1
|
Friedrich J, Talenti A, Arvelius P, Strandberg E, Haskell MJ, Wiener P. Unravelling selection signatures in a single dog breed suggests recent selection for morphological and behavioral traits. ADVANCED GENETICS (HOBOKEN, N.J.) 2020; 1:e10024. [PMID: 36619250 PMCID: PMC9744541 DOI: 10.1002/ggn2.10024] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/31/2019] [Revised: 03/18/2020] [Accepted: 03/18/2020] [Indexed: 01/11/2023]
Abstract
Strong selection has resulted in substantial morphological and behavioral diversity across modern dog breeds, which makes dogs interesting model animals to study the underlying genetic architecture of these traits. However, results from between-breed analyses may confound selection signatures for behavior and morphological features that were coselected during breed development. In this study, we assess population genetic differences in a unique resource of dogs of the same breed but with systematic behavioral selection in only one population. We exploit these different breeding backgrounds to identify signatures of recent selection. Selection signatures within populations were found on chromosomes 4 and 19, with the strongest signals in behavior-related genes. Regions showing strong signals of divergent selection were located on chromosomes 1, 24, and 32, and include candidate genes for both physical features and behavior. Some of the selection signatures appear to be driven by loci associated with coat color (Chr 24; ASIP) and length (Chr 32; FGF5), while others showed evidence of association with behavior. Our findings suggest that signatures of selection within dog breeds have been driven by selection for morphology and behavior. Furthermore, we demonstrate that combining selection scans with association analyses is effective for dissecting the traits under selection.
Collapse
Affiliation(s)
- Juliane Friedrich
- Division of Genetics and GenomicsThe Roslin Institute and Royal (Dick) School of Veterinary Studies, University of EdinburghMidlothianUK
| | - Andrea Talenti
- Division of Genetics and GenomicsThe Roslin Institute and Royal (Dick) School of Veterinary Studies, University of EdinburghMidlothianUK
| | - Per Arvelius
- Swedish Armed Forces Dog Training CenterMärstaSweden
| | - Erling Strandberg
- Department of Animal Breeding and GeneticsSwedish University of Agricultural SciencesUppsalaSweden
| | - Marie J. Haskell
- Animal & Veterinary SciencesScotland's Rural College (SRUC)EdinburghUK
| | - Pamela Wiener
- Division of Genetics and GenomicsThe Roslin Institute and Royal (Dick) School of Veterinary Studies, University of EdinburghMidlothianUK
| |
Collapse
|
2
|
Zhang L, Cao LL, Yang DD, Ding JH, Guo XD, Xue TF, Zhao XJ, Sun XL. Establishment and evaluation of a novel mouse model of peri/postmenopausal depression. Heliyon 2019; 5:e01195. [PMID: 30839939 PMCID: PMC6365542 DOI: 10.1016/j.heliyon.2019.e01195] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2018] [Revised: 11/20/2018] [Accepted: 01/29/2019] [Indexed: 12/11/2022] Open
Abstract
Women are believed to be more vulnerable to develop depressive symptoms during the perimenopause compared to postmenopause. The traditional bilateral ovariectomy and chronic mild stress (CMS) stimulation animal model produces a postmenopausal depressive-like state but the transition from perimenopausal period to postmenopausal period was ignored. Thus we establish a novel animal model in which the mice were stimulated by CMS for three months and removed the ovaries by two-step operation, and then evaluate whether this novel model could be much better for preclinical study used as a peri/postmenopause depressive model. The present study systemically evaluated the changes induced by two-step ovariectomy plus CMS in the mice. The depression-like behaviors, the levels of corticosterone, estrogen, pro-inflammatory factors, neurotransmitters, as well as brain-derived neurotrophic factor were determined; the changes of estrogen receptors, serotonin receptors, uterine weight and bone microarchitecture were also observed. The results show that the behaviors and biochemical indexes of mice changed gradually over time. Our study suggests that this two-step ovariectomy operation plus CMS successfully establishes a more reasonable peri/postmenopausal depression animal model which effectively simulates the clinical symptoms of peri/postmenopausal depressive women.
Collapse
Affiliation(s)
- Ling Zhang
- Neuroprotective Drug Discovery Key Laboratory of Nanjing Medical University, Nanjing, Jiangsu, 211166, China.,Jiangsu Key Laboratory of Neurodegeneration, Department of Pharmacology, Nanjing Medical University, Nanjing, Jiangsu, 211166, China
| | - Lu-Lu Cao
- Neuroprotective Drug Discovery Key Laboratory of Nanjing Medical University, Nanjing, Jiangsu, 211166, China.,Jiangsu Key Laboratory of Neurodegeneration, Department of Pharmacology, Nanjing Medical University, Nanjing, Jiangsu, 211166, China
| | - Dan-Dan Yang
- Neuroprotective Drug Discovery Key Laboratory of Nanjing Medical University, Nanjing, Jiangsu, 211166, China.,Jiangsu Key Laboratory of Neurodegeneration, Department of Pharmacology, Nanjing Medical University, Nanjing, Jiangsu, 211166, China
| | - Jian-Hua Ding
- Jiangsu Key Laboratory of Neurodegeneration, Department of Pharmacology, Nanjing Medical University, Nanjing, Jiangsu, 211166, China
| | - Xu-Dong Guo
- Neuroprotective Drug Discovery Key Laboratory of Nanjing Medical University, Nanjing, Jiangsu, 211166, China.,Jiangsu Key Laboratory of Neurodegeneration, Department of Pharmacology, Nanjing Medical University, Nanjing, Jiangsu, 211166, China
| | - Teng-Fei Xue
- Neuroprotective Drug Discovery Key Laboratory of Nanjing Medical University, Nanjing, Jiangsu, 211166, China.,Jiangsu Key Laboratory of Neurodegeneration, Department of Pharmacology, Nanjing Medical University, Nanjing, Jiangsu, 211166, China
| | - Xiao-Jie Zhao
- Neuroprotective Drug Discovery Key Laboratory of Nanjing Medical University, Nanjing, Jiangsu, 211166, China.,Jiangsu Key Laboratory of Neurodegeneration, Department of Pharmacology, Nanjing Medical University, Nanjing, Jiangsu, 211166, China
| | - Xiu-Lan Sun
- Neuroprotective Drug Discovery Key Laboratory of Nanjing Medical University, Nanjing, Jiangsu, 211166, China.,Jiangsu Key Laboratory of Neurodegeneration, Department of Pharmacology, Nanjing Medical University, Nanjing, Jiangsu, 211166, China
| |
Collapse
|
3
|
Bpifcl modulates kiss2 expression under the influence of 11-ketotestosterone in female zebrafish. Sci Rep 2017; 7:7926. [PMID: 28801581 PMCID: PMC5554142 DOI: 10.1038/s41598-017-08248-8] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2016] [Accepted: 07/10/2017] [Indexed: 11/21/2022] Open
Abstract
The bactericidal/permeability-increasing (BPI) fold-containing (BPIF) superfamily of genes expressed in the brain are purportedly involved in modulating brain function in response to stress, such as inflammation. Kisspeptin, encoded by kiss, is affected by inflammation in the brain; therefore, BPIF family genes might be involved in the modulation of kisspeptin in the brain. In this study, we investigated the expression of BPIF family C, like (bpifcl) in zebrafish brain and its involvement in kiss2 regulation. The identified, full-length sequence of a bpifcl isoform expressed in the zebrafish brain contained the BPI fold shared by BPIF family members. bpifcl mRNA expression in female zebrafish brains was significantly higher than that in males. Exposure of female zebrafish to 11-ketotestosterone decreased bpifcl and kiss2 mRNA expression. bpifcl knockdown by bpifcl-specific small interfering RNA administration to female zebrafish brain decreased kiss2 mRNA expression. bpifcl expression was widely distributed in the brain, including in the dorsal zone of the periventricular hypothalamus (Hd). Furthermore, bpifcl was also expressed in KISS2 neurons in the Hd. These results suggest that the Bpifcl modulates kiss2 mRNA expression under the influence of testosterone in the Hd of female zebrafish.
Collapse
|