease. Neuropharmacology 2018; 131:223-237. [DOI: 10.1016/j.neuropharm.2017.12.012] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2017] [Revised: 11/17/2017] [Accepted: 12/05/2017] [Indexed: 12/18/2022]
|
20
|
Sun Y, Zhang X, Li H, Xu S, Zhang X, Liu Y, Han M, Wen J. Stemazole promotes survival and preserves stemness in human embryonic stem cells. FEBS J 2018; 285:531-541. [PMID: 29222853 DOI: 10.1111/febs.14355] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2017] [Revised: 11/15/2017] [Accepted: 12/05/2017] [Indexed: 12/13/2022]
Abstract
Human embryonic stem cells (hESCs) are extremely delicate, and survive poorly under suboptimal culture conditions, severely restricting long-term studies and practical applications. Thus, a protective agent that promotes stem cell survival is urgently needed. In this study, we evaluated the protective effects of stemazole in single-cell and starved hESC cultures. Colony formation was quantified by alkaline phosphatase and immunofluorescence staining, while apoptosis was assessed by flow cytometry and TUNEL assay. Expression of hESC and other stem cell markers was evaluated by western blot, RT-PCR, and qPCR. We found that stemazole enhanced clonal expansion from single cells in dose-dependent fashion and clearly decreased apoptosis from 54.1% to 25.2%. Furthermore, the drug reduced apoptosis from 43.6% to 8.4% over 15 h of starvation, with 66% of stemazole-treated cells remaining viable after 2 weeks of starvation. Importantly, starved cells protected with stemazole retained the same proliferation and differentiation properties as cells in normal culture. In conclusion, stemazole significantly promotes survival of stem cells in single-cell or starvation cultures without compromising stemness and pluripotency.
Collapse
Affiliation(s)
- Ying Sun
- Department of Cell Biology, Stem Cell Research Center, School of Basic Medical Sciences, Peking University Health Science Center, China.,Key Laboratory of Radiopharmaceuticals, Ministry of Education, College of Chemistry, Beijing Normal University, China
| | - Xiaoyan Zhang
- Department of Cell Biology, Stem Cell Research Center, School of Basic Medical Sciences, Peking University Health Science Center, China
| | - Huajun Li
- Key Laboratory of Radiopharmaceuticals, Ministry of Education, College of Chemistry, Beijing Normal University, China
| | - Shasha Xu
- Key Laboratory of Radiopharmaceuticals, Ministry of Education, College of Chemistry, Beijing Normal University, China
| | - Xiaoyan Zhang
- Key Laboratory of Cell Proliferation and Regulation Biology, Ministry of Education, Beijing Normal University, China
| | - Yinan Liu
- Department of Cell Biology, Stem Cell Research Center, School of Basic Medical Sciences, Peking University Health Science Center, China
| | - Mei Han
- Key Laboratory of Radiopharmaceuticals, Ministry of Education, College of Chemistry, Beijing Normal University, China
| | - Jinhua Wen
- Department of Cell Biology, Stem Cell Research Center, School of Basic Medical Sciences, Peking University Health Science Center, China
| |
Collapse
|
21
|
Abstract
1-Methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) mouse model remains the most commonly used animal model of Parkinson's disease (PD). There are three MPTP-treatment schemes: acute, subacute and chronic. Considering the advantages of the period and similarity to PD, the subacute model was often chosen to assess the validity of new candidates, but the changes caused by the subacute MPTP treatment and the appropriate positive control for this model remain to be further confirmed. The aim of this study was: to estimate the value of the subacute MPTP mouse model in aspects of behavioral performance, biochemical changes and pathological abnormalities, and to find effective positive drugs. Male C57BL/6 mice were injected with MPTP (30 mg·kg-1·d-1, ip) for 5 consecutive days. Three days before MPTP injection, the mice were orally administered selegiline (3 mg·kg-1·d-1), pramipexole (3 mg·kg-1·d-1), or medopar (100 mg·kg-1·d-1) for 18 days. Behavioral performance was assessed in the open field test, pole test and rotarod test. Neurotransmitters in the striatum were detected using HPLC. Protein levels were measured by Western blot. Pathological characteristics were examined by immunohistochemistry. Ultrastructure changes were observed by electron microscopy. The subacute MPTP treatment did not induce evident motor defects despite severe injuries in the dopaminergic system. Additionally, MPTP significantly increased the α-synuclein levels and the number of astrocytes in the striatum, and destroyed the blood-brain barrier (BBB) in the substantia nigra pars compacta. Both selegiline and pramipexole were able to protect the mice against MPTP injuries. We conclude that the subacute MPTP mouse model does not show visible motor defects; it is not enough to evaluate the validity of a candidate just based on behavioral examination, much attention should also be paid to the alterations in neurotransmitters, astrocytes, α-synuclein and the BBB. In addition, selegiline or pramipexole is a better choice than medopar as an effective positive control for the subacute MPTP model.
Collapse
|
22
|
Shao S, Wang GL, Raymond C, Deng XH, Zhu XL, Wang D, Hong LP. Activation of Sonic hedgehog signal by Purmorphamine, in a mouse model of Parkinson's disease, protects dopaminergic neurons and attenuates inflammatory response by mediating PI3K/AKt signaling pathway. Mol Med Rep 2017. [PMID: 28627590 PMCID: PMC5562000 DOI: 10.3892/mmr.2017.6751] [Citation(s) in RCA: 42] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
In Parkinson's disease (PD), microglial activation-mediated neuroinflammation is associated with dopaminergic neurons degeneration in the substantia nigra pars compacta. Previous studies that have investigated this neurodegenerative disease have reported that the Sonic hedgehog (SHH) signaling pathway, through inhibiting the inflammatory processes, exerts a beneficial neuroprotective effect. However, the mechanisms underlying the anti-inflammatory and neuroprotective effects of this signaling pathway remain poorly understood. The present study aimed to further investigate these mechanisms in vitro and in vivo. At first, BV2 microglial cells treated with lipopolysaccharide (LPS) were used to induce an inflammatory response. It was observed that the activation of SHH signaling by Purmorphamine attenuated the LPS-induced inflammatory response, increased the expression of transforming growth factor-β1 through the phosphatidylinositol 3-kinase (PI3K)/AKT serine/threonine kinase (Akt) intracellular signaling pathway and inhibited nuclear receptor subfamily 4 group A member 2, independently of the PI3K/Akt signaling pathway. Furthermore, the blockade of the PI3K/Akt signaling pathway by intranasal administration of LY294002, significantly reduced the SHH-associated neuroprotective effects on dopaminergic neurons, improved motor functions, and increased the microglial activation and inflammatory response in a mouse model of PD induced using 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine. In conclusion, the data of the present study reported that anti-inflammatory and neuroprotective effects can be obtained in BV2 microglial cells and in a mouse model of PD by successive activation of the SHH and PI3K/Akt signaling pathways.
Collapse
Affiliation(s)
- Shuai Shao
- Department of Anatomy, Guangzhou Medical University, Guangzhou, Guangdong 511436, P.R. China
| | - Guang-Liang Wang
- Department of Histology and Embryology, Guangzhou Medical University, Guangzhou, Guangdong 511436, P.R. China
| | - Cespuglio Raymond
- Neuroscience Research Center of Lyon (CRNL), Neurochem, Claude Bernard University, F-69373 Lyon, France
| | - Xue-Hua Deng
- Department of Anatomy, Guangzhou Medical University, Guangzhou, Guangdong 511436, P.R. China
| | - Xiao-Lan Zhu
- Department of Anatomy, Guangzhou Medical University, Guangzhou, Guangdong 511436, P.R. China
| | - Di Wang
- The Second Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong 511436, P.R. China
| | - Le-Peng Hong
- Department of Anatomy, Guangzhou Medical University, Guangzhou, Guangdong 511436, P.R. China
| |
Collapse
|
23
|
Gleitz HFE, O’Leary C, Holley RJ, Bigger BW. Identification of age-dependent motor and neuropsychological behavioural abnormalities in a mouse model of Mucopolysaccharidosis Type II. PLoS One 2017; 12:e0172435. [PMID: 28207863 PMCID: PMC5313159 DOI: 10.1371/journal.pone.0172435] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2016] [Accepted: 02/04/2017] [Indexed: 12/22/2022] Open
Abstract
Severe mucopolysaccharidosis type II (MPS II) is a progressive lysosomal storage disease caused by mutations in the IDS gene, leading to a deficiency in the iduronate-2-sulfatase enzyme that is involved in heparan sulphate and dermatan sulphate catabolism. In constitutive form, MPS II is a multi-system disease characterised by progressive neurocognitive decline, severe skeletal abnormalities and hepatosplenomegaly. Although enzyme replacement therapy has been approved for treatment of peripheral organs, no therapy effectively treats the cognitive symptoms of the disease and novel therapies are in development to remediate this. Therapeutic efficacy and subsequent validation can be assessed using a variety of outcome measures that are translatable to clinical practice, such as behavioural measures. We sought to consolidate current knowledge of the cognitive, skeletal and motor abnormalities present in the MPS II mouse model by performing time course behavioural examinations of working memory, anxiety, activity levels, sociability and coordination and balance, up to 8 months of age. Cognitive decline associated with alterations in spatial working memory is detectable at 8 months of age in MPS II mice using spontaneous alternation, together with an altered response to novel environments and anxiolytic behaviour in the open-field. Coordination and balance on the accelerating rotarod were also significantly worse at 8 months, and may be associated with skeletal changes seen in MPS II mice. We demonstrate that the progressive nature of MPS II disease is also seen in the mouse model, and that cognitive and motor differences are detectable at 8 months of age using spontaneous alternation, the accelerating rotarod and the open-field tests. This study establishes neurological, motor and skeletal measures for use in pre-clinical studies to develop therapeutic approaches in MPS II.
Collapse
Affiliation(s)
- Hélène F. E. Gleitz
- Stem Cell & Neurotherapies, Division of Cell Matrix Biology & Regenerative Medicine, Faculty of Biology, Medicine and Health, The University of Manchester, Manchester, United Kingdom
| | - Claire O’Leary
- Stem Cell & Neurotherapies, Division of Cell Matrix Biology & Regenerative Medicine, Faculty of Biology, Medicine and Health, The University of Manchester, Manchester, United Kingdom
| | - Rebecca J. Holley
- Stem Cell & Neurotherapies, Division of Cell Matrix Biology & Regenerative Medicine, Faculty of Biology, Medicine and Health, The University of Manchester, Manchester, United Kingdom
| | - Brian W. Bigger
- Stem Cell & Neurotherapies, Division of Cell Matrix Biology & Regenerative Medicine, Faculty of Biology, Medicine and Health, The University of Manchester, Manchester, United Kingdom
- * E-mail:
| |
Collapse
|
24
|
Cao Q, Qin L, Huang F, Wang X, Yang L, Shi H, Wu H, Zhang B, Chen Z, Wu X. Amentoflavone protects dopaminergic neurons in MPTP-induced Parkinson's disease model mice through PI3K/Akt and ERK signaling pathways. Toxicol Appl Pharmacol 2017; 319:80-90. [PMID: 28185818 DOI: 10.1016/j.taap.2017.01.019] [Citation(s) in RCA: 95] [Impact Index Per Article: 11.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2016] [Revised: 01/23/2017] [Accepted: 01/27/2017] [Indexed: 12/24/2022]
Abstract
Parkinson's disease (PD) is characterized by the progressive degeneration of dopaminergic neurons in substantia nigra pars compacta (SNpc). Mitochondrial dysfunction and cell apoptosis are suggested to be actively involved in the pathogenesis of PD. In the present study, the neuroprotective effect of amentoflavone (AF), a naturally occurring biflavonoid from Selaginella tamariscina, was examined in PD models both in vitro and in vivo. On SH-SY5Y cells, AF treatment dose-dependently reduced 1-methyl-4-phenylpyridinium (MPP+)-induced nuclear condensation and loss of cell viability without obvious cytotoxicity. It inhibited the activation of caspase-3 and p21 but increased the Bcl-2/Bax ratio. Further study disclosed that AF enhanced the phosphorylation of PI3K, Akt and ERK1/2 down-regulated by MPP+ in SH-SY5Y cells, the effect of which could be blocked by LY294002, the inhibitor of PI3K. Consistently, AF alleviated the behavioral deterioration in pole and traction tests and rescued the loss of dopaminergic neurons in SNpc and fibers in striatum in methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) induced mice. It also could enhance the activation of PI3K and Akt as well as Bcl-2/Bax ratio in SN. Moreover, AF alleviated gliosis as well as the gene expression levels of IL-1β and iNOS in SN. Collectively, these results suggested that AF protected dopaminergic neurons against MPTP/MPP+-induced neurotoxicity, which might be mediated through activation of PI3K/Akt and ERK signaling pathways in dopaminergic neurons and attenuation of neuroinflammation.
Collapse
Affiliation(s)
- Qin Cao
- The Ministry of Education (MOE) Key Laboratory for Standardization of Chinese Medicines, Shanghai Key Laboratory of Complex Prescriptions, Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, 1200 Cailun Road, Shanghai, China
| | - Liyue Qin
- The Ministry of Education (MOE) Key Laboratory for Standardization of Chinese Medicines, Shanghai Key Laboratory of Complex Prescriptions, Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, 1200 Cailun Road, Shanghai, China
| | - Fei Huang
- The Ministry of Education (MOE) Key Laboratory for Standardization of Chinese Medicines, Shanghai Key Laboratory of Complex Prescriptions, Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, 1200 Cailun Road, Shanghai, China.
| | - Xiaoshuang Wang
- The Ministry of Education (MOE) Key Laboratory for Standardization of Chinese Medicines, Shanghai Key Laboratory of Complex Prescriptions, Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, 1200 Cailun Road, Shanghai, China
| | - Liu Yang
- The Ministry of Education (MOE) Key Laboratory for Standardization of Chinese Medicines, Shanghai Key Laboratory of Complex Prescriptions, Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, 1200 Cailun Road, Shanghai, China
| | - Hailian Shi
- The Ministry of Education (MOE) Key Laboratory for Standardization of Chinese Medicines, Shanghai Key Laboratory of Complex Prescriptions, Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, 1200 Cailun Road, Shanghai, China
| | - Hui Wu
- The Ministry of Education (MOE) Key Laboratory for Standardization of Chinese Medicines, Shanghai Key Laboratory of Complex Prescriptions, Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, 1200 Cailun Road, Shanghai, China
| | - Beibei Zhang
- The Ministry of Education (MOE) Key Laboratory for Standardization of Chinese Medicines, Shanghai Key Laboratory of Complex Prescriptions, Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, 1200 Cailun Road, Shanghai, China
| | - Ziyu Chen
- The Ministry of Education (MOE) Key Laboratory for Standardization of Chinese Medicines, Shanghai Key Laboratory of Complex Prescriptions, Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, 1200 Cailun Road, Shanghai, China
| | - Xiaojun Wu
- The Ministry of Education (MOE) Key Laboratory for Standardization of Chinese Medicines, Shanghai Key Laboratory of Complex Prescriptions, Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, 1200 Cailun Road, Shanghai, China.
| |
Collapse
|
25
|
Lin CY, Hsieh HY, Chen CM, Wu SR, Tsai CH, Huang CY, Hua MY, Wei KC, Yeh CK, Liu HL. Non-invasive, neuron-specific gene therapy by focused ultrasound-induced blood-brain barrier opening in Parkinson's disease mouse model. J Control Release 2016; 235:72-81. [DOI: 10.1016/j.jconrel.2016.05.052] [Citation(s) in RCA: 70] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2016] [Revised: 04/28/2016] [Accepted: 05/24/2016] [Indexed: 02/01/2023]
|
26
|
Redox Imbalance and Viral Infections in Neurodegenerative Diseases. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2016; 2016:6547248. [PMID: 27110325 PMCID: PMC4826696 DOI: 10.1155/2016/6547248] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/03/2015] [Revised: 03/07/2016] [Accepted: 03/10/2016] [Indexed: 12/12/2022]
Abstract
Reactive oxygen species (ROS) are essential molecules for many physiological functions and act as second messengers in a large variety of tissues. An imbalance in the production and elimination of ROS is associated with human diseases including neurodegenerative disorders. In the last years the notion that neurodegenerative diseases are accompanied by chronic viral infections, which may result in an increase of neurodegenerative diseases progression, emerged. It is known in literature that enhanced viral infection risk, observed during neurodegeneration, is partly due to the increase of ROS accumulation in brain cells. However, the molecular mechanisms of viral infection, occurring during the progression of neurodegeneration, remain unclear. In this review, we discuss the recent knowledge regarding the role of influenza, herpes simplex virus type-1, and retroviruses infection in ROS/RNS-mediated Parkinson's disease (PD), Alzheimer's disease (AD), and amyotrophic lateral sclerosis (ALS).
Collapse
|