1
|
Qin C, Yang S, Chu YH, Zhang H, Pang XW, Chen L, Zhou LQ, Chen M, Tian DS, Wang W. Signaling pathways involved in ischemic stroke: molecular mechanisms and therapeutic interventions. Signal Transduct Target Ther 2022; 7:215. [PMID: 35794095 PMCID: PMC9259607 DOI: 10.1038/s41392-022-01064-1] [Citation(s) in RCA: 385] [Impact Index Per Article: 128.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2022] [Revised: 06/01/2022] [Accepted: 06/15/2022] [Indexed: 02/07/2023] Open
Abstract
Ischemic stroke is caused primarily by an interruption in cerebral blood flow, which induces severe neural injuries, and is one of the leading causes of death and disability worldwide. Thus, it is of great necessity to further detailly elucidate the mechanisms of ischemic stroke and find out new therapies against the disease. In recent years, efforts have been made to understand the pathophysiology of ischemic stroke, including cellular excitotoxicity, oxidative stress, cell death processes, and neuroinflammation. In the meantime, a plethora of signaling pathways, either detrimental or neuroprotective, are also highly involved in the forementioned pathophysiology. These pathways are closely intertwined and form a complex signaling network. Also, these signaling pathways reveal therapeutic potential, as targeting these signaling pathways could possibly serve as therapeutic approaches against ischemic stroke. In this review, we describe the signaling pathways involved in ischemic stroke and categorize them based on the pathophysiological processes they participate in. Therapeutic approaches targeting these signaling pathways, which are associated with the pathophysiology mentioned above, are also discussed. Meanwhile, clinical trials regarding ischemic stroke, which potentially target the pathophysiology and the signaling pathways involved, are summarized in details. Conclusively, this review elucidated potential molecular mechanisms and related signaling pathways underlying ischemic stroke, and summarize the therapeutic approaches targeted various pathophysiology, with particular reference to clinical trials and future prospects for treating ischemic stroke.
Collapse
Affiliation(s)
- Chuan Qin
- Department of Neurology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Sheng Yang
- Department of Neurology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Yun-Hui Chu
- Department of Neurology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Hang Zhang
- Department of Neurology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Xiao-Wei Pang
- Department of Neurology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Lian Chen
- Department of Neurology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Luo-Qi Zhou
- Department of Neurology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Man Chen
- Department of Neurology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Dai-Shi Tian
- Department of Neurology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China.
| | - Wei Wang
- Department of Neurology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China.
| |
Collapse
|
2
|
Wang QS, Wang YL, Zhang WY, Li KD, Luo XF, Cui YL. Puerarin from Pueraria lobata alleviates the symptoms of irritable bowel syndrome-diarrhea. Food Funct 2021; 12:2211-2224. [PMID: 33595580 DOI: 10.1039/d0fo02848g] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
As a functional bowel disorder, irritable bowel syndrome (IBS), especially IBS-diarrhea (IBS-D), affects approximately 9-20% of the population worldwide. Classical treatments for IBS usually result in some side effects and intestinal microbial disorders, which inhibit the clinical effects. Natural edible medicines with beneficial effects and few side effects have received more attention in recent years. Puerarin is the main active ingredient in pueraria and has been used in China to treat splenasthenic diarrhea and as a natural food in folk medicine for hundreds of years. However, there have been no reports of using puerarin in the treatment of IBS-D, and the underlying mechanism is also still unclear. In this study, a comprehensive model that could reflect the symptoms of IBS-D was established by combining neonatal maternal separation (NMS) and adult colonic acetic acid stimulation (ACAAS) in rats. The results showed that puerarin could reverse the abdominal pain and diarrhea in IBS-D rats. The therapeutic effect was realized by regulating the richness of the gut microbiota to maintain the stabilization of the intestinal micro-ecology. Furthermore, the possible mechanism might be related to the activity of the hypothalamic-pituitary-adrenal (HPA) axis by the suppressed expression of corticotropin-releasing hormone receptor (CRF) 1. At the same time, intestinal function was improved by enhancing the proliferation of colonic epithelial cells by upregulating the expression of p-ERK/ERK and by repairing the colonic mucus barrier by upregulating occludin expression. All these results suggest that puerarin could exert excellent therapeutic effects on IBS-D.
Collapse
Affiliation(s)
- Qiang-Song Wang
- Institute of Biomedical Engineering, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin 300192, People's Republic of China
| | - Yi-Lun Wang
- State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, People's Republic of China.
| | - Wen-Yan Zhang
- State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, People's Republic of China.
| | - Kuang-Dai Li
- State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, People's Republic of China.
| | - Xiong-Fei Luo
- First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin 300193, People's Republic of China
| | - Yuan-Lu Cui
- State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, People's Republic of China.
| |
Collapse
|
3
|
Mohammed RA, Mansour SM. Sodium hydrogen sulfide upregulates cystathionine β-synthase and protects striatum against 3-nitropropionic acid-induced neurotoxicity in rats. J Pharm Pharmacol 2021; 73:310-321. [PMID: 33793881 DOI: 10.1093/jpp/rgaa072] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2020] [Accepted: 12/29/2020] [Indexed: 01/12/2023]
Abstract
OBJECTIVES Hydrogen sulfide (H2S) is a neuromodulator that plays a protective role in multiple neurodegenerative diseases including Alzheimer's (AD) and Parkinson's (PD). However, the precise mechanisms underlying its effects against Huntington's disease (HD) are still questioned.This study aimed to examine the neuroprotective effects of sodium hydrogen sulfide (NaHS; H2S donor) against 3-nitropropionic acid (3NP)-induced HD like pathology in rats. Methods: Male Wistar rats were randomly allocated into four groups; (1) normal control receiving saline; (2) NaHS control receiving (0.5 mg/kg/day, i.p.) for 14 days; (3,4) receiving 3NP (10 mg/kg/day, i.p.) for 14 days, with NaHS 30 min later in group 4. KEY FINDINGS NaHS improved cognitive and locomotor deficits induced by 3NP as confirmed by the striatal histopathological findings. These former events were biochemically supported by the increment in cystathionine β-synthase (CBS) gene expression, reduction of glutamate (Glu), dopamine (DA), malondialdehyde (MDA), tumour necrosis factor-alpha (TNF-α), cytochrome-c, cleaved caspase-3 and pc-FOS indicating antioxidant, anti-inflammatory as well as anti-apoptotic effects. Furthermore, NaHS pretreatment improved cholinergic dysfunction and increased brain-derived neurotropic factor (BDNF) and nuclear factor erythroid-2-related factor 2 (Nrf2). CONCLUSIONS These findings suggest that appropriate protection with H2S donors might represent a novel approach to slow down HD-like symptoms.
Collapse
Affiliation(s)
- Reham A Mohammed
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Cairo University, Cairo, Egypt
| | - Suzan M Mansour
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Cairo University, Cairo, Egypt.,Department of Pharmacology, Toxicology and Biochemistry, Faculty of Pharmaceutical Sciences and Pharmaceutical Industries, Future University in Egypt, Cairo, Egypt
| |
Collapse
|
4
|
Kim C, Livne-Bar I, Gronert K, Sivak JM. Fair-Weather Friends: Evidence of Lipoxin Dysregulation in Neurodegeneration. Mol Nutr Food Res 2020; 64:e1801076. [PMID: 31797529 DOI: 10.1002/mnfr.201801076] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2019] [Revised: 11/12/2019] [Indexed: 12/19/2022]
Abstract
Lipoxins (LXs) are autacoids, specialized proresolving lipid mediators (SPMs) acting locally in a paracrine or autocrine fashion. They belong to a complex superfamily of dietary small polyunsaturated fatty acid (PUFA)-metabolites, which direct potent cellular responses to resolve inflammation and restore tissue homeostasis. Together, these SPM activities have been intensely studied in systemic inflammation and acute injury or infection, but less is known about LX signaling and activities in the central nervous system. LXs are derived from arachidonic acid, an omega-6 PUFA. In addition to well-established roles in systemic inflammation resolution, they have increasingly become implicated in regulating neuroinflammatory and neurodegenerative processes. In particular, chronic inflammation plays a central role in Alzheimer's disease (AD) etiology, and dysregulated LX production and activities have been reported in a variety of AD rodent models and clinical tissue samples, yet with complex and sometimes conflicting results. In addition, reduced LX production following retinal injury has been reported recently by the authors, and an intriguing direct neuronal activity promoting survival and homeostasis in retinal and cortical neurons is demonstrated. Here, the authors review and clarify this growing literature and suggest new research directions to further elaborate the role of lipoxins in neurodegeneration.
Collapse
Affiliation(s)
- Changmo Kim
- Department of Laboratory Medicine and Pathobiology, University of Toronto School of Medicine, Toronto, ON, M5S 1A8, Canada
- Department of Ophthalmology and Vision Sciences, University of Toronto School of Medicine, Toronto, ON, M5S 1A8, Canada
- Krembil Research Institute, University Health Network, 60 Leonard Ave, Toronto, ON, M5T 0S8, Canada
| | - Izhar Livne-Bar
- Department of Laboratory Medicine and Pathobiology, University of Toronto School of Medicine, Toronto, ON, M5S 1A8, Canada
- Department of Ophthalmology and Vision Sciences, University of Toronto School of Medicine, Toronto, ON, M5S 1A8, Canada
- Krembil Research Institute, University Health Network, 60 Leonard Ave, Toronto, ON, M5T 0S8, Canada
| | - Karsten Gronert
- School of Optometry, Vision Science Program, University of California Berkeley, Berkeley, CA, 94720
- Infectious Disease and Immunity, University of California Berkeley, Berkeley, CA, 94720
| | - Jeremy M Sivak
- Department of Laboratory Medicine and Pathobiology, University of Toronto School of Medicine, Toronto, ON, M5S 1A8, Canada
- Department of Ophthalmology and Vision Sciences, University of Toronto School of Medicine, Toronto, ON, M5S 1A8, Canada
- Krembil Research Institute, University Health Network, 60 Leonard Ave, Toronto, ON, M5T 0S8, Canada
| |
Collapse
|
5
|
Delp J, Funke M, Rudolf F, Cediel A, Bennekou SH, van der Stel W, Carta G, Jennings P, Toma C, Gardner I, van de Water B, Forsby A, Leist M. Development of a neurotoxicity assay that is tuned to detect mitochondrial toxicants. Arch Toxicol 2019; 93:1585-1608. [PMID: 31190196 DOI: 10.1007/s00204-019-02473-y] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2019] [Accepted: 05/07/2019] [Indexed: 12/18/2022]
Abstract
Many neurotoxicants affect energy metabolism in man, but currently available test methods may still fail to predict mito- and neurotoxicity. We addressed this issue using LUHMES cells, i.e., human neuronal precursors that easily differentiate into mature neurons. Within the NeuriTox assay, they have been used to screen for neurotoxicants. Our new approach is based on culturing the cells in either glucose or galactose (Glc-Gal-NeuriTox) as the main carbohydrate source during toxicity testing. Using this Glc-Gal-NeuriTox assay, 52 mitochondrial and non-mitochondrial toxicants were tested. The panel of chemicals comprised 11 inhibitors of mitochondrial respiratory chain complex I (cI), 4 inhibitors of cII, 8 of cIII, and 2 of cIV; 8 toxicants were included as they are assumed to be mitochondrial uncouplers. In galactose, cells became more dependent on mitochondrial function, which made them 2-3 orders of magnitude more sensitive to various mitotoxicants. Moreover, galactose enhanced the specific neurotoxicity (destruction of neurites) compared to a general cytotoxicity (plasma membrane lysis) of the toxicants. The Glc-Gal-NeuriTox assay worked particularly well for inhibitors of cI and cIII, while the toxicity of uncouplers and non-mitochondrial toxicants did not differ significantly upon glucose ↔ galactose exchange. As a secondary assay, we developed a method to quantify the inhibition of all mitochondrial respiratory chain functions/complexes in LUHMES cells. The combination of the Glc-Gal-NeuriTox neurotoxicity screening assay with the mechanistic follow up of target site identification allowed both, a more sensitive detection of neurotoxicants and a sharper definition of the mode of action of mitochondrial toxicants.
Collapse
Affiliation(s)
- Johannes Delp
- Chair for In Vitro Toxicology and Biomedicine, Department of Inaugurated by the Doerenkamp-Zbinden Foundation, University of Konstanz, Universitaetsstr. 10, 78457, Constance, Germany
- Cooperative Doctorate College InViTe, University of Konstanz, Constance, Germany
| | - Melina Funke
- Chair for In Vitro Toxicology and Biomedicine, Department of Inaugurated by the Doerenkamp-Zbinden Foundation, University of Konstanz, Universitaetsstr. 10, 78457, Constance, Germany
| | - Franziska Rudolf
- Chair for In Vitro Toxicology and Biomedicine, Department of Inaugurated by the Doerenkamp-Zbinden Foundation, University of Konstanz, Universitaetsstr. 10, 78457, Constance, Germany
| | - Andrea Cediel
- Swetox Unit for Toxicological Sciences, Karolinska Institutet, Stockholm, Sweden
| | | | - Wanda van der Stel
- Division of Drug Discovery and Safety, Leiden Academic Centre for Drug Research, Leiden University, Einsteinweg 55, 2333 CC, Leiden, The Netherlands
| | - Giada Carta
- Division of Molecular and Computational Toxicology, Amsterdam Institute for Molecules, Medicines and Systems, Vrije Universiteit Amsterdam, Amsterdam, The Netherlands
| | - Paul Jennings
- Division of Molecular and Computational Toxicology, Amsterdam Institute for Molecules, Medicines and Systems, Vrije Universiteit Amsterdam, Amsterdam, The Netherlands
| | - Cosimo Toma
- Laboratory of Environmental Chemistry and Toxicology, Department of Environmental Health Sciences, Istituto di Ricerche Farmacologiche Mario Negri IRCCS, Via la Masa 19, 20156, Milan, Italy
| | | | - Bob van de Water
- Division of Drug Discovery and Safety, Leiden Academic Centre for Drug Research, Leiden University, Einsteinweg 55, 2333 CC, Leiden, The Netherlands
| | - Anna Forsby
- Swetox Unit for Toxicological Sciences, Karolinska Institutet, Stockholm, Sweden
- Department of Biochemistry and Biophysics, Stockholm University, Stockholm, Sweden
| | - Marcel Leist
- Chair for In Vitro Toxicology and Biomedicine, Department of Inaugurated by the Doerenkamp-Zbinden Foundation, University of Konstanz, Universitaetsstr. 10, 78457, Constance, Germany.
| |
Collapse
|
6
|
Li WW, Zheng MY, Guo Y, Zhang ZT, Han JC, Jiang YP, Wang Q, Wang M, Ji MX, Zhang YT. Construction of C-glycosides of heterocycles containing the pyrimidin-2-amine or the 1 H-pyrazolo[3,4- b]pyridine moiety and their biological evaluation for anticancer activities. JOURNAL OF CHEMICAL RESEARCH 2019. [DOI: 10.1177/1747519819856942] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
A series of novel C-glycosides of heterocyclic derivatives containing a pyrimidin-2-amine or a 1 H-pyrazolo[3,4- b]pyridine moiety were synthesized using condensation reactions of the substituted puerarin with guanidine or 3-amino-5-hydroxypyrazole in methyl alcohol. Their chemical structures were characterized by Fourier-transform infrared spectroscopy, nuclear magnetic resonance, and high-resolution mass spectrometry. In addition, their biological activity has been demonstrated by in vitro evaluation against the human leukemia cells K562 and human prostate cancer cells PC-3 by MTT-based assays, using the commercially available standard drug of cis-platin as a positive control. The results also demonstrated that most of the compounds showed considerable cytotoxicity to these two cell lines of K562 and PC-3, and indicated that novel C-glycosides of heterocyclic derivatives may be potential leads for further biological screenings and may generate drug-like molecules.
Collapse
Affiliation(s)
- Wu-Wu Li
- College of Chemistry and Chemical Engineering, Xianyang Normal University, Xianyang, P.R. China
| | - Min-Yan Zheng
- College of Chemistry and Chemical Engineering, Xianyang Normal University, Xianyang, P.R. China
| | - Ying Guo
- College of Chemistry and Chemical Engineering, Xianyang Normal University, Xianyang, P.R. China
| | - Zun-Ting Zhang
- Key Laboratory of the Ministry of Education for Medicinal Resources and Natural Pharmaceutical Chemistry, National Engineering Laboratory for Resource Development of Endangered Crude Drugs in Northwest of China and School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi’an, P.R. China
| | - Ji-Chang Han
- Key Laboratory of Degraded and Unused Land Consolidation Engineering, The Ministry of Land and Resources of the People’s Republic of China, Xi’an, P.R. China
| | - Yan-Ping Jiang
- College of Chemistry and Chemical Engineering, Xianyang Normal University, Xianyang, P.R. China
| | - Qiao Wang
- College of Chemistry and Chemical Engineering, Xianyang Normal University, Xianyang, P.R. China
| | - Mei Wang
- College of Chemistry and Chemical Engineering, Xianyang Normal University, Xianyang, P.R. China
| | - Ming-Xiang Ji
- College of Chemistry and Chemical Engineering, Xianyang Normal University, Xianyang, P.R. China
| | - Yu-Tao Zhang
- College of Chemistry and Chemical Engineering, Xianyang Normal University, Xianyang, P.R. China
| |
Collapse
|
7
|
Karmakar S, Sharma LG, Roy A, Patel A, Pandey LM. Neuronal SNARE complex: A protein folding system with intricate protein-protein interactions, and its common neuropathological hallmark, SNAP25. Neurochem Int 2018; 122:196-207. [PMID: 30517887 DOI: 10.1016/j.neuint.2018.12.001] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2018] [Revised: 11/08/2018] [Accepted: 12/01/2018] [Indexed: 12/26/2022]
Abstract
SNARE (Soluble NSF(N-ethylmaleimide-sensitive factor) Attachment Receptor) complex is a trimeric supramolecular organization of SNAP25, syntaxin, and VAMP which mediates fusion of synaptic vesicles with the presynaptic plasma membrane. The functioning of this entire protein assembly is dependent on its tetrahelical coiled coil structure alongside its interaction with a large spectrum of regulatory proteins like synaptotagmin, complexin, intersectin, etc. Defects arising in SNARE complex assembly due to mutations or faulty post-translational modifications are associated to severe synaptopathies like Schizophrenia and also proteopathies like Alzheimer's disease. The review primarily focuses on SNAP25, which is the prime contributor in the complex assembly. It is conceptualized that the network of protein interactions of this helical protein assists as a chaperoning system for attaining functional structure. Additionally, the innate disordered nature of SNAP25 and its amyloidogenic propensities have been highlighted employing computational methods. The intrinsic nature of SNAP25 is anticipated to form higher-order aggregates due to its cysteine rich domain, which is also a target for several post-translational modifications. Furthermore, the aberrations in the structure and expression profile of the protein display common patterns in the pathogenesis of a diverse synaptopathies and proteopathies. This work of SNARE literature aims to provide a new comprehensive outlook and research directions towards SNARE complex and presents SNAP25 as a common neuropathological hallmark which can be a diagnostic or therapeutic target.
Collapse
Affiliation(s)
- Srijeeb Karmakar
- Bio-Interface & Environmental Engineering Lab, Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati, Assam, 781039, India.
| | - Laipubam Gayatri Sharma
- Bio-Interface & Environmental Engineering Lab, Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati, Assam, 781039, India.
| | - Abhishek Roy
- Bio-Interface & Environmental Engineering Lab, Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati, Assam, 781039, India.
| | - Anjali Patel
- Bio-Interface & Environmental Engineering Lab, Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati, Assam, 781039, India.
| | - Lalit Mohan Pandey
- Bio-Interface & Environmental Engineering Lab, Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati, Assam, 781039, India.
| |
Collapse
|
8
|
Interleukin-1β Protects Neurons against Oxidant-Induced Injury via the Promotion of Astrocyte Glutathione Production. Antioxidants (Basel) 2018; 7:antiox7080100. [PMID: 30044427 PMCID: PMC6115796 DOI: 10.3390/antiox7080100] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2018] [Revised: 07/04/2018] [Accepted: 07/21/2018] [Indexed: 01/13/2023] Open
Abstract
Interleukin-1β (IL-1β), a key cytokine that drives neuroinflammation in the Central Nervous System (CNS), is enhanced in many neurological diseases/disorders. Although IL-1β contributes to and/or sustains pathophysiological processes in the CNS, we recently demonstrated that IL-1β can protect cortical astrocytes from oxidant injury in a glutathione (GSH)-dependent manner. To test whether IL-1β could similarly protect neurons against oxidant stress, near pure neuronal cultures or mixed cortical cell cultures containing neurons and astrocytes were exposed to the organic peroxide, tert-butyl hydroperoxide (t-BOOH), following treatment with IL-1β or its vehicle. Neurons and astrocytes in mixed cultures, but not pure neurons, were significantly protected from the toxicity of t-BOOH following treatment with IL-1β in association with enhanced GSH production/release. IL-1β failed to increase the GSH levels or to provide protection against t-BOOH toxicity in chimeric mixed cultures consisting of IL-1R1+/+ neurons plated on top of IL-1R1−/− astrocytes. The attenuation of GSH release via block of multidrug resistance-associated protein 1 (MRP1) transport also abrogated the protective effect of IL-1β. These protective effects were not strictly an in vitro phenomenon as we found an increased striatal vulnerability to 3-nitropropionic acid-mediated oxidative stress in IL-1R1 null mice. Overall, our data indicate that IL-1β protects neurons against oxidant injury and that this likely occurs in a non-cell-autonomous manner that relies on an increase in astrocyte GSH production and release.
Collapse
|
9
|
Kanzler MA, Van Dyke AM, He Y, Hewett JA, Hewett SJ. Mice lacking L-12/15-lipoxygenase show increased mortality during kindling despite demonstrating resistance to epileptogenesis. Epilepsia Open 2018; 3:255-263. [PMID: 29881804 PMCID: PMC5983117 DOI: 10.1002/epi4.12221] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/31/2018] [Indexed: 01/15/2023] Open
Abstract
Objective Studies have addressed the potential involvement of L-12/15-lipoxygenases (LOs), a polyunsaturated fatty acid metabolizing enzyme, in experimental models of acute stroke and chronic neurodegeneration; however, none to our knowledge has explored its role in epilepsy development. Thus, this study characterizes the cell-specific expression of L-12/15 -LO in the brain and examines its contribution to epileptogenesis. Methods L-12/15-LO messenger RNA (mRNA) and protein expression and activity were characterized via polymerase chain reaction (PCR), immunocytochemistry and enzyme-linked immunosorbent assay (ELISA), respectively. To assess its role in epileptogenesis, L-12/15 -LO-deficient mice and their wild-type littermates were treated with pentylenetetrazole (PTZ, ip) every other day for up to 43 days (kindling paradigm). The innate seizure threshold was assessed by the acute PTZ-induced seizure response of naive mice. Results L-12/15 -LO mRNA is expressed in hippocampal and cortical tissue from wild-type C57BL/6 mice. In addition, it is physically and functionally expressed by microglia, neurons, and brain microvessel endothelial cells, but not by astrocytes. Mice deficient in L-12/15 -LO were resistant to PTZ-induced kindling and demonstrated an elevated innate seizure threshold. Despite this, a significant increase in seizure-related mortality was observed during the kindling paradigm in L-12/15 -LO nulls relative to their wild-type littermates. Significance The present study is the first to detail the role of L-12/15-LO in the epileptogenic process. The results suggest that constitutive L-12/15-LO expression contributes to a lower innate set point for PTZ acute seizure generation, translating to higher rates of kindling acquisition. Nevertheless, increased seizure-related deaths in mice lacking activity of L-12/15-LO suggests that its products may influence endogenous mechanisms involved in termination of seizure activity.
Collapse
Affiliation(s)
- Matthew A Kanzler
- Department of Biology Program in Neuroscience Syracuse University Syracuse New York U.S.A
| | - Adam M Van Dyke
- Department of Neuroscience University of Connecticut Health Center Farmington Connecticut U.S.A
| | - Yan He
- Department of Biology Program in Neuroscience Syracuse University Syracuse New York U.S.A
| | - James A Hewett
- Department of Biology Program in Neuroscience Syracuse University Syracuse New York U.S.A
| | - Sandra J Hewett
- Department of Biology Program in Neuroscience Syracuse University Syracuse New York U.S.A
| |
Collapse
|
10
|
Livne-Bar I, Wei J, Liu HH, Alqawlaq S, Won GJ, Tuccitto A, Gronert K, Flanagan JG, Sivak JM. Astrocyte-derived lipoxins A4 and B4 promote neuroprotection from acute and chronic injury. J Clin Invest 2017; 127:4403-4414. [PMID: 29106385 PMCID: PMC5707141 DOI: 10.1172/jci77398] [Citation(s) in RCA: 72] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2017] [Accepted: 09/26/2017] [Indexed: 12/31/2022] Open
Abstract
Astrocytes perform critical non-cell autonomous roles following CNS injury that involve either neurotoxic or neuroprotective effects. Yet the nature of potential prosurvival cues has remained unclear. In the current study, we utilized the close interaction between astrocytes and retinal ganglion cells (RGCs) in the eye to characterize a secreted neuroprotective signal present in retinal astrocyte conditioned medium (ACM). Rather than a conventional peptide neurotrophic factor, we identified a prominent lipid component of the neuroprotective signal through metabolomics screening. The lipoxins LXA4 and LXB4 are small lipid mediators that act locally to dampen inflammation, but they have not been linked directly to neuronal actions. Here, we determined that LXA4 and LXB4 are synthesized in the inner retina, but their levels are reduced following injury. Injection of either lipoxin was sufficient for neuroprotection following acute injury, while inhibition of key lipoxin pathway components exacerbated injury-induced damage. Although LXA4 signaling has been extensively investigated, LXB4, the less studied lipoxin, emerged to be more potent in protection. Moreover, LXB4 neuroprotection was different from that of established LXA4 signaling, and therapeutic LXB4 treatment was efficacious in a chronic model of the common neurodegenerative disease glaucoma. Together, these results identify a potential paracrine mechanism that coordinates neuronal homeostasis and inflammation in the CNS.
Collapse
Affiliation(s)
- Izhar Livne-Bar
- Department of Vision Sciences, Krembil Research Institute, University Health Network, Toronto, Ontario, Canada
- Department of Ophthalmology and Vision Science, University of Toronto, Toronto, Ontario, Canada
| | - Jessica Wei
- Vision Science Program, School of Optometry, University of California at Berkeley, Berkeley, California, USA
| | - Hsin-Hua Liu
- Vision Science Program, School of Optometry, University of California at Berkeley, Berkeley, California, USA
| | - Samih Alqawlaq
- Department of Vision Sciences, Krembil Research Institute, University Health Network, Toronto, Ontario, Canada
- Department of Ophthalmology and Vision Science, University of Toronto, Toronto, Ontario, Canada
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, Ontario, Canada
| | - Gah-Jone Won
- Department of Vision Sciences, Krembil Research Institute, University Health Network, Toronto, Ontario, Canada
- Department of Ophthalmology and Vision Science, University of Toronto, Toronto, Ontario, Canada
| | - Alessandra Tuccitto
- Department of Vision Sciences, Krembil Research Institute, University Health Network, Toronto, Ontario, Canada
- Department of Ophthalmology and Vision Science, University of Toronto, Toronto, Ontario, Canada
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, Ontario, Canada
| | - Karsten Gronert
- Vision Science Program, School of Optometry, University of California at Berkeley, Berkeley, California, USA
| | - John G. Flanagan
- Vision Science Program, School of Optometry, University of California at Berkeley, Berkeley, California, USA
| | - Jeremy M. Sivak
- Department of Vision Sciences, Krembil Research Institute, University Health Network, Toronto, Ontario, Canada
- Department of Ophthalmology and Vision Science, University of Toronto, Toronto, Ontario, Canada
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, Ontario, Canada
| |
Collapse
|