1
|
Yang Y, Rao C, Yin T, Wang S, Shi H, Yan X, Zhang L, Meng X, Gu W, Du Y, Hong F. Application and underlying mechanism of acupuncture for the nerve repair after peripheral nerve injury: remodeling of nerve system. Front Cell Neurosci 2023; 17:1253438. [PMID: 37941605 PMCID: PMC10627933 DOI: 10.3389/fncel.2023.1253438] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2023] [Accepted: 10/09/2023] [Indexed: 11/10/2023] Open
Abstract
Peripheral nerve injury (PNI) is a structural event with harmful consequences worldwide. Due to the limited intrinsic regenerative capacity of the peripheral nerve in adults, neural restoration after PNI is difficult. Neurological remodeling has a crucial effect on the repair of the form and function during the regeneration of the peripheral nerve after the peripheral nerve is injured. Several studies have demonstrated that acupuncture is effective for PNI-induced neurologic deficits, and the potential mechanisms responsible for its effects involve the nervous system remodeling in the process of nerve repair. Moreover, acupuncture promotes neural regeneration and axon sprouting by activating related neurotrophins retrograde transport, such as nerve growth factor (NGF), brain-derived neurotrophic factor (BDNF), glial cell-derived neurotrophic factor (GDNF), N-cadherin, and MicroRNAs. Peripheral nerve injury enhances the perceptual response of the central nervous system to pain, causing central sensitization and accelerating neuronal cell apoptosis. Together with this, the remodeling of synaptic transmission function would worsen pain discomfort. Neuroimaging studies have shown remodeling changes in both gray and white matter after peripheral nerve injury. Acupuncture not only reverses the poor remodeling of the nervous system but also stimulates the release of neurotrophic substances such as nerve growth factors in the nervous system to ameliorate pain and promote the regeneration and repair of nerve fibers. In conclusion, the neurological remodeling at the peripheral and central levels in the process of acupuncture treatment accelerates nerve regeneration and repair. These findings provide novel insights enabling the clinical application of acupuncture in the treatment of PNI.
Collapse
Affiliation(s)
- Yongke Yang
- Beilun District People’s Hospital, Ningbo, China
| | - Chang Rao
- Tianjin Union Medical Center, Tianjin, China
| | - Tianlong Yin
- First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Shaokang Wang
- First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Huiyan Shi
- First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin, China
- National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, Tianjin, China
| | - Xin Yan
- National Anti-Drug Laboratory Beijing Regional Center, Beijing, China
| | - Lili Zhang
- First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Xianggang Meng
- First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Wenlong Gu
- First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Yuzheng Du
- First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Feng Hong
- Beilun District People’s Hospital, Ningbo, China
| |
Collapse
|
2
|
Xiang YT, Xing XX, Hua XY, Zhang YW, Xue X, Wu JJ, Zheng MX, Wang H, Xu JG. Altered Neural Pathways and Related Brain Remodeling: A Rat Study Using Different Nerve Reconstructions. Neurosurgery 2023; 93:233-243. [PMID: 36735283 DOI: 10.1227/neu.0000000000002370] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2022] [Accepted: 11/17/2022] [Indexed: 02/04/2023] Open
Abstract
BACKGROUND Function recovery is related to cortical plasticity. The brain remodeling patterns induced by alterations in peripheral nerve pathways with different nerve reconstructions are unknown. OBJECTIVE To explore brain remodeling patterns related to alterations in peripheral neural pathways after different nerve reconstruction surgeries. METHODS Twenty-four female Sprague-Dawley rats underwent complete left brachial plexus nerve transection, together with the following interventions: no nerve repair (n = 8), grafted nerve repair (n = 8), and phrenic nerve transfer (n = 8). Resting-state functional MR images of brain were acquired at the end of seventh month postsurgery. Amplitude of low-frequency fluctuation (ALFF), regional homogeneity (ReHo), and functional connectivity (FC) were compared among 3 groups. Behavioral observation and electromyography assessed nerve regeneration. RESULTS Compared with brachial plexus injury group, ALFF and ReHo of left entorhinal cortex decreased in nerve repair and nerve transfer groups. The nerve transfer group showed increased ALFF and ReHo than nerve repair group in left caudate putamen, right accumbens nucleus shell (AcbSh), and right somatosensory cortex. The FC between right somatosensory cortex and bilateral piriform cortices and bilateral somatosensory cortices increased in nerve repair group than brachial plexus injury and nerve transfer groups. The nerve transfer group showed increased FC between right somatosensory cortex and areas including left corpus callosum, left retrosplenial cortex, right parietal association cortex, and right dorsolateral thalamus than nerve repair group. CONCLUSION Entorhinal cortex is a key brain area in recovery of limb function after nerve reconstruction. Nerve transfer related brain remodeling mainly involved contralateral sensorimotor areas, facilitating directional "shifting" of motor representation.
Collapse
Affiliation(s)
- Yun-Ting Xiang
- School of Rehabilitation Science, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Xiang-Xin Xing
- Department of Rehabilitation Medicine, Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Xu-Yun Hua
- Department of Rehabilitation Medicine, Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China
- Department of Traumatology and Orthopedics, Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Yu-Wen Zhang
- Institute of Science and Technology for Brain-Inspired Intelligence, Fudan University, Shanghai, China
| | - Xin Xue
- School of Rehabilitation Science, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Jia-Jia Wu
- Department of Rehabilitation Medicine, Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China
- Department of Traumatology and Orthopedics, Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Mou-Xiong Zheng
- Department of Rehabilitation Medicine, Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China
- Department of Traumatology and Orthopedics, Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - He Wang
- Institute of Science and Technology for Brain-Inspired Intelligence, Fudan University, Shanghai, China
- Human Phenome Institute, Fudan University, Shanghai, China
- Key Laboratory of Computational Neuroscience and Brain-Inspired Intelligence (Fudan University), Ministry of Education, China
| | - Jian-Guang Xu
- School of Rehabilitation Science, Shanghai University of Traditional Chinese Medicine, Shanghai, China
- Department of Rehabilitation Medicine, Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China
- Engineering Research Center of Traditional Chinese Medicine Intelligent Rehabilitation, Ministry of Education, Shanghai, China
| |
Collapse
|
3
|
Neuroplasticity following Nerve Transfer of the Anterior Interosseous Nerve for Proximal Ulnar Nerve Injuries. PLASTIC AND RECONSTRUCTIVE SURGERY-GLOBAL OPEN 2021; 9:e3684. [PMID: 34277319 PMCID: PMC8277281 DOI: 10.1097/gox.0000000000003684] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2021] [Accepted: 05/05/2021] [Indexed: 12/14/2022]
Abstract
Background: Injuries to the ulnar nerve at or above proximal forearm level result in poor recovery despite early microsurgical repair, especially concerning the intrinsic motor function of the hand. To augment the numbers of regenerating axons into the targeted muscles, a nerve transfer of the distal branch of the median nerve, the anterior interosseous nerve, to the ulnar motor branch has been described. Methods: Two patients with severe atrophy of the intrinsic hand muscles following an initial proximal ulnar nerve repair had surgery with an end-to-side transfer of the anterior interosseous nerve to the ulnar motor branch at the wrist level. Outcome and neuroplasticity were prospectively studied using questionnaires, clinical examinations, electroneurography, electromyography, somatosensory evoked potentials at pre nerve transfer and 3-, 12-, and 24-months post nerve transfer as well as navigated transcranial magnetic stimulation at pre nerve transfer and 3- and 12-months post nerve transfer. Results: Successively improved motor function was observed. Complete reinnervation of intrinsic hand muscles was demonstrated at 12- to 24-months follow-up by electroneurography and electromyography. At the cortical level, navigated transcranial magnetic stimulation detected a movement of the hot-spot for the abductor digiti mini muscle, originally innervated by the ulnar nerve and the size of the area from where responses could be elicited in this muscle changed over time, indicating central plastic processes. An almost complete reinnervation of the pronator quadratus muscle was also observed. Conclusion: Both central and peripheral plastic mechanisms are involved in muscle reinnervation after anterior interosseous nerve transfer for treatment of proximal ulnar nerve injuries.
Collapse
|
4
|
Xing XX, Zheng MX, Hua XY, Ma SJ, Ma ZZ, Xu JG. Brain plasticity after peripheral nerve injury treatment with massage therapy based on resting-state functional magnetic resonance imaging. Neural Regen Res 2021; 16:388-393. [PMID: 32859803 PMCID: PMC7896216 DOI: 10.4103/1673-5374.290912] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2020] [Revised: 03/17/2020] [Accepted: 04/16/2020] [Indexed: 12/14/2022] Open
Abstract
Massage therapy is an alternative treatment for chronic pain that is potentially related to brain plasticity. However, the underlying mechanism remains unclear. We established a peripheral nerve injury model in rats by unilateral sciatic nerve transection and direct anastomosis. The experimental rats were treated over the gastrocnemius muscle of the affected hindlimb with a customized massage instrument (0.45 N, 120 times/min, 10 minutes daily, for 4 successive weeks). Resting-state functional magnetic resonance imaging revealed that compared with control rats, the amplitude of low-frequency fluctuations in the sensorimotor cortex contralateral to the affected limb was significantly lower after sciatic nerve transection. However, amplitudes were significantly higher in the massage group than in a sham-massage group. These findings suggest that massage therapy facilitated adaptive change in the somatosensory cortex that led to the recovery of peripheral nerve injury and repair. This study was approved by the Animal Ethics Committee of Shanghai University of Traditional Chinese Medicine of China (approval No. 201701001) on January 12, 2017.
Collapse
Affiliation(s)
- Xiang-Xin Xing
- School of Rehabilitation Science, Shanghai University of Traditional Chinese Medicine, Shanghai, China
- Department of Rehabilitation Medicine, Yueyang Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Mou-Xiong Zheng
- Department of Traumatology and Orthopedics, Yueyang Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Xu-Yun Hua
- Department of Traumatology and Orthopedics, Yueyang Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
- Yangzi Rehabilitation Hospital, Tongji University, Shanghai, China
| | - Shu-Jie Ma
- School of Rehabilitation Science, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Zhen-Zhen Ma
- School of Rehabilitation Science, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Jian-Guang Xu
- School of Rehabilitation Science, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| |
Collapse
|
5
|
Xing XX, Hua XY, Zheng MX, Ma ZZ, Huo BB, Wu JJ, Ma SJ, Ma J, Xu JG. Intra and inter: Alterations in functional brain resting-state networks after peripheral nerve injury. Brain Behav 2020; 10:e01747. [PMID: 32657022 PMCID: PMC7507705 DOI: 10.1002/brb3.1747] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/05/2020] [Revised: 05/18/2020] [Accepted: 06/04/2020] [Indexed: 12/16/2022] Open
Abstract
INTRODUCTION Numerous treatments suggest that brain plasticity changes after peripheral nerve injury (PNI), and most studies examining functional magnetic resonance imaging focused on abnormal changes in specific brain regions. However, it is the large-scale interaction of neuronal networks instead of isolated brain regions contributed to the functional recovery after PNI. In the present study, we examined the intra- and internetworks alterations between the related functional resting-state networks (RSNs) in a sciatic nerve injury rat model. METHODS Ninety-six female rats were divided into a control and model group. Unilateral sciatic nerve transection and direct anastomosis were performed in the latter group. We used an independent component analysis (ICA) algorithm to observe the changes in RSNs and assessed functional connectivity between different networks using the functional networks connectivity (FNC) toolbox. RESULTS Six RSNs related to PNI were identified, including the basal ganglia network (BGN), sensorimotor network (SMN), salience network (SN), interoceptive network (IN), cerebellar network (CN), and default mode network (DMN). The model group showed significant changes in whole-brain FC changes within these resting-state networks (RSNs), but four of these RSNs exhibited a conspicuous decrease. The interalterations performed that significantly decreased FNC existed between the BGN and SMN, BGN and IN, and BGN and DMN (p < .05, corrected). A significant increase in FNC existed between DMN and CN and between CN and SN (p < .05, corrected). CONCLUSION The results showed the large-scale functional reorganization at the network level after PNI. This evidence reveals new implications to the pathophysiological mechanisms in brain plasticity of PNI.
Collapse
Affiliation(s)
- Xiang-Xin Xing
- School of Rehabilitation Science, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Xu-Yun Hua
- Department of Traumatology and Orthopedics, Yueyang Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China.,Yangzhi Rehabilitation Hospital, Tongji University, Shanghai, China
| | - Mou-Xiong Zheng
- Department of Traumatology and Orthopedics, Yueyang Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Zhen-Zhen Ma
- School of Rehabilitation Science, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Bei-Bei Huo
- School of Rehabilitation Science, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Jia-Jia Wu
- Center of Rehabilitation Medicine, Yueyang Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Shu-Jie Ma
- School of Rehabilitation Science, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Jie Ma
- School of Rehabilitation Science, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Jian-Guang Xu
- School of Rehabilitation Science, Shanghai University of Traditional Chinese Medicine, Shanghai, China.,Center of Rehabilitation Medicine, Yueyang Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| |
Collapse
|
6
|
Zink PJ, Philip BA. Cortical Plasticity in Rehabilitation for Upper Extremity Peripheral Nerve Injury: A Scoping Review. Am J Occup Ther 2020; 74:7401205030p1-7401205030p15. [PMID: 32078514 PMCID: PMC7018455 DOI: 10.5014/ajot.2020.036665] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023] Open
Abstract
IMPORTANCE Poor outcomes after upper extremity peripheral nerve injury (PNI) may arise, in part, from the challenges and complexities of cortical plasticity. Occupational therapy practitioners need to understand how the brain changes after peripheral injury and how principles of cortical plasticity can be applied to improve rehabilitation for clients with PNI. OBJECTIVE To identify the mechanisms of cortical plasticity after PNI and describe how cortical plasticity can contribute to rehabilitation. DATA SOURCES PubMed and Embase (1900-2017) were searched for articles that addressed either (1) the relationship between PNI and cortical plasticity or (2) rehabilitative interventions based on cortical plastic changes after PNI. STUDY SELECTION AND DATA COLLECTIO : PRISMA (Preferred Reporting Items for Systematic Reviews and Meta-Analyses) guidelines were followed. Articles were selected if they addressed all of the following concepts: human PNI, cortical plasticity, and rehabilitation. Phantom limb pain and sensation were excluded. FINDINGS Sixty-three articles met the study criteria. The most common evidence level was Level V (46%). We identified four commonly studied mechanisms of cortical plasticity after PNI and the functional implications for each. We found seven rehabilitative interventions based on cortical plasticity: traditional sensory reeducation, activity-based sensory reeducation, selective deafferentation, cross-modal sensory substitution, mirror therapy, mental motor imagery, and action observation with simultaneous peripheral nerve stimulation. CONCLUSION AND RELEVANCE The seven interventions ranged from theoretically well justified (traditional and activity-based sensory reeducation) to unjustified (selective deafferentation). Overall, articles were heterogeneous and of low quality, and future research should prioritize randomized controlled trials for specific neuropathies, interventions, or cortical plasticity mechanisms. WHAT THIS ARTICLE ADDS This article reviews current knowledge about how the brain changes after PNI and how occupational therapy practitioners can take advantage of those changes for rehabilitation.
Collapse
Affiliation(s)
- Patrick J Zink
- Patrick J. Zink, MSOT, is Occupational Therapist, Select Physical Therapy, Kansas City, MO. At the time of the study, he was Student, Program in Occupational Therapy, Washington University School of Medicine, St. Louis, MO
| | - Benjamin A Philip
- Benjamin A. Philip, PhD, is Assistant Professor, Program in Occupational Therapy, Washington University School of Medicine, St. Louis, MO;
| |
Collapse
|
7
|
Cortical remodeling after electroacupuncture therapy in peripheral nerve repairing model. Brain Res 2018; 1690:61-73. [PMID: 29654733 DOI: 10.1016/j.brainres.2018.04.009] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2017] [Revised: 03/23/2018] [Accepted: 04/06/2018] [Indexed: 01/23/2023]
Abstract
Electroacupuncture (EA) is an alternative therapy for peripheral nerve injury (PNI). The treatment relies on post-therapeutic effect rather than real-time effect. We utilized fMRI to clarify the resting-state alteration caused by sustained effect of EA on peripheral nerve repairing model. Twenty-four rats were divided equally into three groups: normal group, model group and intervention group. Rats of the model and intervention group underwent sciatic nerve transection and direct anastomosis. EA intervention at ST-36 and GB-30 was conducted continuously for 4 months on the intervention group. Behavioral assessments and fMRI were performed 1 month and 4 months after surgery. Intervention group showed significant improvement on the gait parameters max contact mean intensity (MCMI) and thermal withdrawal latency (TWL) than model group. EA-related sustained effects of amplitude of low frequency fluctuations (ALFF) could be described as a remolding pattern of somatosensory area and sensorimotor integration regions which presented higher ALFF in the contralateral hemisphere and lower in the ipsilateral hemisphere than model group. Interhemispheric functional connectivity (FC) analysis showed a significantly lower FC after EA therapy between the largest significantly different clusters in bilateral somatosensory cortices than the model group 4 months after surgery(p < 0.05). And the model group presented significantly higher FC than the normal group at both two time-points (p < 0.01). The sustained effect of EA on peripheral nerve repairing rats appeared to induce both regional and extensive neuroplasticity in bilateral hemispheres. We proposed that such EA-related effect was a reverse of maladaptive plasticity caused by PNI.
Collapse
|
8
|
Dec P, Zyluk A. Bilateral carpal tunnel syndrome – A review. Neurol Neurochir Pol 2018; 52:79-83. [DOI: 10.1016/j.pjnns.2017.09.009] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2017] [Revised: 09/24/2017] [Accepted: 09/25/2017] [Indexed: 11/29/2022]
|