1
|
Nishimura H, Yoshimura M, Shimizu M, Sanada K, Sonoda S, Nishimura K, Baba K, Ikeda N, Motojima Y, Maruyama T, Nonaka Y, Baba R, Onaka T, Horishita T, Morimoto H, Yoshida Y, Kawasaki M, Sakai A, Muratani M, Conway-Campbell B, Lightman S, Ueta Y. Endogenous oxytocin exerts anti-nociceptive and anti-inflammatory effects in rats. Commun Biol 2022; 5:907. [PMID: 36064593 PMCID: PMC9445084 DOI: 10.1038/s42003-022-03879-8] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2022] [Accepted: 08/23/2022] [Indexed: 12/26/2022] Open
Abstract
Oxytocin is involved in pain transmission, although the detailed mechanism is not fully understood. Here, we generate a transgenic rat line that expresses human muscarinic acetylcholine receptors (hM3Dq) and mCherry in oxytocin neurons. We report that clozapine-N-oxide (CNO) treatment of our oxytocin-hM3Dq-mCherry rats exclusively activates oxytocin neurons within the supraoptic and paraventricular nuclei, leading to activation of neurons in the locus coeruleus (LC) and dorsal raphe nucleus (DR), and differential gene expression in GABA-ergic neurons in the L5 spinal dorsal horn. Hyperalgesia, which is robustly exacerbated in experimental pain models, is significantly attenuated after CNO injection. The analgesic effects of CNO are ablated by co-treatment with oxytocin receptor antagonist. Endogenous oxytocin also exerts anti-inflammatory effects via activation of the hypothalamus-pituitary-adrenal axis. Moreover, inhibition of mast cell degranulation is found to be involved in the response. Taken together, our results suggest that oxytocin may exert anti-nociceptive and anti-inflammatory effects via both neuronal and humoral pathways.
Collapse
Affiliation(s)
- Haruki Nishimura
- Department of Physiology, School of Medicine, University of Occupational and Environmental Health, Kitakyushu, Japan.,Department of Orthopaedic Surgery, School of Medicine, University of Occupational and Environmental Health, Kitakyushu, Japan
| | - Mitsuhiro Yoshimura
- Department of Physiology, School of Medicine, University of Occupational and Environmental Health, Kitakyushu, Japan. .,Translational Health Sciences, Bristol Medical School, University of Bristol, Bristol, UK.
| | - Makiko Shimizu
- Department of Physiology, School of Medicine, University of Occupational and Environmental Health, Kitakyushu, Japan
| | - Kenya Sanada
- Department of Physiology, School of Medicine, University of Occupational and Environmental Health, Kitakyushu, Japan
| | - Satomi Sonoda
- The First Department of Internal Medicine, School of Medicine, University of Occupational and Environmental Health, Kitakyushu, Japan
| | - Kazuaki Nishimura
- Department of Physiology, School of Medicine, University of Occupational and Environmental Health, Kitakyushu, Japan
| | - Kazuhiko Baba
- Department of Physiology, School of Medicine, University of Occupational and Environmental Health, Kitakyushu, Japan.,Department of Orthopaedic Surgery, School of Medicine, University of Occupational and Environmental Health, Kitakyushu, Japan
| | - Naofumi Ikeda
- Department of Physiology, School of Medicine, University of Occupational and Environmental Health, Kitakyushu, Japan.,Department of Orthopaedic Surgery, School of Medicine, University of Occupational and Environmental Health, Kitakyushu, Japan
| | - Yasuhito Motojima
- Department of Orthopaedic Surgery, School of Medicine, University of Occupational and Environmental Health, Kitakyushu, Japan
| | - Takashi Maruyama
- Department of Physiology, School of Medicine, University of Occupational and Environmental Health, Kitakyushu, Japan
| | - Yuki Nonaka
- Department of Physiology, School of Medicine, University of Occupational and Environmental Health, Kitakyushu, Japan
| | - Ryoko Baba
- Department of Anatomy (II), School of Medicine, University of Occupational and Environmental Health, Kitakyushu, Japan
| | - Tatsushi Onaka
- Division of Brain and Neurophysiology, Department of Physiology, Jichi Medical University, Shimotsuke, Japan
| | - Takafumi Horishita
- Department of Anesthesiology, School of Medicine, University of Occupational and Environmental Health, Kitakyushu, Japan
| | - Hiroyuki Morimoto
- Department of Anatomy (II), School of Medicine, University of Occupational and Environmental Health, Kitakyushu, Japan
| | - Yasuhiro Yoshida
- Department of Immunology and Parasitology, School of Medicine, University of Occupational and Environmental Health, Kitakyushu, Japan
| | - Makoto Kawasaki
- Department of Orthopaedic Surgery, School of Medicine, University of Occupational and Environmental Health, Kitakyushu, Japan
| | - Akinori Sakai
- Department of Orthopaedic Surgery, School of Medicine, University of Occupational and Environmental Health, Kitakyushu, Japan
| | - Masafumi Muratani
- Genome Biology, Faculty of Medicine, University of Tsukuba, Tsukuba, Japan
| | - Becky Conway-Campbell
- Translational Health Sciences, Bristol Medical School, University of Bristol, Bristol, UK
| | - Stafford Lightman
- Translational Health Sciences, Bristol Medical School, University of Bristol, Bristol, UK
| | - Yoichi Ueta
- Department of Physiology, School of Medicine, University of Occupational and Environmental Health, Kitakyushu, Japan.
| |
Collapse
|
3
|
Erdman SE, Poutahidis T. Microbes and Oxytocin: Benefits for Host Physiology and Behavior. INTERNATIONAL REVIEW OF NEUROBIOLOGY 2016; 131:91-126. [PMID: 27793228 DOI: 10.1016/bs.irn.2016.07.004] [Citation(s) in RCA: 50] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
It is now understood that gut bacteria exert effects beyond the local boundaries of the gastrointestinal tract to include distant tissues and overall health. Prototype probiotic bacterium Lactobacillus reuteri has been found to upregulate hormone oxytocin and systemic immune responses to achieve a wide array of health benefits involving wound healing, mental health, metabolism, and myoskeletal maintenance. Together these display that the gut microbiome and host animal interact via immune-endocrine-brain signaling networks. Such findings provide novel therapeutic strategies to stimulate powerful homeostatic pathways and genetic programs, stemming from the coevolution of mammals and their microbiome.
Collapse
Affiliation(s)
- S E Erdman
- Division of Comparative Medicine, Massachusetts Institute of Technology, Cambridge, MA, United States; Aristotle University of Thessaloniki, Thessaloniki, Greece.
| | - T Poutahidis
- Division of Comparative Medicine, Massachusetts Institute of Technology, Cambridge, MA, United States; Aristotle University of Thessaloniki, Thessaloniki, Greece
| |
Collapse
|