1
|
Hayashi T, Kanno SI, Watanabe C, Scuteri D, Agatsuma Y, Hara A, Bagetta G, Sakurada T, Sakurada S. Role of Spinal Cholecystokinin Octapeptide, Nociceptin/Orphanin FQ, and Hemokinin-1 in Diabetic Allodynia. Biomedicines 2024; 12:1332. [PMID: 38927539 PMCID: PMC11202074 DOI: 10.3390/biomedicines12061332] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2024] [Revised: 06/12/2024] [Accepted: 06/14/2024] [Indexed: 06/28/2024] Open
Abstract
A complication of diabetes is neuropathic pain, which is difficult to control with medication. We have confirmed that neuropathic pain due to mechanical allodynia in diabetic mice is mediated by a characteristic neuropeptide in the spinal cord. We evaluated the strength of mechanical allodynia in mice using von Frey filaments. When mice were intravenously injected with streptozotocin, mechanical allodynia appeared 3 days later. Antibodies of representative neuropeptides were intrathecally (i.t.) administered to allodynia-induced mice 7 days after the intravenous administration of streptozotocin, and allodynia was reduced by anti-cholecystokinin octapeptide antibodies, anti-nociceptin/orphanin FQ antibodies, and anti-hemokinin-1 antibodies. In contrast, i.t.-administered anti-substance P antibodies, anti-somatostatin antibodies, and anti-angiotensin II antibodies did not affect streptozotocin-induced diabetic allodynia mice. Mechanical allodynia was attenuated by the i.t. administration of CCK-B receptor antagonists and ORL-1 receptor antagonists. The mRNA level of CCK-B receptors in streptozotocin-induced diabetic allodynia mice increased in the spinal cord, but not in the dorsal root ganglion. These results indicate that diabetic allodynia is caused by cholecystokinin octapeptide, nociceptin/orphanin FQ, and hemokinin-1 released from primary afferent neurons in the spinal cord that transmit pain to the brain via the spinal dorsal horn.
Collapse
Affiliation(s)
- Takafumi Hayashi
- Division of Pharmaceutics, Faculty of Pharmaceutical Sciences, Tohoku Medical and Pharmaceutical University, Sendai 981-8558, Japan; (T.H.); (Y.A.)
| | - Syu-ichi Kanno
- Division of Clinical Pharmacotherapeutics, Faculty of Pharmaceutical Sciences, Tohoku Medical and Pharmaceutical University, Sendai 981-8558, Japan; (S.-i.K.); (A.H.)
| | - Chizuko Watanabe
- Division of Physiology and Anatomy, Faculty of Pharmaceutical Sciences, Tohoku Medical and Pharmaceutical University, Sendai 981-8558, Japan;
| | - Damiana Scuteri
- Department of Health Sciences, University “Magna Graecia” of Catanzaro, 88100 Catanzaro, Italy;
| | - Yasuyuki Agatsuma
- Division of Pharmaceutics, Faculty of Pharmaceutical Sciences, Tohoku Medical and Pharmaceutical University, Sendai 981-8558, Japan; (T.H.); (Y.A.)
| | - Akiyoshi Hara
- Division of Clinical Pharmacotherapeutics, Faculty of Pharmaceutical Sciences, Tohoku Medical and Pharmaceutical University, Sendai 981-8558, Japan; (S.-i.K.); (A.H.)
| | - Giacinto Bagetta
- Pharmacotechnology Documentation & Transfer Unit, Department of Pharmacy, Preclinical & Translational Pharmacology, Health & Nutritional Sciences, University of Calabria, 87036 Rende, Italy;
| | - Tsukasa Sakurada
- Faculty of Pharmacy, Daiichi University of Pharmacy, Fukuoka 815-8511, Japan;
| | - Shinobu Sakurada
- Faculty of Pharmaceutical Sciences, Tohoku Medical and Pharmaceutical University, Sendai 981-8558, Japan
| |
Collapse
|
2
|
Nishimori N, Toyoshima S, Sasaki-Sakamoto T, Hayama K, Terui T, Okayama Y. Serum level of hemokinin-1 is significantly lower in patients with chronic spontaneous urticaria than in healthy subjects. Allergol Int 2021; 70:480-488. [PMID: 34090787 DOI: 10.1016/j.alit.2021.05.002] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2021] [Revised: 03/29/2021] [Accepted: 04/07/2021] [Indexed: 12/09/2022] Open
Abstract
BACKGROUND We previously reported upregulation of expression of Mas-related G protein-coupled receptor X2 (MRGPRX2) on mast cells (MCs) in the skin of patients with severe chronic spontaneous urticaria (CSU). Serum levels of substance P (SP) were reportedly significantly elevated, in correlation with the severity of CSU. Hemokinin-1 (HK-1) reportedly induced histamine release from LAD2 cells via MRGPRX2. We aimed to investigate HK-1's role in CSU. METHODS The concentrations of HK-1 and SP were measured using ELISAs. Skin- and synovium-derived cultured MCs were generated by culturing dispersed skin and synovial cells, respectively, with stem cell factor. MRGPRX2 expression in the MCs was reduced using a lentiviral shRNA silencing technique. RESULTS Anti-SP Ab used in the SP ELISA showed 100% cross-reactivity to HK-1, but anti-HK-1 Ab showed 0% cross-reactivity to SP. The serum level of HK-1 was significantly lower in patients with CSU (n = 151) than in non-atopic healthy control (NC) subjects (n = 114). The EC50 of histamine release from MCs induced by HK-1 (5056 nM) was 12-fold higher than by SP (426 nM). Brief pretreatment of MCs with HK-1 at concentrations of 3.0-10 μM significantly reduced histamine release by 0.1 μM SP. However, brief incubation of MCs with HK-1 did not elicit rapid MRGPRX2 internalization. CONCLUSIONS In NC subjects, high HK-1 concentrations may desensitize MGRPRX2-mediated MC activation, thereby preventing MC degranulation by SP.
Collapse
|
3
|
Borbély É, Hunyady Á, Pohóczky K, Payrits M, Botz B, Mócsai A, Berger A, Szőke É, Helyes Z. Hemokinin-1 as a Mediator of Arthritis-Related Pain via Direct Activation of Primary Sensory Neurons. Front Pharmacol 2021; 11:594479. [PMID: 33519457 PMCID: PMC7839295 DOI: 10.3389/fphar.2020.594479] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2020] [Accepted: 12/09/2020] [Indexed: 01/17/2023] Open
Abstract
The tachykinin hemokinin-1 (HK-1) is involved in immune cell development and inflammation, but little is known about its function in pain. It acts through the NK1 tachykinin receptor, but several effects are mediated by a yet unidentified target. Therefore, we investigated the role and mechanism of action of HK-1 in arthritis models of distinct mechanisms with special emphasis on pain. Arthritis was induced by i.p. K/BxN serum (passive transfer of inflammatory cytokines, autoantibodies), intra-articular mast cell tryptase or Complete Freund's Adjuvant (CFA, active immunization) in wild type, HK-1- and NK1-deficient mice. Mechanical- and heat hyperalgesia determined by dynamic plantar esthesiometry and increasing temperature hot plate, respectively, swelling measured by plethysmometry or micrometry were significantly reduced in HK-1-deleted, but not NK1-deficient mice in all models. K/BxN serum-induced histopathological changes (day 14) were also decreased, but early myeloperoxidase activity detected by luminescent in vivo imaging increased in HK-1-deleted mice similarly to the CFA model. However, vasodilation and plasma protein extravasation determined by laser Speckle and fluorescent imaging, respectively, were not altered by HK-1 deficiency in any models. HK-1 induced Ca2+-influx in primary sensory neurons, which was also seen in NK1-deficient cells and after pertussis toxin-pretreatment, but not in extracellular Ca2+-free medium. These are the first results showing that HK-1 mediates arthritic pain and cellular, but not vascular inflammatory mechanisms, independently of NK1 activation. HK-1 activates primary sensory neurons presumably via Ca2+ channel-linked receptor. Identifying its target opens new directions to understand joint pain leading to novel therapeutic opportunities.
Collapse
Affiliation(s)
- Éva Borbély
- János Szentágothai Research Centre and Centre for Neuroscience, University of Pécs, Pécs, Hungary
- Department of Pharmacology and Pharmacotherapy, Medical School, University of Pécs, Pécs, Hungary
| | - Ágnes Hunyady
- János Szentágothai Research Centre and Centre for Neuroscience, University of Pécs, Pécs, Hungary
- Department of Pharmacology and Pharmacotherapy, Medical School, University of Pécs, Pécs, Hungary
| | - Krisztina Pohóczky
- János Szentágothai Research Centre and Centre for Neuroscience, University of Pécs, Pécs, Hungary
- Department of Pharmacology and Pharmacotherapy, Medical School, University of Pécs, Pécs, Hungary
- Department of Pharmacology, Faculty of Pharmacy, University of Pécs, Pécs, Hungary
| | - Maja Payrits
- János Szentágothai Research Centre and Centre for Neuroscience, University of Pécs, Pécs, Hungary
- Department of Pharmacology and Pharmacotherapy, Medical School, University of Pécs, Pécs, Hungary
| | - Bálint Botz
- János Szentágothai Research Centre and Centre for Neuroscience, University of Pécs, Pécs, Hungary
- Department of Medical Imaging, Medical School, University of Pécs, Pécs, Hungary
| | - Attila Mócsai
- Department of Physiology, Semmelweis University, Budapest, Hungary
| | - Alexandra Berger
- Princess Margaret Cancer Centre, University Health Network, Toronto, ON, Canada
| | - Éva Szőke
- János Szentágothai Research Centre and Centre for Neuroscience, University of Pécs, Pécs, Hungary
- Department of Pharmacology and Pharmacotherapy, Medical School, University of Pécs, Pécs, Hungary
| | - Zsuzsanna Helyes
- János Szentágothai Research Centre and Centre for Neuroscience, University of Pécs, Pécs, Hungary
- Department of Pharmacology and Pharmacotherapy, Medical School, University of Pécs, Pécs, Hungary
- PharmInVivo Ltd., Pécs, Hungary
| |
Collapse
|
4
|
Hunyady Á, Hajna Z, Gubányi T, Scheich B, Kemény Á, Gaszner B, Borbély É, Helyes Z. Hemokinin-1 is an important mediator of pain in mouse models of neuropathic and inflammatory mechanisms. Brain Res Bull 2019; 147:165-173. [PMID: 30664920 DOI: 10.1016/j.brainresbull.2019.01.015] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2018] [Revised: 01/11/2019] [Accepted: 01/14/2019] [Indexed: 01/15/2023]
Abstract
The Tac4 gene-derived hemokinin-1 (HK-1) is present in pain-related regions and activates the tachykinin NK1 receptor, but with binding site and signaling pathways different from Substance P (SP). NK1 receptor is involved in nociception, but our earlier data showed that it has no role in chronic neuropathic hyperalgesia, similarly to SP. Furthermore, NK1 antagonists failed in clinical trials as analgesics due to still unknown reasons. Therefore, we investigated the role of HK-1 in pain conditions of distinct mechanisms using genetically modified mice. Chronic neuropathic mechanical and cold hyperalgesia after partial sciatic nerve ligation (PSL) were determined by dynamic plantar aesthesiometry and withdrawal latency from icy water, motor coordination on the accelerating Rotarod. Peripheral nerve growth factor (NGF) production was measured by ELISA, neuronal and glia cell activation by immunohistochemistry in pain-related regions. Acute somatic and visceral chemonocifensive behaviors were assessed after intraplantar formalin or intraperitoneal acetic-acid injection, respectively. Resiniferatoxin-induced inflammatory mechanical and thermal hyperalgesia by aesthesiometry and increasing temperature hot plate. Chronic neuropathic mechanical and cold hypersensitivity were significantly decreased in HK-1 deficient mice. NGF level in the paw homogenates of intact mice were significantly lower in case of HK-1 deletion. However, it significantly increased under neuropathic condition in contrast to wildtype mice, where the higher basal concentration did not show any changes. Microglia, but not astrocyte activation was observed 14 days after PSL in the ipsilateral spinal dorsal horn of wildtype, but not HK-1-deficient mice. However, under neuropathic conditions, the number of GFAP-positive astrocytes was significantly smaller in case of HK-1 deletion. Acute visceral, but not somatic nocifensive behavior, as well as neurogenic inflammatory mechanical and thermal hypersensitivity were significantly reduced by HK-1 deficiency similarly to NK1, but not to SP deletion. We provide evidence for pro-nociceptive role of HK-1, via NK1 receptor activation in acute inflammation models, but differently from SP-mediated actions. Identification of its targets and signaling can open new directions in pain research.
Collapse
Affiliation(s)
- Ágnes Hunyady
- Department of Pharmacology and Pharmacotherapy, Medical School, University of Pécs, Hungary; János Szentágothai Research Centre, Centre for Neuroscience, University of Pécs, Hungary
| | - Zsófia Hajna
- Department of Pharmacology and Pharmacotherapy, Medical School, University of Pécs, Hungary; János Szentágothai Research Centre, Centre for Neuroscience, University of Pécs, Hungary
| | - Tímea Gubányi
- Department of Pharmacology and Pharmacotherapy, Medical School, University of Pécs, Hungary; János Szentágothai Research Centre, Centre for Neuroscience, University of Pécs, Hungary
| | - Bálint Scheich
- Department of Pharmacology and Pharmacotherapy, Medical School, University of Pécs, Hungary; János Szentágothai Research Centre, Centre for Neuroscience, University of Pécs, Hungary
| | - Ágnes Kemény
- Department of Pharmacology and Pharmacotherapy, Medical School, University of Pécs, Hungary; János Szentágothai Research Centre, Centre for Neuroscience, University of Pécs, Hungary; Department of Medical Biology, Medical School, University of Pécs, Hungary
| | - Balázs Gaszner
- Department of Anatomy, Medical School, University of Pécs, Hungary
| | - Éva Borbély
- Department of Pharmacology and Pharmacotherapy, Medical School, University of Pécs, Hungary; János Szentágothai Research Centre, Centre for Neuroscience, University of Pécs, Hungary
| | - Zsuzsanna Helyes
- Department of Pharmacology and Pharmacotherapy, Medical School, University of Pécs, Hungary; János Szentágothai Research Centre, Centre for Neuroscience, University of Pécs, Hungary.
| |
Collapse
|
5
|
Choi SR, Roh DH, Yoon SY, Choi HS, Kang SY, Han HJ, Beitz AJ, Lee JH. Astrocyte D-serine modulates the activation of neuronal NOS leading to the development of mechanical allodynia in peripheral neuropathy. Mol Pain 2019; 15:1744806919843046. [PMID: 30900515 PMCID: PMC6495448 DOI: 10.1177/1744806919843046] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2018] [Revised: 02/07/2019] [Accepted: 03/07/2019] [Indexed: 12/20/2022] Open
Abstract
Spinal D-serine plays an important role in nociception via an increase in phosphorylation of the N-Methyl-D-aspartate (NMDA) receptor GluN1 subunit (pGluN1). However, the cellular mechanisms underlying this process have not been elucidated. Here, we investigate the possible role of neuronal nitric oxide synthase (nNOS) in the D-serine-induced potentiation of NMDA receptor function and the induction of neuropathic pain in a chronic constriction injury (CCI) model. Intrathecal administration of the serine racemase inhibitor, L-serine O-sulfate potassium salt (LSOS) or the D-serine degrading enzyme, D-amino acid oxidase (DAAO) on post-operative days 0-3 significantly reduced the CCI-induced increase in nitric oxide (NO) levels and nicotinamide adenine dinucleotide phosphate-diaphorase staining in lumbar dorsal horn neurons, as well as the CCI-induced decrease in phosphorylation (Ser847) of nNOS (pnNOS) on day 3 post-CCI surgery. LSOS or DAAO administration suppressed the CCI-induced development of mechanical allodynia and protein kinase C (PKC)-dependent (Ser896) phosphorylation of GluN1 on day 3 post-surgery, which were reversed by the co-administration of the NO donor, 3-morpholinosydnonimine hydrochloride (SIN-1). In naïve mice, exogenous D-serine increased NO levels via decreases in pnNOS. D-serine-induced increases in mechanical hypersensitivity, NO levels, PKC-dependent pGluN1, and NMDA-induced spontaneous nociception were reduced by pretreatment with the nNOS inhibitor, 7-nitroindazole or with the NMDA receptor antagonists, 7-chlorokynurenic acid and MK-801. Collectively, we show that spinal D-serine modulates nNOS activity and concomitant NO production leading to increases in PKC-dependent pGluN1 and ultimately contributing to the induction of mechanical allodynia following peripheral nerve injury.
Collapse
Affiliation(s)
- Sheu-Ran Choi
- Department of Veterinary Physiology, BK21 PLUS Program for Creative Veterinary Science Research, Research Institute for Veterinary Science and College of Veterinary Medicine, Seoul National University, Seoul, Republic of Korea
| | - Dae-Hyun Roh
- Department of Maxillofacial Tissue Regeneration and Research Center for Tooth and Periodontal Tissue Regeneration, School of Dentistry, Kyung Hee University, Seoul, Republic of Korea
| | - Seo-Yeon Yoon
- College of Korean Medicine, Dongshin University, Naju, Republic of Korea
| | - Hoon-Seong Choi
- Research Animal Resource Center, Korea Institute of Science and Technology, Seoul, Republic of Korea
| | - Suk-Yun Kang
- KM Fundamental Research Division, Korea Institute of Oriental Medicine, Daejeon, Republic of Korea
| | - Ho-Jae Han
- Department of Veterinary Physiology, BK21 PLUS Program for Creative Veterinary Science Research, Research Institute for Veterinary Science and College of Veterinary Medicine, Seoul National University, Seoul, Republic of Korea
| | - Alvin James Beitz
- Department of Veterinary and Biomedical Sciences, College of Veterinary Medicine, University of Minnesota, St Paul, MN, USA
| | - Jang-Hern Lee
- Department of Veterinary Physiology, BK21 PLUS Program for Creative Veterinary Science Research, Research Institute for Veterinary Science and College of Veterinary Medicine, Seoul National University, Seoul, Republic of Korea
| |
Collapse
|
6
|
Deliconstantinos G, Barton S, Soloviev M, Page N. Mouse Hemokinin-1 Decapeptide Subjected to a Brain-specific Post-translational Modification. ACTA ACUST UNITED AC 2017; 31:991-998. [PMID: 28882971 DOI: 10.21873/invivo.11159] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2017] [Revised: 08/03/2017] [Accepted: 08/04/2017] [Indexed: 11/10/2022]
Abstract
BACKGROUND/AIM The tachykinin mouse hemokinin-1, expressed by the mouse Tac4 gene, produces either analgesia or nociception, interacting with the neurokinin 1 receptor. TAC4 precursor processing is not identical to the processing of the TAC1 precursor, for the release of substance P (amidated undecapeptide). The characterization of the mouse hemokinin-1 sequence was required. MATERIALS AND METHODS We developed anti-tachykinin-specific antibodies for the immunoaffinity purification of tachykinins. RESULTS Using MALDI-ToF, we identified mouse hemokinin-1 as an amidated decapeptide expressed in murine brain and periphery. Furthermore, we interestingly observed an additional mass peak corresponding to acetylated mouse hemokinin-1 and this post-translational modification is brain-specific, not detected in the periphery. CONCLUSION We suggest that the N-terminal acetylation of the peptide provides greater potency for ligand-receptor interactions during neural cell signaling.
Collapse
Affiliation(s)
| | - Stephen Barton
- School of Pharmacy & Chemistry, Kingston University, London, U.K
| | - Mikhail Soloviev
- School of Biological Sciences, Royal Holloway University of London, London, U.K
| | - Nigel Page
- School of Life Sciences, Kingston University, London, U.K
| |
Collapse
|
7
|
Borbély É, Helyes Z. Role of hemokinin-1 in health and disease. Neuropeptides 2017; 64:9-17. [PMID: 27993375 DOI: 10.1016/j.npep.2016.12.003] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/30/2016] [Revised: 12/10/2016] [Accepted: 12/12/2016] [Indexed: 01/16/2023]
Abstract
Hemokinin-1 (HK-1), the newest tachykinin encoded by the Tac4 gene was discovered in 2000. Its name differs from that of the other members of this peptide family due to its first demonstration in B lymphocytes. Since tachykinins are classically found in the nervous system, the significant expression of HK-1 in blood cells is a unique feature of this peptide. Due to its widespread distribution in the whole body, HK-1 is involved in different physiological and pathophysiological functions involving pain inflammation modulation, immune regulation, respiratory and endocrine functions, as well as tumor genesis. Furthermore, despite the great structural and immunological similarities to substance P (SP), the functions of HK-1 are often different or the opposite. They both have the highest affinity to the tachykinin NK1 receptor, but HK-1 is likely to have a distinct binding site and signalling pathways. Moreover, several actions of HK-1 different from SP have been suggested to be mediated via a presently not identified own receptor/target molecule. Therefore, it is very important to explore its effects at different levels and compare its characteristics with SP to get a deeper insight in the different cellular mechanisms. Since HK-1 has recently been in the focus of intensive research, in the present review we summarize the few clinical data and experimental results regarding HK-1 expression and function in different model systems obtained throughout the 16years of its history. Synthesizing these findings help to understand the complexity of HK-1 actions and determine its biomarker values and/or drug development potentials.
Collapse
Affiliation(s)
- Éva Borbély
- Department of Pharmacology and Pharmacotherapy, Medical School, University of Pécs, Hungary; Molecular Pharmacology Research Group, János Szentágothai Research Centre, Centre for Neuroscience, University of Pécs, Hungary.
| | - Zsuzsanna Helyes
- Department of Pharmacology and Pharmacotherapy, Medical School, University of Pécs, Hungary; Molecular Pharmacology Research Group, János Szentágothai Research Centre, Centre for Neuroscience, University of Pécs, Hungary; MTA-PTE NAP B Chronic Pain Research Group, Hungary
| |
Collapse
|