1
|
Nagaraj S, Quintanilla-Sánchez C, Ando K, Lopez-Gutierrez L, Doeraene E, Kosa AC, Aydin E, Brion JP, Leroy K. Downregulation of hsa-miR-132 and hsa-miR-129: non-coding RNA molecular signatures of Alzheimer's disease. Front Mol Neurosci 2024; 17:1423340. [PMID: 38984196 PMCID: PMC11231994 DOI: 10.3389/fnmol.2024.1423340] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2024] [Accepted: 06/05/2024] [Indexed: 07/11/2024] Open
Abstract
Alzheimer's disease (AD) affects the elderly population by causing memory impairments, cognitive and behavioral abnormalities. Currently, no curative treatments exist, emphasizing the need to explore therapeutic options that modify the progression of the disease. MicroRNAs (miRNAs), as non-coding RNAs, demonstrate multifaceted targeting potential and are known to be dysregulated in AD pathology. This mini review focuses on two promising miRNAs, hsa-miR-132 and hsa-miR-129, which consistently exhibit differential regulation in AD. By employing computational predictions and referencing published RNA sequencing dataset, we elucidate the intricate miRNA-mRNA target relationships associated with hsa-miR-132 and hsa-miR-129. Our review consistently identifies the downregulation of hsa-miR-132 and hsa-miR-129 in AD brains as a non-coding RNA molecular signature across studies conducted over the past 15 years in AD research.
Collapse
Affiliation(s)
- Siranjeevi Nagaraj
- Alzheimer and Other Tauopathies Research Group, Faculty of Medicine, ULB Center for Diabetes Research, ULB Neuroscience Institute, Université Libre de Bruxelles, Brussels, Belgium
| | | | | | | | | | | | | | | | - Karelle Leroy
- Alzheimer and Other Tauopathies Research Group, Faculty of Medicine, ULB Center for Diabetes Research, ULB Neuroscience Institute, Université Libre de Bruxelles, Brussels, Belgium
| |
Collapse
|
2
|
Bougea A, Stefanis L. microRNA and circRNA in Parkinson's Disease and atypical parkinsonian syndromes. Adv Clin Chem 2023; 115:83-133. [PMID: 37673523 DOI: 10.1016/bs.acc.2023.03.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/30/2023]
Abstract
Multiple System Atrophy (MSA) and Progressive Supranuclear Palsy (PSP) are atypical parkinsonian syndromes (APS) with various clinical phenotypes and considerable clinical overlap with idiopathic Parkinson's disease (iPD). This disease heterogeneity makes ante-mortem diagnosis extremely challenging with up to 24% of patients misdiagnosed. Because diagnosis is predominantly clinical, there is great interest in identifying biomarkers for early diagnosis and differentiation of the different types of parkinsonism. Compared to protein biomarkers, microRNAs (miRNAs) and circularRNAs (circRNAs) are stable tissue-specific molecules that can be accurately measured by reverse transcription-quantitative polymerase chain reaction (RT-qPCR). This chapter critically reviews miRNAs and circRNAs as diagnostic biomarkers and therapeutics to differentiate atypical parkinsonian disorders and their role in disease pathogenesis.
Collapse
Affiliation(s)
- Anastasia Bougea
- 1st Department of Neurology, Medical School, Aeginition Hospital, National and Kapodistrian University of Athens, Athens, Greece.
| | - Leonidas Stefanis
- 1st Department of Neurology, Medical School, Aeginition Hospital, National and Kapodistrian University of Athens, Athens, Greece
| |
Collapse
|
3
|
Kinoshita C, Kubota N, Aoyama K. Glutathione Depletion and MicroRNA Dysregulation in Multiple System Atrophy: A Review. Int J Mol Sci 2022; 23:15076. [PMID: 36499400 PMCID: PMC9740333 DOI: 10.3390/ijms232315076] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Revised: 11/25/2022] [Accepted: 11/29/2022] [Indexed: 12/02/2022] Open
Abstract
Multiple system atrophy (MSA) is a rare neurodegenerative disease characterized by parkinsonism, cerebellar impairment, and autonomic failure. Although the causes of MSA onset and progression remain uncertain, its pathogenesis may involve oxidative stress via the generation of excess reactive oxygen species and/or destruction of the antioxidant system. One of the most powerful antioxidants is glutathione, which plays essential roles as an antioxidant enzyme cofactor, cysteine-storage molecule, major redox buffer, and neuromodulator, in addition to being a key antioxidant in the central nervous system. Glutathione levels are known to be reduced in neurodegenerative diseases. In addition, genes regulating redox states have been shown to be post-transcriptionally modified by microRNA (miRNA), one of the most important types of non-coding RNA. miRNAs have been reported to be dysregulated in several diseases, including MSA. In this review, we focused on the relation between glutathione deficiency, miRNA dysregulation and oxidative stress and their close relation with MSA pathology.
Collapse
Affiliation(s)
- Chisato Kinoshita
- Department of Pharmacology, Teikyo University School of Medicine, 2-11-1 Kaga, Itabashi, Tokyo 173-8605, Japan
| | - Noriko Kubota
- Department of Pharmacology, Teikyo University School of Medicine, 2-11-1 Kaga, Itabashi, Tokyo 173-8605, Japan
- Teikyo University Support Center for Women Physicians and Researchers, 2-11-1 Kaga, Itabashi, Tokyo 173-8605, Japan
| | - Koji Aoyama
- Department of Pharmacology, Teikyo University School of Medicine, 2-11-1 Kaga, Itabashi, Tokyo 173-8605, Japan
| |
Collapse
|
4
|
Kalhori MR, Soleimani M, Yari K, Moradi M, Kalhori AA. MiR-1290: a potential therapeutic target for regenerative medicine or diagnosis and treatment of non-malignant diseases. Clin Exp Med 2022:10.1007/s10238-022-00854-9. [PMID: 35802264 DOI: 10.1007/s10238-022-00854-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2022] [Accepted: 06/20/2022] [Indexed: 11/03/2022]
Abstract
MicroRNAs are a set of small non-coding RNAs that could change gene expression with post-transcriptional regulation. MiRNAs have a significant role in regulating molecular signaling pathways and innate and adaptive immune system activity. Moreover, miRNAs can be utilized as a powerful instrument for tissue engineers and regenerative medicine by altering the expression of genes and growth factors. MiR-1290, which was first discovered in human embryonic stem cells, is one of those miRNAs that play an essential role in developing the fetal nervous system. This review aims to discuss current findings on miR-1290 in different human pathologies and determine whether manipulation of miR-1290 could be considered a possible therapeutic strategy to treat different non-malignant diseases. The results of these studies suggest that the regulation of miR-1290 may be helpful in the treatment of some bacterial (leprosy) and viral infections (HIV, influenza A, and Borna disease virus). Also, adjusting the expression of miR-1290 in non-infectious diseases such as celiac disease, necrotizing enterocolitis, polycystic ovary syndrome, pulmonary fibrosis, ankylosing spondylitis, muscle atrophy, sarcopenia, and ischemic heart disease can help to treat these diseases better. In addition to acting as a biomarker for the diagnosis of non-malignant diseases (such as NAFLD, fetal growth, preeclampsia, down syndrome, chronic rhinosinusitis, and oral lichen planus), the miR-1290 can also be used as a valuable instrument in tissue engineering and reconstructive medicine. Consequently, it is suggested that the regulation of miR-1290 could be considered a possible therapeutic target in the treatment of non-malignant diseases in the future.
Collapse
Affiliation(s)
- Mohammad Reza Kalhori
- Regenerative Medicine Research Center, Kermanshah University of Medical Sciences, Kermanshah, Iran.
| | - Masoud Soleimani
- Department of Hematology, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran
| | - Kheirollah Yari
- Medical Biology Research Center, Health Technology Institute, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Mahmoudreza Moradi
- Regenerative Medicine Research Center, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Amir Ali Kalhori
- Regenerative Medicine Research Center, Kermanshah University of Medical Sciences, Kermanshah, Iran
| |
Collapse
|
5
|
Noronha O, Mesarosovo L, Anink JJ, Iyer A, Aronica E, Mills JD. Differentially Expressed miRNAs in Age-Related Neurodegenerative Diseases: A Meta-Analysis. Genes (Basel) 2022; 13:genes13061034. [PMID: 35741796 PMCID: PMC9222420 DOI: 10.3390/genes13061034] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2022] [Revised: 06/02/2022] [Accepted: 06/05/2022] [Indexed: 02/05/2023] Open
Abstract
To date, no neurodegenerative diseases (NDDs) have cures, and the underlying mechanism of their pathogenesis is undetermined. As miRNAs extensively regulate all biological processes and are crucial regulators of healthy brain function, miRNAs differentially expressed in NDDs may provide insight into the factors that contribute to the emergence of protein inclusions and the propagation of deleterious cellular environments. A meta-analysis of miRNAs dysregulated in Alzheimer’s disease, Parkinson’s disease, multiple system atrophy, progressive supranuclear palsy, corticobasal degeneration, dementia with Lewy bodies and frontotemporal lobar degeneration (TDP43 variant) was performed to determine if diseases within a proteinopathy have distinct or shared mechanisms of action leading to neuronal death, and if proteinopathies can be classified on the basis of their miRNA profiles. Our results identified both miRNAs distinct to the anatomy, disease type and pathology, and miRNAs consistently dysregulated within single proteinopathies and across neurodegeneration in general. Our results also highlight the necessity to minimize the variability between studies. These findings showcase the need for more transcriptomic research on infrequently occurring NDDs, and the need for the standardization of research techniques and platforms utilized across labs and diseases.
Collapse
Affiliation(s)
- Ocana Noronha
- Department of (Neuro)Pathology, Amsterdam UMC, University of Amsterdam, Amsterdam Neuroscience, 1105 AZ Amsterdam, The Netherlands; (O.N.); (L.M.); (J.J.A.); (E.A.)
- Neurodegenerative Disorders Collaborative Laboratory, RIKEN Center for Brain Science, Saitama 351-0106, Japan
| | - Lucia Mesarosovo
- Department of (Neuro)Pathology, Amsterdam UMC, University of Amsterdam, Amsterdam Neuroscience, 1105 AZ Amsterdam, The Netherlands; (O.N.); (L.M.); (J.J.A.); (E.A.)
| | - Jasper J. Anink
- Department of (Neuro)Pathology, Amsterdam UMC, University of Amsterdam, Amsterdam Neuroscience, 1105 AZ Amsterdam, The Netherlands; (O.N.); (L.M.); (J.J.A.); (E.A.)
| | - Anand Iyer
- Department of Internal Medicine, Erasmus Medicine Center, 3015 GD Rotterdam, The Netherlands;
| | - Eleonora Aronica
- Department of (Neuro)Pathology, Amsterdam UMC, University of Amsterdam, Amsterdam Neuroscience, 1105 AZ Amsterdam, The Netherlands; (O.N.); (L.M.); (J.J.A.); (E.A.)
| | - James D. Mills
- Department of (Neuro)Pathology, Amsterdam UMC, University of Amsterdam, Amsterdam Neuroscience, 1105 AZ Amsterdam, The Netherlands; (O.N.); (L.M.); (J.J.A.); (E.A.)
- Department of Clinical and Experimental Epilepsy, University College London, London WC1E 6BT, UK
- Chalfont Centre for Epilepsy, Chalfont St Peter, Gerrards Cross SL9 0RJ, UK
- Correspondence:
| |
Collapse
|
6
|
Li Z, Guo W, Ding S, Chen L, Feng K, Huang T, Cai YD. Identifying Key MicroRNA Signatures for Neurodegenerative Diseases With Machine Learning Methods. Front Genet 2022; 13:880997. [PMID: 35528544 PMCID: PMC9068882 DOI: 10.3389/fgene.2022.880997] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2022] [Accepted: 03/30/2022] [Indexed: 01/28/2023] Open
Abstract
Neurodegenerative diseases, including Alzheimer's disease (AD), Parkinson's disease, and many other disease types, cause cognitive dysfunctions such as dementia via the progressive loss of structure or function of the body's neurons. However, the etiology of these diseases remains unknown, and diagnosing less common cognitive disorders such as vascular dementia (VaD) remains a challenge. In this work, we developed a machine-leaning-based technique to distinguish between normal control (NC), AD, VaD, dementia with Lewy bodies, and mild cognitive impairment at the microRNA (miRNA) expression level. First, unnecessary miRNA features in the miRNA expression profiles were removed using the Boruta feature selection method, and the retained feature sets were sorted using minimum redundancy maximum relevance and Monte Carlo feature selection to provide two ranking feature lists. The incremental feature selection method was used to construct a series of feature subsets from these feature lists, and the random forest and PART classifiers were trained on the sample data consisting of these feature subsets. On the basis of the model performance of these classifiers with different number of features, the best feature subsets and classifiers were identified, and the classification rules were retrieved from the optimal PART classifiers. Finally, the link between candidate miRNA features, including hsa-miR-3184-5p, has-miR-6088, and has-miR-4649, and neurodegenerative diseases was confirmed using recently published research, laying the groundwork for more research on miRNAs in neurodegenerative diseases for the diagnosis of cognitive impairment and the understanding of potential pathogenic mechanisms.
Collapse
Affiliation(s)
- ZhanDong Li
- College of Food Engineering, Jilin Engineering Normal University, Changchun, China
| | - Wei Guo
- Key Laboratory of Stem Cell Biology, Shanghai Jiao Tong University School of Medicine (SJTUSM) and Shanghai Institutes for Biological Sciences (SIBS), Chinese Academy of Sciences (CAS), Shanghai, China
| | - ShiJian Ding
- School of Life Sciences, Shanghai University, Shanghai, China
| | - Lei Chen
- College of Information Engineering, Shanghai Maritime University, Shanghai, China
| | - KaiYan Feng
- Department of Computer Science, Guangdong AIB Polytechnic College, Guangzhou, China
| | - Tao Huang
- Bio-Med Big Data Center, CAS Key Laboratory of Computational Biology, Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, China.,CAS Key Laboratory of Tissue Microenvironment and Tumor, Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Yu-Dong Cai
- School of Life Sciences, Shanghai University, Shanghai, China
| |
Collapse
|
7
|
Bougea A. MicroRNA as Candidate Biomarkers in Atypical Parkinsonian Syndromes: Systematic Literature Review. Medicina (B Aires) 2022; 58:medicina58040483. [PMID: 35454322 PMCID: PMC9025474 DOI: 10.3390/medicina58040483] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2022] [Revised: 03/18/2022] [Accepted: 03/24/2022] [Indexed: 02/06/2023] Open
Abstract
Background and Objectives: Multiple system atrophy (MSA) and progressive supranuclear palsy (PSP) are rare atypical parkinsonian syndromes, characterized by motor and cognitive symptoms. Their clinical diagnosis is challenging because there are no established biomarkers. Dysregulation of microRNAs (miRNAs/miRs) has been reported to serve an important role in neurodegenerative diseases. However, the miRNA profiles of MSA and PSP patients are rarely reported. The aim of this study was to critically review the role of miRNAs as diagnostic biomarkers to differentiate these atypical parkinsonian disorders and their role in disease pathogenesis. Materials and Methods: A systematic literature search of PubMed was conducted up to February 2022 according the Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) guidelines. Results: A total of 15 studies were analyzed. Three studies have shown that miR-9-3p, miR-19a, miR-19b, and miR-24 are potential biomarkers for MSA. In two studies, miR-132 was downregulated, whereas miR-147a and miR-518e were upregulated in the brain tissue of PSP patients. Conclusions: The potential of miRNA is still uncertain as a potential differential diagnostic marker to identify these disorders. Pre-analytical and analytical factors of included studies were important limitations to justify the introduction of miRNAs into clinical practice.
Collapse
Affiliation(s)
- Anastasia Bougea
- 1st Department of Neurology, Eginition Hospital, Medical School, National and Kapodistrian University of Athens, 72-74 Vassilisis Sofia's Avenue, 11528 Athens, Greece
| |
Collapse
|
8
|
Ghafouri-Fard S, Abak A, Khademi S, Shoorei H, Bahroudi Z, Taheri M, Akbari Dilmaghani N. Functional roles of non-coding RNAs in atrophy. Biomed Pharmacother 2021; 141:111820. [PMID: 34146849 DOI: 10.1016/j.biopha.2021.111820] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2021] [Revised: 06/08/2021] [Accepted: 06/11/2021] [Indexed: 02/07/2023] Open
Abstract
Atrophy is defined as a reduction in cell, organ, or tissue size after reaching their normal mature sizes because of loss of organelles, cytoplasmic compartments, and proteins. This process is also involved in the pathogenesis of human disorders. Inadequate nourishment, poor circulation, inadequate hormonal support, defects in nerve supply of the tissue, disproportionate induction of apoptosis in the tissue, and absence of exercise are some underlying causes of atrophy. Recently, several non-coding RNAs (ncRNAs) have been identified that regulate atrophy, thus participating in the pathobiology of related disorders such as neurodegenerative/ neuromuscular diseases, age-related muscle atrophy, and cardiac tissue atrophy. In the current review, we have focused on two classes of ncRNAs namely long ncRNAs (lncRNAs) and microRNAs (miRNAs) to unravel their participation in atrophy-associated disorders.
Collapse
Affiliation(s)
- Soudeh Ghafouri-Fard
- Department of Medical Genetics, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Atefe Abak
- Men's Health and Reproductive Health Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Shiva Khademi
- Department of Medical Nanotechnology, Faculty of Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Hamed Shoorei
- Department of Anatomical Sciences, Faculty of Medicine, Birjand University of Medical Sciences, Birjand, Iran
| | - Zahra Bahroudi
- Department of Anatomical Sciences, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Mohammad Taheri
- Urology and Nephrology Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| | - Nader Akbari Dilmaghani
- Skull Base Research Center, Loghman Hakim Hospital, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
9
|
Pérez-Soriano A, Martí MJ. Mini-Review: The MSA transcriptome. Neurosci Lett 2020; 743:135586. [PMID: 33352281 DOI: 10.1016/j.neulet.2020.135586] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2020] [Accepted: 12/13/2020] [Indexed: 02/07/2023]
Abstract
Multiple system atrophy (MSA) is an atypical parkinsonism that rapidly affects motor ability and autonomic function, leaving patients wheelchair-bound and dependent for daily activities in 3-5 years. Differential diagnosis is challenging as cases may resemble Parkinson's disease or other ataxic syndromes depending on the clinical variant (MSA-P or MSA-C), especially in early stages. There are limited symptomatic treatments and no disease-modifying therapies. Pathologically, alpha-synuclein aggregates are found in glial cytoplasmic inclusions, among other proteins, as well as in neurons. The molecular pathogenesis of the disease, however, is widely unknown. Transcriptomic studies in MSA have tried to unravel the pathological mechanisms involved in the disease. Several biological and molecular processes have been described in the literature that associate disease pathogenesis with inflammation, mitochondrial, and autophagy related dysfunctions, as well as prion disease and Alzheimer disease associated pathways. These reports have also registered several differential diagnostic biomarker candidates. However, cross-validation between studies, in general, is poor, making clinical applicability and data reliability very challenging. This review will go over the main transcriptomic studies done in MSA, reporting on the most significant transcriptive and post-transcriptive changes described, and focusing on the main consensual findings.
Collapse
Affiliation(s)
- Alexandra Pérez-Soriano
- Parkinson's Disease & Movement Disorders Unit, Hospital Clínic / IDIBAPS / CIBERNED CB06/05/0018/ European Reference Network for Rare NeurologicalDiseases (ERN-RND Project ID: 739510) / Institut de Neurociències, University of Barcelona, Catalonia, Spain
| | - María J Martí
- Parkinson's Disease & Movement Disorders Unit, Hospital Clínic / IDIBAPS / CIBERNED CB06/05/0018/ European Reference Network for Rare NeurologicalDiseases (ERN-RND Project ID: 739510) / Institut de Neurociències, University of Barcelona, Catalonia, Spain.
| |
Collapse
|
10
|
Pérez-Soriano A, Bravo P, Soto M, Infante J, Fernández M, Valldeoriola F, Muñoz E, Compta Y, Tolosa E, Garrido A, Ezquerra M, Fernández-Santiago R, Martí MJ. MicroRNA Deregulation in Blood Serum Identifies Multiple System Atrophy Altered Pathways. Mov Disord 2020; 35:1873-1879. [PMID: 32687224 DOI: 10.1002/mds.28143] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2020] [Revised: 05/16/2020] [Accepted: 05/20/2020] [Indexed: 12/12/2022] Open
Abstract
BACKGROUND AND OBJECTIVES MicroRNA (miRNA) changes are observed in PD but remain poorly explored in other α-synucleinopathies such as MSA. METHODS By genome-wide analysis we profiled microRNA expression in serum from 20 MSA cases compared to 40 controls. By qPCR we validated top differentially expressed microRNAs in another sample of 20 MSA and 20 controls. We also assessed the expression of MSA differentially expressed microRNAs in two consecutive sets of 19 and 18 PD patients. RESULTS In the discovery set we identified 25 differentially expressed microRNAs associated with MSA, which are related to prion disease, fatty acid metabolism, and Notch signaling. Among these, we selected nine differentially expressed microRNAs and by qPCR confirmed array findings in a second MSA sample. MicroRNA-7641 and microRNA-191 consistently differentiated between MSA and PD. CONCLUSIONS Serum microRNA changes occur in MSA and may reflect disease-associated mechanisms. We identified two microRNAs which may differentiate MSA from PD. © 2020 International Parkinson and Movement Disorder Society.
Collapse
Affiliation(s)
- Alexandra Pérez-Soriano
- Lab of Parkinson Disease and Other Neurodegenerative Movement Disorders: Clinical and Experimental Research; Department of Neurology, Hospital Clínic de Barcelona, Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Institut de Neurociències, Universitat de Barcelona, Barcelona, Spain.,Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED: CB06/05/0018-ISCIII) Barcelona, Spain.,Parkinson's disease & Movement Disorders Unit, Neurology Service, Hospital Clínic de Barcelona, ERN-RND, Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), University of Barcelona, Barcelona, Spain
| | - Paloma Bravo
- Lab of Parkinson Disease and Other Neurodegenerative Movement Disorders: Clinical and Experimental Research; Department of Neurology, Hospital Clínic de Barcelona, Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Institut de Neurociències, Universitat de Barcelona, Barcelona, Spain
| | - Marta Soto
- Lab of Parkinson Disease and Other Neurodegenerative Movement Disorders: Clinical and Experimental Research; Department of Neurology, Hospital Clínic de Barcelona, Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Institut de Neurociències, Universitat de Barcelona, Barcelona, Spain
| | - Jon Infante
- Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED: CB06/05/0018-ISCIII) Barcelona, Spain.,Movement Disorders Unit, Department of Neurology, Hospital Universitario Marqués de Valdecilla, Universidad de Cantabria, Santander, Spain
| | - Manel Fernández
- Lab of Parkinson Disease and Other Neurodegenerative Movement Disorders: Clinical and Experimental Research; Department of Neurology, Hospital Clínic de Barcelona, Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Institut de Neurociències, Universitat de Barcelona, Barcelona, Spain.,Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED: CB06/05/0018-ISCIII) Barcelona, Spain.,Parkison's disease and Movement Disorders group of the Institut de Neurociènices (Universitat de Barcelona), Barcelona, Spain
| | - Francesc Valldeoriola
- Lab of Parkinson Disease and Other Neurodegenerative Movement Disorders: Clinical and Experimental Research; Department of Neurology, Hospital Clínic de Barcelona, Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Institut de Neurociències, Universitat de Barcelona, Barcelona, Spain.,Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED: CB06/05/0018-ISCIII) Barcelona, Spain.,Parkinson's disease & Movement Disorders Unit, Neurology Service, Hospital Clínic de Barcelona, ERN-RND, Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), University of Barcelona, Barcelona, Spain
| | - Esteban Muñoz
- Lab of Parkinson Disease and Other Neurodegenerative Movement Disorders: Clinical and Experimental Research; Department of Neurology, Hospital Clínic de Barcelona, Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Institut de Neurociències, Universitat de Barcelona, Barcelona, Spain.,Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED: CB06/05/0018-ISCIII) Barcelona, Spain.,Parkinson's disease & Movement Disorders Unit, Neurology Service, Hospital Clínic de Barcelona, ERN-RND, Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), University of Barcelona, Barcelona, Spain
| | - Yaroslau Compta
- Lab of Parkinson Disease and Other Neurodegenerative Movement Disorders: Clinical and Experimental Research; Department of Neurology, Hospital Clínic de Barcelona, Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Institut de Neurociències, Universitat de Barcelona, Barcelona, Spain.,Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED: CB06/05/0018-ISCIII) Barcelona, Spain.,Parkinson's disease & Movement Disorders Unit, Neurology Service, Hospital Clínic de Barcelona, ERN-RND, Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), University of Barcelona, Barcelona, Spain
| | - Eduard Tolosa
- Lab of Parkinson Disease and Other Neurodegenerative Movement Disorders: Clinical and Experimental Research; Department of Neurology, Hospital Clínic de Barcelona, Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Institut de Neurociències, Universitat de Barcelona, Barcelona, Spain.,Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED: CB06/05/0018-ISCIII) Barcelona, Spain.,Parkinson's disease & Movement Disorders Unit, Neurology Service, Hospital Clínic de Barcelona, ERN-RND, Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), University of Barcelona, Barcelona, Spain
| | - Alicia Garrido
- Lab of Parkinson Disease and Other Neurodegenerative Movement Disorders: Clinical and Experimental Research; Department of Neurology, Hospital Clínic de Barcelona, Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Institut de Neurociències, Universitat de Barcelona, Barcelona, Spain.,Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED: CB06/05/0018-ISCIII) Barcelona, Spain.,Parkinson's disease & Movement Disorders Unit, Neurology Service, Hospital Clínic de Barcelona, ERN-RND, Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), University of Barcelona, Barcelona, Spain
| | - Mario Ezquerra
- Lab of Parkinson Disease and Other Neurodegenerative Movement Disorders: Clinical and Experimental Research; Department of Neurology, Hospital Clínic de Barcelona, Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Institut de Neurociències, Universitat de Barcelona, Barcelona, Spain.,Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED: CB06/05/0018-ISCIII) Barcelona, Spain
| | - Rubén Fernández-Santiago
- Lab of Parkinson Disease and Other Neurodegenerative Movement Disorders: Clinical and Experimental Research; Department of Neurology, Hospital Clínic de Barcelona, Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Institut de Neurociències, Universitat de Barcelona, Barcelona, Spain.,Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED: CB06/05/0018-ISCIII) Barcelona, Spain
| | - María-José Martí
- Lab of Parkinson Disease and Other Neurodegenerative Movement Disorders: Clinical and Experimental Research; Department of Neurology, Hospital Clínic de Barcelona, Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Institut de Neurociències, Universitat de Barcelona, Barcelona, Spain.,Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED: CB06/05/0018-ISCIII) Barcelona, Spain.,Parkinson's disease & Movement Disorders Unit, Neurology Service, Hospital Clínic de Barcelona, ERN-RND, Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), University of Barcelona, Barcelona, Spain
| | | |
Collapse
|
11
|
Xiang C, Han S, Nao J, Cong S. MicroRNAs Dysregulation and Metabolism in Multiple System Atrophy. Front Neurosci 2019; 13:1103. [PMID: 31680837 PMCID: PMC6811505 DOI: 10.3389/fnins.2019.01103] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2019] [Accepted: 09/30/2019] [Indexed: 12/13/2022] Open
Abstract
Multiple system atrophy (MSA) is an adult onset, fatal disease, characterized by an accumulation of alpha-synuclein (α-syn) in oligodendroglial cells. MicroRNAs (miRNAs) are small non-coding RNAs involved in post-translational regulation and several biological processes. Disruption of miRNA-related pathways in the central nervous system (CNS) plays an important role in the pathogenesis of neurodegenerative diseases, including MSA. While the exact mechanisms underlying miRNAs in the pathogenesis of MSA remain unclear, it is known that miRNAs can repress the translation of messenger RNAs (mRNAs) that regulate the following pathogenesis associated with MSA: autophagy, neuroinflammation, α-syn accumulation, synaptic transmission, oxidative stress, and apoptosis. In this review, the metabolism of miRNAs and their functional roles in the pathogenesis of MSA are discussed, thereby highlighting miRNAs as potential new biomarkers for the diagnosis of MSA and in increasing our understanding of the disease process.
Collapse
Affiliation(s)
- Chunchen Xiang
- Department of Neurology, Shengjing Hospital of China Medical University, Shenyang, China
| | - Shunchang Han
- Department of Neurology, Shengjing Hospital of China Medical University, Shenyang, China
| | - Jianfei Nao
- Department of Neurology, Shengjing Hospital of China Medical University, Shenyang, China
| | - Shuyan Cong
- Department of Neurology, Shengjing Hospital of China Medical University, Shenyang, China
| |
Collapse
|
12
|
Kim T, Valera E, Desplats P. Alterations in Striatal microRNA-mRNA Networks Contribute to Neuroinflammation in Multiple System Atrophy. Mol Neurobiol 2019; 56:7003-7021. [PMID: 30968343 DOI: 10.1007/s12035-019-1577-3] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2019] [Accepted: 03/20/2019] [Indexed: 10/27/2022]
Abstract
Multiple systems atrophy (MSA) is a rare neurodegenerative disorder characterized by the accumulation of α-synuclein in glial cells and neurodegeneration in the striatum, substantia nigra, and cerebellum. Aberrant miRNA regulation has been associated with neurodegeneration, including alterations of specific miRNAs in brain tissue, serum, and cerebrospinal fluid from MSA patients. Still, a causal link between deregulation of miRNA networks and pathological changes in the transcriptome remains elusive. We profiled ~ 800 miRNAs in the striatum of MSA patients in comparison to healthy individuals to identify specific miRNAs altered in MSA. In addition, we performed a parallel screening of 700 transcripts associated with neurodegeneration to determine the impact of miRNA deregulation on the transcriptome. We identified 60 miRNAs with abnormal levels in MSA brains that are involved in extracellular matrix receptor interactions, prion disease, inflammation, ubiquitin-mediated proteolysis, and addiction pathways. Using the correlation between miRNA expression and the abundance of their known targets, miR-124-3p, miR-19a-3p, miR-27b-3p, and miR-29c-3p were identified as key regulators altered in MSA, mainly contributing to neuroinflammation. Finally, our study also uncovered a potential link between Alzheimer's disease (AD) and MSA pathologies that involves miRNAs and deregulation of BACE1. Our results provide a comprehensive appraisal of miRNA alterations in MSA and their effect on the striatal transcriptome, supporting that aberrant miRNA expression is highly correlated with changes in gene transcription associated with MSA neuropathology, in particular those driving inflammation, disrupting myelination, and potentially impacting α-synuclein accumulation via deregulation of autophagy and prion mechanisms.
Collapse
Affiliation(s)
- Taeyeon Kim
- Department of Neuroscience, University of California San Diego, 9500 Gilman Dr., MTF 344 MC0624, La Jolla, CA, 92093-0624, USA
| | - Elvira Valera
- Department of Neuroscience, University of California San Diego, 9500 Gilman Dr., MTF 344 MC0624, La Jolla, CA, 92093-0624, USA
| | - Paula Desplats
- Department of Neuroscience, University of California San Diego, 9500 Gilman Dr., MTF 344 MC0624, La Jolla, CA, 92093-0624, USA. .,Department of Pathology, University of California San Diego, 9500 Gilman Dr., MTF 344 MC0624, La Jolla, CA, 92093-0624, USA.
| |
Collapse
|
13
|
Ramaswamy P, Christopher R, Pal PK, Yadav R. MicroRNAs to differentiate Parkinsonian disorders: Advances in biomarkers and therapeutics. J Neurol Sci 2018; 394:26-37. [PMID: 30196132 DOI: 10.1016/j.jns.2018.08.032] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2018] [Revised: 08/30/2018] [Accepted: 08/30/2018] [Indexed: 12/28/2022]
Abstract
Parkinsonian disorders are a set of progressive neurodegenerative movement disorders characterized by rigidity, tremor, bradykinesia, postural instability and their distinction has significant implications in terms of management and prognosis. Parkinson's disease (PD) is the most common among them. Its clinical diagnosis is challenging and, it can be misdiagnosed in the early stages. Multiple system atrophy and progressive supranuclear palsy are the close mimickers in early stages, due to overlapping clinical features. MicroRNAs are a class of stable non-coding small RNA molecules implicated in post-transcriptional gene regulation. Current studies propose that miRNAs play an essential role in the pathobiology of multiple neurodegenerative disorders including Parkinsonism, and they seem to be one of the reasonably available methods to aid in the differential diagnosis between PD and related disorders. MicroRNA-based diagnostic biomarkers and therapeutics are a powerful tool to understand and explore the function of the pathogenic gene/s, their mechanism in the disease pathobiology, and to validate drug targets. In this review, we emphasize on the recent developments in the usage of miRNAs as diagnostic biomarkers to identify PD and to differentiate it from atypical parkinsonian conditions, their role in disease pathogenesis, and their possible utility in the therapy of these disorders.
Collapse
Affiliation(s)
- Palaniswamy Ramaswamy
- Department of Neurology, National Institute of Mental Health and Neuro Sciences (NIMHANS), Bengaluru 560029, India
| | - Rita Christopher
- Department of Neurochemistry, National Institute of Mental Health and Neuro Sciences (NIMHANS), Bengaluru 560029, India
| | - Pramod Kumar Pal
- Department of Neurology, National Institute of Mental Health and Neuro Sciences (NIMHANS), Bengaluru 560029, India
| | - Ravi Yadav
- Department of Neurology, National Institute of Mental Health and Neuro Sciences (NIMHANS), Bengaluru 560029, India.
| |
Collapse
|
14
|
Jamali L, Tofigh R, Tutunchi S, Panahi G, Borhani F, Akhavan S, Nourmohammadi P, Ghaderian SM, Rasouli M, Mirzaei H. Circulating microRNAs as diagnostic and therapeutic biomarkers in gastric and esophageal cancers. J Cell Physiol 2018; 233:8538-8550. [DOI: 10.1002/jcp.26850] [Citation(s) in RCA: 105] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2018] [Accepted: 05/10/2018] [Indexed: 12/19/2022]
Affiliation(s)
- Leila Jamali
- Department of Medical Genetics School of Medicine, Shahid Beheshti University of Medical Sciences Tehran Iran
| | | | - Sara Tutunchi
- Department of Medical Genetics Shahid Sadoughi University of Medical Sciences Yazd Iran
| | - Ghodratollah Panahi
- Department of Biochemistry Faculty of Medicine, Tehran University of Medical Sciences Tehran Iran
| | - Fatemeh Borhani
- Department of Basic Sciences Faculty of Medicine, Gonabad University of Medical Sciences Gonabad Iran
- Department of Basic Sciences Faculty of Medicine, Shahid Beheshti University of Medical Sciences Tehran Iran
| | - Saeedeh Akhavan
- Department of Biology School of Basic Sciences, Science and Research Branch, Islamic Azad University Tehran Iran
| | - Parisa Nourmohammadi
- Department of Medical Genetics Shahid Sadoughi University of Medical Sciences Yazd Iran
| | - Sayyed M.H. Ghaderian
- Urogenital Stem Cell Research Shahid Beheshti University of Medical Sciences Tehran Iran
| | - Milad Rasouli
- Department of Immunology Faculty of Medical Sciences, Tarbiat Modares University Tehran Iran
| | - Hamed Mirzaei
- Department of Medical Biotechnology School of Medicine Mashhad University of Medical Sciences Mashhad Iran
| |
Collapse
|
15
|
Abstract
Multiple system atrophy (MSA) is an orphan, fatal, adult-onset neurodegenerative disorder of uncertain etiology that is clinically characterized by various combinations of parkinsonism, cerebellar, autonomic, and motor dysfunction. MSA is an α-synucleinopathy with specific glioneuronal degeneration involving striatonigral, olivopontocerebellar, and autonomic nervous systems but also other parts of the central and peripheral nervous systems. The major clinical variants correlate with the morphologic phenotypes of striatonigral degeneration (MSA-P) and olivopontocerebellar atrophy (MSA-C). While our knowledge of the molecular pathogenesis of this devastating disease is still incomplete, updated consensus criteria and combined fluid and imaging biomarkers have increased its diagnostic accuracy. The neuropathologic hallmark of this unique proteinopathy is the deposition of aberrant α-synuclein in both glia (mainly oligodendroglia) and neurons forming glial and neuronal cytoplasmic inclusions that cause cell dysfunction and demise. In addition, there is widespread demyelination, the pathogenesis of which is not fully understood. The pathogenesis of MSA is characterized by propagation of misfolded α-synuclein from neurons to oligodendroglia and cell-to-cell spreading in a "prion-like" manner, oxidative stress, proteasomal and mitochondrial dysfunction, dysregulation of myelin lipids, decreased neurotrophic factors, neuroinflammation, and energy failure. The combination of these mechanisms finally results in a system-specific pattern of neurodegeneration and a multisystem involvement that are specific for MSA. Despite several pharmacological approaches in MSA models, addressing these pathogenic mechanisms, no effective neuroprotective nor disease-modifying therapeutic strategies are currently available. Multidisciplinary research to elucidate the genetic and molecular background of the deleterious cycle of noxious processes, to develop reliable biomarkers and targets for effective treatment of this hitherto incurable disorder is urgently needed.
Collapse
|