1
|
Schoknecht K, Hirrlinger J, Eilers J. Transient astrocytic accumulation of fluorescein during spreading depolarizations. Neurobiol Dis 2023; 178:106026. [PMID: 36731681 DOI: 10.1016/j.nbd.2023.106026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2022] [Revised: 01/16/2023] [Accepted: 01/29/2023] [Indexed: 02/01/2023] Open
Abstract
Spreading depolarizations (SDs) occur frequently in acute cerebral injuries. They are characterized by a breakdown of transmembrane ion gradients resulting in a reduced extracellular sodium ([Na+]o) and increased extracellular potassium concentration ([K+]o). Elevated [K+]o induces astrocytic swelling, another feature of SD; however, the solutes that drive astrocytic swelling remain incompletely understood. We incidentally found astrocytic accumulation of fluorescein (Fluo) - a low molecular weight anionic dye - during SDs induced by elevated [K+]o. Herein, we aimed to explore the properties of astrocytic Fluo accumulation during SDs, electrical stimulation, [K+]o and glutamate elevation and elucidate underlying mechanisms and its relation to swelling. Experiments were performed in acute neocortical slices from adult male C57Bl6 mice and transgenic mice expressing tdTomato in parvalbumin (PV)-positive neurons. We labeled astrocytes with sulforhodamine-101 (SR-101), measured Fluo kinetics using 2-photon laser scanning microscopy and recorded local field potentials (LFP) to detect SDs. Elevations of [K+]o lead to an increase of the astrocytic Fluo intensity in parallel with astrocytic swelling. Pharmacological inhibitors of sodium‑potassium ATPase (Na/K-ATPase), secondary-active transporters and channels were used to address the underlying mechanisms. Fluo accumulation as well as swelling were only prevented by inhibition of the sodium‑potassium ATPase. Application of glutamate or hypoosmolar solution induced astrocytic swelling independent of Fluo accumulation and glutamate opposed Fluo accumulation when co-administered with high [K+]o. Astrocytes accumulated Fluo and swelled during electrical stimulation and even more during SDs. Taken together, Fluo imaging can be used as a tool to visualize yet unidentified anion fluxes during [K+]o- but not glutamate- or hypoosmolarity induced astrocytic swelling. Fluo imaging may thereby help to elucidate mechanisms of astrocytic swelling and associated fluid movements between brain compartments during physiological and pathological conditions, e.g. SDs.
Collapse
Affiliation(s)
- Karl Schoknecht
- Carl-Ludwig-Institute of Physiology, Medical Faculty, Leipzig University, Leipzig, Germany.
| | - Johannes Hirrlinger
- Carl-Ludwig-Institute of Physiology, Medical Faculty, Leipzig University, Leipzig, Germany; Department of Neurogenetics, Max-Planck-Institute for Multidisciplinary Sciences, Göttingen, Germany
| | - Jens Eilers
- Carl-Ludwig-Institute of Physiology, Medical Faculty, Leipzig University, Leipzig, Germany
| |
Collapse
|
2
|
Gorina YV, Salmina AB, Erofeev AI, Gerasimov EI, Bolshakova AV, Balaban PM, Bezprozvanny IB, Vlasova OL. Astrocyte Activation Markers. BIOCHEMISTRY. BIOKHIMIIA 2022; 87:851-870. [PMID: 36180985 DOI: 10.1134/s0006297922090012] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/18/2022] [Revised: 06/27/2022] [Accepted: 06/28/2022] [Indexed: 06/16/2023]
Abstract
Astrocytes are the most common type of glial cells that provide homeostasis and protection of the central nervous system. Important specific characteristic of astrocytes is manifestation of morphological heterogeneity, which is directly dependent on localization in a particular area of the brain. Astrocytes can integrate into neural networks and keep neurons active in various areas of the brain. Moreover, astrocytes express a variety of receptors, channels, and membrane transporters, which underlie their peculiar metabolic activity, and, hence, determine plasticity of the central nervous system during development and aging. Such complex structural and functional organization of astrocytes requires the use of modern methods for their identification and analysis. Considering the important fact that determining the most appropriate marker for polymorphic and multiple subgroups of astrocytes is of decisive importance for studying their multifunctionality, this review presents markers, modern imaging techniques, and identification of astrocytes, which comprise a valuable resource for studying structural and functional properties of astrocytes, as well as facilitate better understanding of the extent to which astrocytes contribute to neuronal activity.
Collapse
Affiliation(s)
- Yana V Gorina
- Laboratory of Molecular Neurodegeneration, Peter the Great St. Petersburg Polytechnic University, St. Petersburg, 194091, Russia.
- Research Institute of Molecular Medicine and Pathobiochemistry, Voino-Yasenetsky Krasnoyarsk State Medical University, Krasnoyarsk, 660022, Russia
| | - Alla B Salmina
- Laboratory of Molecular Neurodegeneration, Peter the Great St. Petersburg Polytechnic University, St. Petersburg, 194091, Russia
- Research Institute of Molecular Medicine and Pathobiochemistry, Voino-Yasenetsky Krasnoyarsk State Medical University, Krasnoyarsk, 660022, Russia
- Laboratory of Neurobiology and Tissue Engineering, Brain Institute, Research Center of Neurology, Moscow, 105064, Russia
| | - Alexander I Erofeev
- Laboratory of Molecular Neurodegeneration, Peter the Great St. Petersburg Polytechnic University, St. Petersburg, 194091, Russia
| | - Evgeniy I Gerasimov
- Laboratory of Molecular Neurodegeneration, Peter the Great St. Petersburg Polytechnic University, St. Petersburg, 194091, Russia
| | - Anastasia V Bolshakova
- Laboratory of Molecular Neurodegeneration, Peter the Great St. Petersburg Polytechnic University, St. Petersburg, 194091, Russia
| | - Pavel M Balaban
- Laboratory of Molecular Neurodegeneration, Peter the Great St. Petersburg Polytechnic University, St. Petersburg, 194091, Russia
- Laboratory of Cellular Neurobiology of Learning, Institute of Higher Nervous Activity, Moscow, 117485, Russia
| | - Ilya B Bezprozvanny
- Laboratory of Molecular Neurodegeneration, Peter the Great St. Petersburg Polytechnic University, St. Petersburg, 194091, Russia
- Department of Physiology, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Olga L Vlasova
- Laboratory of Molecular Neurodegeneration, Peter the Great St. Petersburg Polytechnic University, St. Petersburg, 194091, Russia
| |
Collapse
|
3
|
Naseri Kouzehgarani G, Kandel ME, Sakakura M, Dupaty JS, Popescu G, Gillette MU. Circadian Volume Changes in Hippocampal Glia Studied by Label-Free Interferometric Imaging. Cells 2022; 11:2073. [PMID: 35805157 PMCID: PMC9265588 DOI: 10.3390/cells11132073] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2022] [Revised: 06/02/2022] [Accepted: 06/17/2022] [Indexed: 12/10/2022] Open
Abstract
Complex brain functions, including learning and memory, arise in part from the modulatory role of astrocytes on neuronal circuits. Functionally, the dentate gyrus (DG) exhibits differences in the acquisition of long-term potentiation (LTP) between day and night. We hypothesize that the dynamic nature of astrocyte morphology plays an important role in the functional circuitry of hippocampal learning and memory, specifically in the DG. Standard microscopy techniques, such as differential interference contrast (DIC), present insufficient contrast for detecting changes in astrocyte structure and function and are unable to inform on the intrinsic structure of the sample in a quantitative manner. Recently, gradient light interference microscopy (GLIM) has been developed to upgrade a DIC microscope with quantitative capabilities such as single-cell dry mass and volume characterization. Here, we present a methodology for combining GLIM and electrophysiology to quantify the astrocyte morphological behavior over the day-night cycle. Colocalized measurements of GLIM and fluorescence allowed us to quantify the dry masses and volumes of hundreds of astrocytes. Our results indicate that, on average, there is a 25% cell volume reduction during the nocturnal cycle. Remarkably, this cell volume change takes place at constant dry mass, which suggests that the volume regulation occurs primarily through aqueous medium exchange with the environment.
Collapse
Affiliation(s)
- Ghazal Naseri Kouzehgarani
- Neuroscience Program, University of Illinois at Urbana-Champaign, Urbana, IL 61820, USA;
- Beckman Institute for Advanced Science & Technology, University of Illinois at Urbana-Champaign, Urbana, IL 61820, USA; (M.E.K.); (M.S.); (G.P.)
| | - Mikhail E. Kandel
- Beckman Institute for Advanced Science & Technology, University of Illinois at Urbana-Champaign, Urbana, IL 61820, USA; (M.E.K.); (M.S.); (G.P.)
- Department of Electrical and Computer Engineering, University of Illinois at Urbana-Champaign, Urbana, IL 61820, USA
| | - Masayoshi Sakakura
- Beckman Institute for Advanced Science & Technology, University of Illinois at Urbana-Champaign, Urbana, IL 61820, USA; (M.E.K.); (M.S.); (G.P.)
- Department of Electrical and Computer Engineering, University of Illinois at Urbana-Champaign, Urbana, IL 61820, USA
| | - Joshua S. Dupaty
- Department of Biomedical Engineering, Mercer University, Macon, GA 31207, USA;
| | - Gabriel Popescu
- Beckman Institute for Advanced Science & Technology, University of Illinois at Urbana-Champaign, Urbana, IL 61820, USA; (M.E.K.); (M.S.); (G.P.)
- Department of Electrical and Computer Engineering, University of Illinois at Urbana-Champaign, Urbana, IL 61820, USA
- Department of Bioengineering, University of Illinois at Urbana-Champaign, Urbana, IL 61820, USA
| | - Martha U. Gillette
- Neuroscience Program, University of Illinois at Urbana-Champaign, Urbana, IL 61820, USA;
- Beckman Institute for Advanced Science & Technology, University of Illinois at Urbana-Champaign, Urbana, IL 61820, USA; (M.E.K.); (M.S.); (G.P.)
- Department of Bioengineering, University of Illinois at Urbana-Champaign, Urbana, IL 61820, USA
- Department of Cell & Developmental Biology, University of Illinois at Urbana-Champaign, Urbana, IL 61820, USA
| |
Collapse
|
4
|
Exacerbation of Epilepsy by Astrocyte Alkalization and Gap Junction Uncoupling. J Neurosci 2021; 41:2106-2118. [PMID: 33478985 DOI: 10.1523/jneurosci.2365-20.2020] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2020] [Revised: 11/02/2020] [Accepted: 11/25/2020] [Indexed: 12/12/2022] Open
Abstract
Seizures invite seizures. At the initial stage of epilepsy, seizures intensify with each episode; however, the mechanisms underlying this exacerbation remain to be solved. Astrocytes have a strong control over neuronal excitability and the mode of information processing. This control is accomplished by adjusting the levels of various ions in the extracellular space. The network of astrocytes connected via gap junctions allows a wider or more confined distribution of these ions depending on the open probability of the gap junctions. K+ clearance relies on the K+ uptake by astrocytes and the subsequent diffusion of K+ through the astrocyte network. When astrocytes become uncoupled, K+ clearance becomes hindered. Accumulation of extracellular K+ leads to hyperexcitability of neurons. Here, using acute hippocampal slices from mice, we uncovered that brief periods of epileptiform activity result in gap junction uncoupling. In slices that experienced short-term epileptiform activity, extracellular K+ transients in response to glutamate became prolonged. Na+ imaging with a fluorescent indicator indicated that intercellular diffusion of small cations in the astrocytic syncytium via gap junctions became rapidly restricted after epileptiform activity. Using a transgenic mouse with astrocyte-specific expression of a pH sensor (Lck-E2GFP), we confirmed that astrocytes react to epileptiform activity with intracellular alkalization. Application of Na+/HCO3 - cotransporter blocker led to the suppression of intracellular alkalization of astrocytes and to the prevention of astrocyte uncoupling and hyperactivity intensification both in vitro and in vivo Therefore, the inhibition of astrocyte alkalization could become a promising therapeutic strategy for countering epilepsy development.SIGNIFICANCE STATEMENT We aimed to understand the mechanisms underlying the plastic change of forebrain circuits associated with the intensification of epilepsy. Here, we demonstrate that first-time exposure to only brief periods of epileptiform activity results in acute disturbance of the intercellular astrocyte network formed by gap junctions in hippocampal tissue slices from mice. Moreover, rapid clearance of K+ from the extracellular space was impaired. Epileptiform activity activated inward Na+/HCO3 - cotransport in astrocytes by cell depolarization, resulting in their alkalization. Our data suggest that alkaline pH shifts in astrocytes lead to gap junction uncoupling, hampering K+ clearance, and thereby to exacerbation of epilepsy. Pharmacological intervention could become a promising new strategy to dampen neuronal hyperexcitability and epileptogenesis.
Collapse
|
5
|
Bakos É, Német O, Patik I, Kucsma N, Várady G, Szakács G, Özvegy‐Laczka C. A novel fluorescence‐based functional assay for human OATP1A2 and OATP1C1 identifies interaction between third‐generation P‐gp inhibitors and OATP1A2. FEBS J 2019; 287:2468-2485. [DOI: 10.1111/febs.15156] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2019] [Revised: 10/16/2019] [Accepted: 11/22/2019] [Indexed: 12/15/2022]
Affiliation(s)
- Éva Bakos
- Membrane Protein Research Group Institute of Enzymology Research Centre for Natural Sciences Hungarian Academy of Sciences Budapest Hungary
| | - Orsolya Német
- Membrane Protein Research Group Institute of Enzymology Research Centre for Natural Sciences Hungarian Academy of Sciences Budapest Hungary
| | - Izabel Patik
- Membrane Protein Research Group Institute of Enzymology Research Centre for Natural Sciences Hungarian Academy of Sciences Budapest Hungary
| | - Nóra Kucsma
- Membrane Protein Research Group Institute of Enzymology Research Centre for Natural Sciences Hungarian Academy of Sciences Budapest Hungary
| | - György Várady
- Laboratory of Molecular Cell Biology Institute of Enzymology Research Centre for Natural Sciences Hungarian Academy of Sciences Budapest Hungary
| | - Gergely Szakács
- Membrane Protein Research Group Institute of Enzymology Research Centre for Natural Sciences Hungarian Academy of Sciences Budapest Hungary
- Institute of Cancer Research Medical University Vienna Wien Austria
| | - Csilla Özvegy‐Laczka
- Membrane Protein Research Group Institute of Enzymology Research Centre for Natural Sciences Hungarian Academy of Sciences Budapest Hungary
| |
Collapse
|
6
|
Kreimerman I, Reyes AL, Paolino A, Pardo T, Porcal W, Ibarra M, Oliver P, Savio E, Engler H. Biological Assessment of a 18F-Labeled Sulforhodamine 101 in a Mouse Model of Alzheimer's Disease as a Potential Astrocytosis Marker. Front Neurosci 2019; 13:734. [PMID: 31379487 PMCID: PMC6646682 DOI: 10.3389/fnins.2019.00734] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2018] [Accepted: 07/01/2019] [Indexed: 12/20/2022] Open
Abstract
Neurodegenerative diseases have mainly been associated with neuronal death. Recent investigations have shown that astroglia may modulate neuroinflammation in the early and late stages of the disease. [11C]Deuterodeprenyl ([11C]DED) is a tracer that has been used for reactive astrocyte detection in Alzheimer’s disease, Creutzfeldt–Jakob disease and amyotrophic lateral sclerosis, among others, with some limitations. To develop a new radiotracer for detecting astrocytosis and overcoming associated difficulties, we recently reported the synthesis of a sulfonamide derivative of Sulforhodamine 101 (SR101), labeled with 18F, namely SR101 N-(3-[18F]Fluoropropyl) sulfonamide ([18F]2B-SRF101). The red fluorescent dye SR101 has been used as a specific marker of astroglia in the neocortex of rodents using in vivo models. In the present work we performed a biological characterisation of the new tracer including biodistribution and micro-PET/computed tomography (CT) images. PET/CT studies with [11C]DED were also done to compare with [18F]2B-SRF101 in order to assess its potential as an astrocyte marker. Biodistribution studies with [18F]2B-SRF101 were carried out in C57BL6J black and transgenic (3xTg) mice. A hepatointestinal metabolization as well as the pharmacokinetic profile were determined, showing appropriate characteristics to become a PET diagnostic agent. Dynamic PET/CT studies were carried out with [18F]2B-SRF101 and [11C]DED to evaluate the distribution of both tracers in the brain. A significant difference in [18F]2B-SRF101 uptake was especially observed in the cortex and hippocampus, and it was higher in 3xTg mice than it was in the control group. These results suggested that [18F]2B-SRF101 is a promising candidate for more extensive evaluation as an astrocyte tracer. The difference observed for [18F]2B-SRF101 was not found in the case of [11C]DED. The comparative studies between [18F]2B-SRF101 and [11C]DED suggest that both tracers have different roles as astrocytosis markers in this animal model, and could provide different and complementary information at the same time. In this way, by means of a multitracer approach, useful information could be obtained for the staging of the disease.
Collapse
Affiliation(s)
- Ingrid Kreimerman
- Radiopharmacy Department, Uruguayan Centre of Molecular Imaging (CUDIM), Montevideo, Uruguay
| | - Ana Laura Reyes
- Radiopharmacy Department, Uruguayan Centre of Molecular Imaging (CUDIM), Montevideo, Uruguay
| | - Andrea Paolino
- Radiopharmacy Department, Uruguayan Centre of Molecular Imaging (CUDIM), Montevideo, Uruguay
| | - Tania Pardo
- Radiopharmacy Department, Uruguayan Centre of Molecular Imaging (CUDIM), Montevideo, Uruguay
| | - Williams Porcal
- Radiopharmacy Department, Uruguayan Centre of Molecular Imaging (CUDIM), Montevideo, Uruguay.,Department of Organic Chemistry, Faculty of Chemistry, University of the Republic (UdelaR), Montevideo, Uruguay
| | - Manuel Ibarra
- Pharmaceutical Sciences Department, Faculty of Chemistry, University of the Republic (UdelaR), Montevideo, Uruguay
| | - Patricia Oliver
- Radiopharmacy Department, Uruguayan Centre of Molecular Imaging (CUDIM), Montevideo, Uruguay
| | - Eduardo Savio
- Radiopharmacy Department, Uruguayan Centre of Molecular Imaging (CUDIM), Montevideo, Uruguay
| | - Henry Engler
- Radiopharmacy Department, Uruguayan Centre of Molecular Imaging (CUDIM), Montevideo, Uruguay
| |
Collapse
|
7
|
Abstract
Astrocytes are the most abundant cell type in the brain and are a crucial part of solving its mysteries. Originally assumed to be passive supporting cells, astrocyte's functions are now recognized to include active modulation and information processing at the neural synapse. The full extent of the astrocyte contribution to neural processing remains unknown. This is, in part, due to the lack of methods available for astrocyte identification and analysis. Existing strategies employ genetic tools like the astrocyte specific promoters glial fibrillary acidic protein (GFAP) or Aldh1L1 to create transgenic animals with fluorescently labeled astrocytes. Recently, small molecule targeting moieties have enabled the delivery of bright fluorescent dyes to astrocytes. Here, we review methods for targeting astrocytes, with a focus on a recently developed methylpyridinium targeting moiety's development, chemical synthesis, and elaboration to provide new features like light-based spatiotemporal control of cell labeling.
Collapse
Affiliation(s)
- Alyssa N Preston
- Department of Chemistry, Stony Brook University, Stony Brook, NY, United States
| | - Danielle A Cervasio
- Department of Pharmacological Sciences, Stony Brook University, Stony Brook, NY, United States
| | - Scott T Laughlin
- Department of Chemistry, Stony Brook University, Stony Brook, NY, United States; Institute of Chemical Biology and Drug Discovery, Stony Brook University, Stony Brook, NY, United States.
| |
Collapse
|
8
|
Preston AN, Farr JD, Tan KC, Cervasio DA, Butkus LR, Laughlin ST. Design Principles for Cationic, Astrocyte-Targeted Probes. Chembiochem 2019; 20:366-370. [PMID: 30419144 DOI: 10.1002/cbic.201800692] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2018] [Indexed: 11/08/2022]
Abstract
The brain's astrocytes play key roles in normal and pathological brain processes. Targeting small molecules to astrocytes in the presence of the many other cell types in the brain will provide useful tools for their visualization and manipulation. Herein, we explore the functional consequences of synthetic modifications to a recently described astrocyte marker composed of a bright rhodamine-based fluorophore and an astrocyte-targeting moiety. We altered the nature of the targeting moiety to probe the dependence of astrocyte targeting on hydrophobicity, charge, and pKa when exposed to astrocytes and neurons isolated from the mouse cortex. We found that an overall molecular charge of +2 and a targeting moiety with a heterocyclic aromatic amine are important requirements for specific and robust astrocyte labeling. These results provide a basis for engineering astrocyte-targeted molecular tools with unique properties, including metabolite sensing or optogenetic control.
Collapse
Affiliation(s)
- Alyssa N Preston
- Department of Chemistry, Stony Brook University, 100 Nicolls Road, Stony Brook, NY, 11794, USA
| | - Joshua D Farr
- Department of Chemistry, Stanford University, 450 Serra Mall, Stanford, CA, 94305, USA
| | - Kevin C Tan
- Department of Chemistry, Stony Brook University, 100 Nicolls Road, Stony Brook, NY, 11794, USA
| | - Danielle A Cervasio
- Department of Chemistry, Stony Brook University, 100 Nicolls Road, Stony Brook, NY, 11794, USA
| | - Lauren R Butkus
- Department of Chemistry, Stony Brook University, 100 Nicolls Road, Stony Brook, NY, 11794, USA
| | - Scott T Laughlin
- Department of Chemistry, Stony Brook University, 100 Nicolls Road, Stony Brook, NY, 11794, USA
| |
Collapse
|
9
|
Fordsmann JC, Murmu RP, Cai C, Brazhe A, Thomsen KJ, Zambach SA, Lønstrup M, Lind BL, Lauritzen M. Spontaneous astrocytic Ca 2+ activity abounds in electrically suppressed ischemic penumbra of aged mice. Glia 2018; 67:37-52. [PMID: 30427548 DOI: 10.1002/glia.23506] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2018] [Revised: 06/12/2018] [Accepted: 07/03/2018] [Indexed: 12/11/2022]
Abstract
Experimental focal cortical ischemic lesions consist of an ischemic core and a potentially salvageable peri-ischemic region, the ischemic penumbra. The activity of neurons and astrocytes is assumed to be suppressed in the penumbra because the electrical function is interrupted, but this is incompletely elucidated. Most experimental stroke studies used young adult animals, whereas stroke is prevalent in the elderly population. Using two-photon imaging in vivo, we here demonstrate extensive but electrically silent, spontaneous Ca2+ activity in neurons and astrocytes in the ischemic penumbra of 18- to 24-month-old mice 2-4 hr after middle cerebral artery occlusion. In comparison, stroke reduced spontaneous Ca2+ activity in neurons and astrocytes in adult mice (3-4 months of age). In aged mice, stroke increased astrocytic spontaneous Ca2+ activity considerably while neuronal spontaneous Ca2+ activity was unchanged. Blockade of action potentials and of purinergic receptors strongly reduced spontaneous Ca2+ activity in both neurons and astrocytes in the penumbra of old stroke mice. This indicates that stroke had a direct influence on mechanisms in presynaptic terminals and on purinergic signaling. Thus, highly dynamic variations in spontaneous Ca2+ activity characterize the electrically compromised penumbra, with remarkable differences between adult and old mice. The data are consistent with the notion that aged neurons and astrocytes take on a different phenotype than young mice. The increased activity of the aged astrocyte phenotype may be harmful to neurons. We suggest that the abundant spontaneous Ca2+ activity in astrocytes in the ischemic penumbra of old mice may be a novel target for neuroprotection strategies. A video abstract of this article can be found at https://youtu.be/AKlwKFsz1qE.
Collapse
Affiliation(s)
- Jonas Christoffer Fordsmann
- Department of Neuroscience and Center for Healthy Aging, Panum Institute, University of Copenhagen, Copenhagen, Denmark
| | - Reena Prity Murmu
- Department of Neuroscience and Center for Healthy Aging, Panum Institute, University of Copenhagen, Copenhagen, Denmark
| | - Changsi Cai
- Department of Neuroscience and Center for Healthy Aging, Panum Institute, University of Copenhagen, Copenhagen, Denmark
| | - Alexey Brazhe
- Faculty of Biology, Moscow State University, Moscow, Russia
| | - Kirsten Joan Thomsen
- Department of Neuroscience and Center for Healthy Aging, Panum Institute, University of Copenhagen, Copenhagen, Denmark.,Department of Clinical Neurophysiology, Glostrup Hospital, Glostrup, Denmark
| | - Stefan Andreas Zambach
- Department of Neuroscience and Center for Healthy Aging, Panum Institute, University of Copenhagen, Copenhagen, Denmark
| | - Micael Lønstrup
- Department of Neuroscience and Center for Healthy Aging, Panum Institute, University of Copenhagen, Copenhagen, Denmark
| | - Barbara Lykke Lind
- Department of Neuroscience and Center for Healthy Aging, Panum Institute, University of Copenhagen, Copenhagen, Denmark
| | - Martin Lauritzen
- Department of Neuroscience and Center for Healthy Aging, Panum Institute, University of Copenhagen, Copenhagen, Denmark.,Department of Clinical Neurophysiology, Glostrup Hospital, Glostrup, Denmark
| |
Collapse
|
10
|
Kreimerman I, Mora-Ramirez E, Reyes L, Bardiès M, Savio E, Engler H. Dosimetry and Toxicity Studies of the Novel Sulfonamide Derivative of Sulforhodamine 101([18F]SRF101) at a Preclinical Level. Curr Radiopharm 2018; 12:40-48. [PMID: 30173658 DOI: 10.2174/1874471011666180830145304] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2018] [Revised: 08/03/2018] [Accepted: 08/27/2018] [Indexed: 11/22/2022]
Abstract
BACKGROUND The SR101 N-(3-[18F]Fluoropropyl) sulfonamide ([18F]SRF101) is a Sulforhodamine 101 derivative that was previously synthesised by our group. The fluorescent dye SR101 has been reported as a marker of astroglia in the neocortex of rodents in vivo. OBJECTIVE The aim of this study was to perform a toxicological evaluation of [18F]SRF101 and to estimate human radiation dosimetry based on preclinical studies. METHODS Radiation dosimetry studies were conducted based on biokinetic data obtained from a mouse model. A single-dose toxicity study was carried out. The toxicological limit chosen was <100 μg, and allometric scaling with a safety factor of 100 for unlabelled SRF101 was selected. RESULTS The absorbed and effective dose estimated using OLINDA/EXM V2.0 for male and female dosimetric models presented the same tendency. The highest total absorbed dose values were for different sections of the intestines. The mean effective dose was 4.03 x10-3 mSv/MBq and 5.08 x10-3 mSv/MBq for the male and female dosimetric models, respectively, using tissue-weighting factors from ICRP-89. The toxicity study detected no changes in the organ or whole-body weight, food consumption, haematologic or clinical chemistry parameters. Moreover, lesions or abnormalities were not found during the histopathological examination. CONCLUSION The toxicological evaluation of SRF101 verified the biosafety of the radiotracer for human administration. The dosimetry calculations revealed that the radiation-associated risk of [18F]SRF101 would be of the same order as other 18F radiopharmaceuticals used in clinical applications. These study findings confirm that the novel radiotracer would be safe for use in human PET imaging.
Collapse
Affiliation(s)
- Ingrid Kreimerman
- Uruguayan Centre of Molecular Imaging (CUDIM), Radiopharmacy Department, Montevideo, Uruguay
| | - Erick Mora-Ramirez
- Inserm, UMR1037 CRCT, F-31000 Toulouse, France.,Universite Toulouse III-Paul Sabatier, UMR1037 CRCT, F-31000 Toulouse, France.,Universidad de Costa Rica, CICANUM-Escuela de Fisica, San Jose, Costa Rica
| | - Laura Reyes
- Uruguayan Centre of Molecular Imaging (CUDIM), Radiopharmacy Department, Montevideo, Uruguay
| | - Manuel Bardiès
- Inserm, UMR1037 CRCT, F-31000 Toulouse, France.,Universite Toulouse III-Paul Sabatier, UMR1037 CRCT, F-31000 Toulouse, France
| | - Eduardo Savio
- Uruguayan Centre of Molecular Imaging (CUDIM), Radiopharmacy Department, Montevideo, Uruguay
| | - Henry Engler
- Uruguayan Centre of Molecular Imaging (CUDIM), Radiopharmacy Department, Montevideo, Uruguay
| |
Collapse
|
11
|
Preston AN, Farr JD, O’Neill BK, Thompson KK, Tsirka SE, Laughlin ST. Visualizing the Brain's Astrocytes with Diverse Chemical Scaffolds. ACS Chem Biol 2018; 13:1493-1498. [PMID: 29733639 DOI: 10.1021/acschembio.8b00391] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Astrocytes are the most abundant cells in the brain. They support neurons, adjust synaptic strength, and modulate neuronal signaling, yet the full extent of their functions is obscured by the dearth of methods for their visualization and analysis. Here, we report a chemical reporter that targets small molecules specifically to astrocytes both in vitro and in vivo. Fluorescent versions of this tag are imported through an organic cation transporter to label glia across species. The structural modularity of this approach will enable wide-ranging applications for understanding astrocyte biology.
Collapse
Affiliation(s)
- Alyssa N. Preston
- Department of Chemistry, Stony Brook University, Stony Brook, New York 11794, United States
| | - Joshua D. Farr
- Department of Chemistry, Stony Brook University, Stony Brook, New York 11794, United States
| | - Brianna K. O’Neill
- Department of Chemistry, Stony Brook University, Stony Brook, New York 11794, United States
| | - Kaitlyn K. Thompson
- Department of Pharmacological Sciences, Stony Brook University, Stony Brook, New York 11794, United States
| | - Stella E. Tsirka
- Department of Pharmacological Sciences, Stony Brook University, Stony Brook, New York 11794, United States
| | - Scott T. Laughlin
- Department of Chemistry, Stony Brook University, Stony Brook, New York 11794, United States
| |
Collapse
|
12
|
Kreimerman I, Porcal W, Olivera S, Oliver P, Savio E, Engler H. Synthesis of [18F]2B-SRF101: A Sulfonamide Derivative of the Fluorescent Dye Sulforhodamine 101. Curr Radiopharm 2017; 10:212-220. [PMID: 28956517 PMCID: PMC5740491 DOI: 10.2174/1874471010666170928112853] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2017] [Revised: 09/20/2017] [Accepted: 09/25/2017] [Indexed: 11/22/2022]
Abstract
BACKGROUND The red fluorescent dye Sulforhodamine 101 (SR101) has been used in neuroscience research as a useful tool for staining of astrocytes, since it has been reported as a marker of astroglia in the neocortex of rodents in vivo. The aim of this work is to label SR101 with positron emission radionuclides, in order to provide a radiotracer to study its biological behavior. This is the first attempt to label SR101 by [18F], using a chemical derivatization via a sulfonamidelinker and a commercially available platform. METHODS The synthesis of SR101 N-(3-Bromopropyl) sulfonamide and SR101 N-(3- Fluoropropyl) sulfonamide (2B-SRF101) was carried out. The radiosynthesis of SR101 N-(3- [18F]Fluoropropyl) sulfonamide ([18F]2B-SRF101) was performed in a TRACERlab® FX-FN. Different labeling conditions were tested. Three pilot batches were produced and quality control was performed. Lipophilicity, plasma protein binding and radiochemical stability of [18F]2BSRF101 in final formulation and in plasma were determined. RESULTS SR101 N-(3-Bromopropyl) sulfonamide was synthetized as a precursor for radiolabeling with [18F]. 2B-SRF101 was prepared for analytical purpose. [18F]2B-SRF101 was obtained with radiochemical purity of (97.0 ± 0.6%). The yield of the whole synthesis was (11.9 ± 1.7 %), nondecay corrected. [18F]2B-SRF101 was found to be stable in final formulation and in plasma. The octanol-water partition coefficient was (Log POCT = 1.88 ± 0.14). The product showed a high percentage of plasma protein binding. CONCLUSIONS The derivatization of SR101 via sulfonamide-linker and the first radiosynthesis of [18 F]2B-SRF101 were performed. It was obtained in accordance with quality control specifications. In vitro stability studies verified that [18F]2B-SRF101 was suitable for preclinical evaluations.
Collapse
Affiliation(s)
- Ingrid Kreimerman
- Uruguayan Centre of Molecular Imaging (CUDIM) Radiopharmacy Department, Montevideo. Uruguay
| | - Williams Porcal
- Uruguayan Centre of Molecular Imaging (CUDIM) Radiopharmacy Department, Montevideo, Uruguay.,Facultad de Quimica, Universidad de la República - (UdelaR) Montevideo, Uruguay
| | - Silvia Olivera
- Instituto de Investigaciones Biologicas, Clemente Estable, Montevideo. Uruguay
| | - Patricia Oliver
- Uruguayan Centre of Molecular Imaging (CUDIM) Radiopharmacy Department, Montevideo. Uruguay
| | - Eduardo Savio
- Ricaldoni 2010, Postal Code 11.600, Montevideo. Uruguay
| | - Henry Engler
- Uruguayan Centre of Molecular Imaging (CUDIM) Radiopharmacy Department, Montevideo. Uruguay
| |
Collapse
|
13
|
Synapse-specific astrocyte gating of amygdala-related behavior. Nat Neurosci 2017; 20:1540-1548. [PMID: 28945222 DOI: 10.1038/nn.4649] [Citation(s) in RCA: 235] [Impact Index Per Article: 29.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2016] [Accepted: 08/30/2017] [Indexed: 12/12/2022]
Abstract
The amygdala plays key roles in fear and anxiety. Studies of the amygdala have largely focused on neuronal function and connectivity. Astrocytes functionally interact with neurons, but their role in the amygdala remains largely unknown. We show that astrocytes in the medial subdivision of the central amygdala (CeM) determine the synaptic and behavioral outputs of amygdala circuits. To investigate the role of astrocytes in amygdala-related behavior and identify the underlying synaptic mechanisms, we used exogenous or endogenous signaling to selectively activate CeM astrocytes. Astrocytes depressed excitatory synapses from basolateral amygdala via A1 adenosine receptor activation and enhanced inhibitory synapses from the lateral subdivision of the central amygdala via A2A receptor activation. Furthermore, astrocytic activation decreased the firing rate of CeM neurons and reduced fear expression in a fear-conditioning paradigm. Therefore, we conclude that astrocyte activity determines fear responses by selectively regulating specific synapses, which indicates that animal behavior results from the coordinated activity of neurons and astrocytes.
Collapse
|
14
|
Murphy TR, Davila D, Cuvelier N, Young LR, Lauderdale K, Binder DK, Fiacco TA. Hippocampal and Cortical Pyramidal Neurons Swell in Parallel with Astrocytes during Acute Hypoosmolar Stress. Front Cell Neurosci 2017; 11:275. [PMID: 28979186 PMCID: PMC5611379 DOI: 10.3389/fncel.2017.00275] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2017] [Accepted: 08/28/2017] [Indexed: 01/08/2023] Open
Abstract
Normal nervous system function is critically dependent on the balance of water and ions in the extracellular space (ECS). Pathological reduction in brain interstitial osmolarity results in osmotically-driven flux of water into cells, causing cellular edema which reduces the ECS and increases neuronal excitability and risk of seizures. Astrocytes are widely considered to be particularly susceptible to cellular edema due to selective expression of the water channel aquaporin-4 (AQP4). The apparent resistance of pyramidal neurons to osmotic swelling has been attributed to lack of functional water channels. In this study we report rapid volume changes in CA1 pyramidal cells in hypoosmolar ACSF (hACSF) that are equivalent to volume changes in astrocytes across a variety of conditions. Astrocyte and neuronal swelling was significant within 1 min of exposure to 17 or 40% hACSF, was rapidly reversible upon return to normosmolar ACSF, and repeatable upon re-exposure to hACSF. Neuronal swelling was not an artifact of patch clamp, occurred deep in tissue, was similar at physiological vs. room temperature, and occurred in both juvenile and adult hippocampal slices. Neuronal swelling was neither inhibited by TTX, nor by antagonists of NMDA or AMPA receptors, suggesting that it was not occurring as a result of excitotoxicity. Surprisingly, genetic deletion of AQP4 did not inhibit, but rather augmented, astrocyte swelling in severe hypoosmolar conditions. Taken together, our results indicate that neurons are not osmoresistant as previously reported, and that osmotic swelling is driven by an AQP4-independent mechanism.
Collapse
Affiliation(s)
- Thomas R. Murphy
- Division of Biomedical Sciences, School of Medicine, University of California, RiversideRiverside, CA, United States
- Center for Glial-Neuronal Interactions, University of California, RiversideRiverside, CA, United States
| | - David Davila
- Center for Glial-Neuronal Interactions, University of California, RiversideRiverside, CA, United States
- Department of Cell Biology and Neuroscience, University of California, RiversideRiverside, CA, United States
| | - Nicholas Cuvelier
- Center for Glial-Neuronal Interactions, University of California, RiversideRiverside, CA, United States
- Department of Cell Biology and Neuroscience, University of California, RiversideRiverside, CA, United States
| | - Leslie R. Young
- Center for Glial-Neuronal Interactions, University of California, RiversideRiverside, CA, United States
- Department of Cell Biology and Neuroscience, University of California, RiversideRiverside, CA, United States
| | - Kelli Lauderdale
- Division of Biomedical Sciences, School of Medicine, University of California, RiversideRiverside, CA, United States
- Center for Glial-Neuronal Interactions, University of California, RiversideRiverside, CA, United States
| | - Devin K. Binder
- Division of Biomedical Sciences, School of Medicine, University of California, RiversideRiverside, CA, United States
- Center for Glial-Neuronal Interactions, University of California, RiversideRiverside, CA, United States
| | - Todd A. Fiacco
- Center for Glial-Neuronal Interactions, University of California, RiversideRiverside, CA, United States
- Department of Cell Biology and Neuroscience, University of California, RiversideRiverside, CA, United States
| |
Collapse
|
15
|
Hülsmann S, Hagos L, Heuer H, Schnell C. Limitations of Sulforhodamine 101 for Brain Imaging. Front Cell Neurosci 2017; 11:44. [PMID: 28293173 PMCID: PMC5328990 DOI: 10.3389/fncel.2017.00044] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2016] [Accepted: 02/09/2017] [Indexed: 11/19/2022] Open
Abstract
Since 2004, the red fluorescent dye Sulforhodamine 101 (SR101) has been boosting the functional analysis of astrocytes in a functional environment in an unprecedented way. However, two major limitations have been challenging the usefulness of this tool for cellular imaging: (i) SR101 is not as specific for astrocytes as previously reported; and (ii) discoveries of severe excitatory side effects of SR101 are bearing the risk of unwanted alteration of the system of interest. In this article, we summarize the current knowledge about SR101-labeling protocols and discuss the problems that arise from varying of the staining protocols. Furthermore, we provide a testable hypothesis for the observed hyper-excitability that can be observed when using SR101.
Collapse
Affiliation(s)
- Swen Hülsmann
- Clinic for Anesthesiology, University Hospital GöttingenGöttingen, Germany; DFG Research Center for Nanoscale Microscopy and Molecular Physiology of the Brain (CNMPB)Göttingen, Germany
| | - Liya Hagos
- Clinic for Anesthesiology, University Hospital GöttingenGöttingen, Germany; DFG Research Center for Nanoscale Microscopy and Molecular Physiology of the Brain (CNMPB)Göttingen, Germany
| | - Heike Heuer
- Leibniz-Institut für Umweltmedizinische Forschung GmbH Düsseldorf, Germany
| | - Christian Schnell
- DFG Research Center for Nanoscale Microscopy and Molecular Physiology of the Brain (CNMPB) Göttingen, Germany
| |
Collapse
|