1
|
Matthews DB, Kerr E, Zank A, Hartwig J, Garscia A, Stumo S, Sharma P. Recent Investigations Designed to Unravel the Interaction of Age and Alcohol on Behavior and Cognition: Potential Neurobiological Mechanisms. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2025; 1473:243-256. [PMID: 40128482 DOI: 10.1007/978-3-031-81908-7_11] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/26/2025]
Abstract
Understanding factors that alter the effect of alcohol in biological systems has been an area of active investigation for several decades. Recently, it has become clear that age is one of the most salient factors influencing how both acute and chronic alcohol exposure alters behavioral function. The following book chapter discusses how alcohol produces differential effects in adolescent animals in comparison to adult and aged (i.e., older) animals. Furthermore, where possible, relevant research identifying possible brain mechanisms mediating the differential effects of alcohol will be discussed. Finally, we highlight a small number of studies where sex and age of the subject interact to modify cognitive impairments produced by alcohol. We conclude that much work still needs to be done to fully understand how age, sex, and alcohol interact to produce the wide range of effects caused by consumption of the drug.
Collapse
Affiliation(s)
- Douglas B Matthews
- Department of Psychology, University of Wisconsin - Eau Claire, Eau Claire, WI, USA.
| | - Emily Kerr
- Department of Psychology, University of Wisconsin - Eau Claire, Eau Claire, WI, USA
| | - Aeda Zank
- Department of Psychology, University of Wisconsin - Eau Claire, Eau Claire, WI, USA
| | - Jadyn Hartwig
- Department of Psychology, University of Wisconsin - Eau Claire, Eau Claire, WI, USA
| | - Averi Garscia
- Department of Psychology, University of Wisconsin - Eau Claire, Eau Claire, WI, USA
| | - Samuel Stumo
- Department of Psychology, University of Wisconsin - Eau Claire, Eau Claire, WI, USA
| | | |
Collapse
|
2
|
Matthews DB, Rossmann G, Matthews SJ, Zank A, Shult C, Turunen A, Sharma P. Increased anxiolytic effect in aged female rats and increased motoric behavior in aged male rats to acute alcohol administration: Comparison to younger animals. Pharmacol Biochem Behav 2024; 239:173770. [PMID: 38636813 DOI: 10.1016/j.pbb.2024.173770] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/07/2023] [Revised: 04/10/2024] [Accepted: 04/11/2024] [Indexed: 04/20/2024]
Abstract
The population of most countries in the world is increasing and understanding risk factors that can influence the health of the older population is critical. Older adults consume alcohol often in a risky, binge manner. Previous work has demonstrated that aged rats are more sensitive to many of the effects of acute ethanol. In the current project aged, adult, and adolescent female and male rats were tested on the elevated plus maze and open field following either a 1.0 g/kg alcohol injection or a saline injection. We report sex- and age-dependent effects whereas aged female rats, but not aged male rats, showed an increased anxiolytic effect of alcohol in the elevated plus maze while aged male rats, but not aged female rats, showed increased stimulatory movement in the open field. In addition, significant age effects were found for both female and male rats. It is proposed that the sex- and age-dependent effects reported in the current studies may be due to differential levels of alcohol-induced allopregnanolone for the anxiolytic effects and differential levels of alcohol-induced dopamine for the stimulatory effects. The current work provides insights into factors influencing alcohol consumption in older adults.
Collapse
Affiliation(s)
- Douglas B Matthews
- Department of Psychology, University of Wisconsin - Eau Claire, Eau Claire, WI 54701, United States of America.
| | - Gillian Rossmann
- Department of Psychology, University of Wisconsin - Eau Claire, Eau Claire, WI 54701, United States of America
| | - Sadie J Matthews
- Department of Psychology, University of Wisconsin - Eau Claire, Eau Claire, WI 54701, United States of America
| | - Aeda Zank
- Department of Psychology, University of Wisconsin - Eau Claire, Eau Claire, WI 54701, United States of America
| | - Carolyn Shult
- Department of Psychology, University of Wisconsin - Eau Claire, Eau Claire, WI 54701, United States of America
| | - Alicia Turunen
- Department of Psychology, University of Wisconsin - Eau Claire, Eau Claire, WI 54701, United States of America
| | - Pravesh Sharma
- Department of Psychiatry and Psychology, Mayo Clinic Health System, Eau Claire, WI 54703, United States of America
| |
Collapse
|
3
|
Shahidi S, Ramezani-Aliakbari K, Komaki A, Salehi I, Hashemi S, Asl SS, Habibi P, Ramezani-Aliakbari F. Effect of vitamin D on cardiac hypertrophy in D-galactose-induced aging model through cardiac mitophagy. Mol Biol Rep 2023; 50:10147-10155. [PMID: 37921981 DOI: 10.1007/s11033-023-08875-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2023] [Accepted: 10/02/2023] [Indexed: 11/05/2023]
Abstract
BACKGROUND Cardiac apoptosis plays a key role in increased morbidity associated with aging-induced-cardiac disorder. Mitochondria play an important role in cardiac apoptosis, and dynamin-related protein 1 (Drp1), as a main mediator of mitochondrial fission, can trigger the mitophagy process to sustain the mitochondrial quality. The present study was done to determine the effect of vitamin D (VitD) treatment on cardiac hypertrophy through mitophagy regulation in aged animals induced by D-galactose (D-GAL). METHODS AND RESULTS Male Wistar rats were randomly divided into four groups: control, D-GAL (aging group), D-GAL co-injected with VitD (D-GAL ± VitD), and D-GAL plus ethanol (D-GAL ± Ethanol). Aging was induced by an intraperitoneal (i.p.) administration of D-GAL at 150 mg/kg daily for eight weeks and also VitD (400 IU/kg) or ethanol was injected (i.p.) into aging rats. Then, the levels of cardiac mitophagy and cardiac apoptosis were determined by measuring the expression of tensin homologue (PTEN)-induced putative kinase 1 (PINK1), Drp1, Bcl2-Associated X (Bax), and B-cell lymphoma 2 (Bcl2) genes. Aging in rats was associated with a reduction in mitophagy and also an increase in apoptosis of the heart through down-regulation of Drp1, PINK1, and Bcl2 genes and also up-regulation of Bax. However, VitD improved cardiac hypertrophy through cardiac mitophagy in D-GAL-induced aging rats. CONCLUSION VitD can inhibit cardiac hypertrophy by an increase in mitophagy and a decrease in apoptosis in the aging heart. The illustration of the suggested mechanism underlying of Vitamin D in cardiac hypertrophy induced by aging.
Collapse
Affiliation(s)
- Siamak Shahidi
- Department of Physiology, School of medicine, Hamadan University of Medical Sciences, Hamadan, Iran
- Neurophysiology Research Center, Hamadan University of Medical Sciences, Hamadan, Iran
- Department of Neuroscience, School of Sciences and Advanced Technology in Medicine, Hamadan University of Medical Sciences, Hamadan, Iran
| | | | - Alireza Komaki
- Neurophysiology Research Center, Hamadan University of Medical Sciences, Hamadan, Iran
- Department of Neuroscience, School of Sciences and Advanced Technology in Medicine, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Iraj Salehi
- Neurophysiology Research Center, Hamadan University of Medical Sciences, Hamadan, Iran
- Department of Neuroscience, School of Sciences and Advanced Technology in Medicine, Hamadan University of Medical Sciences, Hamadan, Iran
| | | | - Sara Soleimani Asl
- Anatomy Department, School of Medicine, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Parisa Habibi
- Department of Physiology, School of medicine, Hamadan University of Medical Sciences, Hamadan, Iran
- Neurophysiology Research Center, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Fatemeh Ramezani-Aliakbari
- Department of Physiology, School of medicine, Hamadan University of Medical Sciences, Hamadan, Iran.
- Neurophysiology Research Center, Hamadan University of Medical Sciences, Hamadan, Iran.
| |
Collapse
|
4
|
Matthews DB, Scaletty S, Trapp S, Schreiber A, Rossmann G, Imhoff B, Petersilka Q, Kastner A, Pauly J, Nixon K. Chronic intermittent ethanol exposure during adolescence produces sex- and age-dependent changes in anxiety and cognition without changes in microglia reactivity late in life. Front Behav Neurosci 2023; 17:1223883. [PMID: 37589035 PMCID: PMC10427154 DOI: 10.3389/fnbeh.2023.1223883] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2023] [Accepted: 07/18/2023] [Indexed: 08/18/2023] Open
Abstract
Binge-like ethanol exposure during adolescence has been shown to produce long lasting effects in animal models including anxiety-like behavior that can last into young adulthood and impairments in cognition that can last throughout most of the lifespan. However, little research has investigated if binge-like ethanol exposure during adolescence produces persistent anxiety-like behavior and concomitantly impairs cognition late in life. Furthermore, few studies have investigated such behavioral effects in both female and male rats over the lifespan. Finally, it is yet to be determined if binge-like ethanol exposure during adolescence alters microglia activation in relevant brain regions late in life. In the present study female and male adolescent rats were exposed to either 3.0 or 5.0 g/kg ethanol, or water control, in a chronic intermittent pattern before being tested in the elevated plus maze and open field task over the next ∼18 months. Animals were then trained in a spatial reference task via the Morris water maze before having their behavioral flexibility tested. Finally, brains were removed, sectioned and presumptive microglia activation determined using autoradiography for [3H]PK11195 binding. Males, but not females, displayed an anxiety-like phenotype initially following the chronic intermittent ethanol exposure paradigm which resolved in adulthood. Further, males but not females had altered spatial reference learning and impaired behavioral flexibility late in life. Conversely, [3H]PK11195 binding was significantly elevated in females compared to males late in life and the level of microglia activation interacted as a function of sex and brain regions, but there was no long-term outcome related to adolescent alcohol exposure. These data further confirm that binge-like ethanol exposure during adolescence produces alterations in behavior that can last throughout the lifespan. In addition, the data suggest that microglia activation late in life is not exacerbated by prior binge-like ethanol exposure during adolescence but the expression is sex- and brain region-dependent across the lifespan.
Collapse
Affiliation(s)
- Douglas B. Matthews
- Department of Psychology, University of Wisconsin–Eau Claire, Eau Claire, WI, United States
| | - Samantha Scaletty
- Department of Psychology, University of Wisconsin–Eau Claire, Eau Claire, WI, United States
| | - Sarah Trapp
- Department of Psychology, University of Wisconsin–Eau Claire, Eau Claire, WI, United States
| | - Areonna Schreiber
- Department of Psychology, University of Wisconsin–Eau Claire, Eau Claire, WI, United States
| | - Gillian Rossmann
- Department of Psychology, University of Wisconsin–Eau Claire, Eau Claire, WI, United States
| | - Bailey Imhoff
- Department of Psychology, University of Wisconsin–Eau Claire, Eau Claire, WI, United States
| | - Quinn Petersilka
- Department of Psychology, University of Wisconsin–Eau Claire, Eau Claire, WI, United States
| | - Abigail Kastner
- Department of Psychology, University of Wisconsin–Eau Claire, Eau Claire, WI, United States
| | - Jim Pauly
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Kentucky, Lexington, KY, United States
| | - Kimberly Nixon
- Division of Pharmacology and Toxicology, College of Pharmacy, The University of Texas at Austin, Austin, TX, United States
| |
Collapse
|
5
|
Matthews DB, Rossmann G. Using animal models to identify clinical risk factors in the older population due to alcohol use and misuse. Alcohol 2023; 107:38-43. [PMID: 35659578 DOI: 10.1016/j.alcohol.2022.05.003] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2022] [Revised: 05/25/2022] [Accepted: 05/25/2022] [Indexed: 01/21/2023]
Abstract
The number of people over the age of 65 years old is increasing and understanding health risks associated with the aged population is important. Recent research has revealed that alcohol (ethanol) consumption levels in older demographics remains elevated and often occurs in a dangerous binge pattern. Given ethical constraints on investigating high level or binge pattern alcohol consumption in humans, animal models are often used to study the effects of ethanol. The current review highlights ongoing work revealing that aged rats are often more sensitive to the effects of acute ethanol compared to younger rats. Specifically, aged rats are more sensitive to the motor impairing, hypnotic, hypothermic, and often the cognitive effects of ethanol compared to younger rats. In addition, the development of ethanol tolerance following chronic exposure may have a different temporal pattern in aged rats compared to younger rats. However, the neurobiological mechanisms that cause the increased sensitivity to ethanol in aged animals have yet to be identified. Furthermore, the differential age effects of ethanol highlight clinical risk factors for alcohol misuse in the older human population. Future work is needed to determine underlying CNS mechanisms producing altered effects of ethanol in aged subjects and also the development of educational material concerning ethanol's effects across ages for health care providers working with the aged population.
Collapse
Affiliation(s)
- Douglas B Matthews
- Department of Psychology, University of Wisconsin, Eau Claire, WI 54701, United States.
| | - Gillian Rossmann
- Department of Psychology, University of Wisconsin, Eau Claire, WI 54701, United States
| |
Collapse
|
6
|
Ho AMC, Peyton MP, Scaletty SJ, Trapp S, Schreiber A, Madden BJ, Choi DS, Matthews DB. Chronic Intermittent Ethanol Exposure Alters Behavioral Flexibility in Aged Rats Compared to Adult Rats and Modifies Protein and Protein Pathways Related to Alzheimer's Disease. ACS OMEGA 2022; 7:46260-46276. [PMID: 36570296 PMCID: PMC9774340 DOI: 10.1021/acsomega.2c04528] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/18/2022] [Accepted: 11/17/2022] [Indexed: 05/13/2023]
Abstract
Repeated excessive alcohol consumption increases the risk of developing cognitive decline and dementia. Hazardous drinking among older adults further increases such vulnerabilities. To investigate whether alcohol induces cognitive deficits in older adults, we performed a chronic intermittent ethanol exposure paradigm (ethanol or water gavage every other day 10 times) in 8-week-old young adult and 70-week-old aged rats. While spatial memory retrieval ascertained by probe trials in the Morris water maze was not significantly different between ethanol-treated and water-treated rats in both age groups after the fifth and tenth gavages, behavioral flexibility was impaired in ethanol-treated rats compared to water-treated rats in the aged group but not in the young adult group. We then examined ethanol-treatment-associated hippocampal proteomic and phosphoproteomic differences distinct in the aged rats. We identified several ethanol-treatment-related proteins, including the upregulations of the Prkcd protein level, several of its phosphosites, and its kinase activity and downregulation in the Camk2a protein level. Our bioinformatic analysis revealed notable changes in pathways involved in neurotransmission regulation, synaptic plasticity, neuronal apoptosis, and insulin receptor signaling. In conclusion, our behavioral and proteomic results identified several candidate proteins and pathways potentially associated with alcohol-induced cognitive decline in aged adults.
Collapse
Affiliation(s)
- Ada Man-Choi Ho
- Department
of Psychiatry and Psychology, Mayo Clinic, Rochester, Minnesota55905, United States
| | - Mina P. Peyton
- Bioinformatics
and Computational Biology Program, University
of Minnesota, Minneapolis, Minnesota55455, United States
| | - Samantha J. Scaletty
- Department
of Molecular Pharmacology and Experimental Therapeutics, Mayo Clinic, Rochester, Minnesota55905, United States
| | - Sarah Trapp
- Department
of Psychology, University of Wisconsin—Eau
Claire, Eau Claire, Wisconsin54701, United States
| | - Areonna Schreiber
- Department
of Psychology, University of Wisconsin—Eau
Claire, Eau Claire, Wisconsin54701, United States
| | - Benjamin J. Madden
- Mayo
Clinic Proteomics Core, Mayo Clinic, Rochester, Minnesota55905, United States
| | - Doo-Sup Choi
- Department
of Psychiatry and Psychology, Mayo Clinic, Rochester, Minnesota55905, United States
- Department
of Molecular Pharmacology and Experimental Therapeutics, Mayo Clinic, Rochester, Minnesota55905, United States
| | - Douglas B. Matthews
- Department
of Psychology, University of Wisconsin—Eau
Claire, Eau Claire, Wisconsin54701, United States
| |
Collapse
|
7
|
Chronic Intermittent Ethanol Administration during Adolescence Produces Sex Dependent Impairments in Behavioral Flexibility and Survivability. Brain Sci 2022; 12:brainsci12050606. [PMID: 35624993 PMCID: PMC9139058 DOI: 10.3390/brainsci12050606] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2022] [Revised: 04/23/2022] [Accepted: 04/24/2022] [Indexed: 12/10/2022] Open
Abstract
Chronic intermittent ethanol exposure during adolescence produces behavioral impairments and neurobiological changes that can last into young adulthood. One such behavioral impairment is reduced behavioral flexibility, a behavioral impairment that has been correlated with the risk for increased ethanol intake. In the current study, we investigated if chronic intermittent ethanol exposure during adolescence alters cognition, including behavioral flexibility, over a 22-month testing period. Female and male rats were treated with either 3.0 g/kg or 5.0 g/kg ethanol via gavage in a chronic intermittent fashion during adolescence and then tested every 4 to 5 months on a series of cognitive measures in the Morris water maze. Chronic intermittent ethanol selectively impaired behavioral flexibility in both female and male rats, although the pattern of results was different as a function of sex. In addition, female, but not male, rats were impaired in a short-term relearning test. Finally, male rats administered ethanol during adolescence were significantly more likely to not survive the 22-month experiment compared to female rats administered ethanol during adolescence. The current results demonstrate that adolescence is a unique period of development where chronic intermittent ethanol exposure produces long-lasting, selective cognitive impairments across the lifespan.
Collapse
|
8
|
Healey KL, Kibble SA, Bell A, Kramer G, Maldonado-Devincci A, Swartzwelder HS. Sex differences in the effects of adolescent intermittent ethanol exposure on exploratory and anxiety-like behavior in adult rats. Alcohol 2022; 98:43-50. [PMID: 34808302 PMCID: PMC8714675 DOI: 10.1016/j.alcohol.2021.11.002] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2021] [Revised: 10/07/2021] [Accepted: 11/08/2021] [Indexed: 02/03/2023]
Abstract
Adolescent intermittent ethanol (AIE) exposure in rodents has been shown to alter adult behavior in several domains, including learning and memory, social interaction, affective behavior, and ethanol self-administration. AIE has also been shown to produce non-specific behavioral changes that compromise behavioral efficiency. Many studies of these types rely on measuring behavior in mazes and other enclosures that can be influenced by animals' activity levels and exploratory behavior, and relatively few such studies have assessed sex as a biological variable. To address the effects of AIE and its interaction with sex on these types of behavioral assays, male and female adolescent rats (Sprague Dawley) were exposed to 10 doses of AIE (5 g/kg, intra-gastrically [i.g.]), or control vehicle, over 16 days (postnatal day [PND] 30-46), and then tested for exploratory and anxiety-like behaviors on the novelty-induced hypophagia (NIH) task in an open field, the elevated plus (EPM) maze, and the Figure 8 maze. AIE reduced activity/exploratory behaviors in males on the anxiety-producing NIH and EPM tasks, but reduced activity in both males and females in the Figure 8 maze, a task designed to create a safe environment and reduce anxiety. Independent of AIE, females engaged in more rearing behavior than males during the NIH task but less in the EPM, in which they were also less active than males. AIE also increased EPM open arm time in females but not in males. These findings demonstrate previously unrecognized sex differences in the effects of AIE on activity, exploratory behavior, and anxiety-like behavior; additionally, they underscore the need to design future behavioral studies of AIE using sex as a variable and with rigorous attention to how AIE alters these behaviors.
Collapse
Affiliation(s)
- Kati L Healey
- Department of Psychiatry and Behavioral Sciences, Duke University School of Medicine, 323 Foster St., Durham, NC 27701, United States
| | - Sandra A Kibble
- Department of Psychiatry and Behavioral Sciences, Duke University School of Medicine, 323 Foster St., Durham, NC 27701, United States
| | - Amelia Bell
- Department of Psychiatry and Behavioral Sciences, Duke University School of Medicine, 323 Foster St., Durham, NC 27701, United States
| | - George Kramer
- Department of Psychiatry and Behavioral Sciences, Duke University School of Medicine, 323 Foster St., Durham, NC 27701, United States
| | - Antoniette Maldonado-Devincci
- Department of Psychology, North Carolina Agricultural and Technical State University, Greensboro, NC 27411, United States
| | - H S Swartzwelder
- Department of Psychiatry and Behavioral Sciences, Duke University School of Medicine, 323 Foster St., Durham, NC 27701, United States.
| |
Collapse
|
9
|
Matthews DB, Imhoff BM. Age modifies the effect of ethanol on behavior: Investigations in adolescent, adult and aged rats. INTERNATIONAL REVIEW OF NEUROBIOLOGY 2021; 161:251-275. [PMID: 34801171 DOI: 10.1016/bs.irn.2021.06.010] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
The number of older people is increasing in most if not all countries in the world. In addition, the amount of alcohol consumption in the aged population is increasing and the consumption pattern is often in a binge fashion. However, little is known if the effects of alcohol, either acute or chronic exposure, vary in the older population compared to younger populations. The current mini-review will provide an overview of the effects of acute and chronic ethanol exposure at three different periods of development: adolescent, adult and aged on multiple different commonly studied behaviors. The overall conclusion is that biological age of the subject is a critical factor in understanding the effects of ethanol across the lifespan.
Collapse
Affiliation(s)
- D B Matthews
- Department of Psychology, University of Wisconsin - Eau Claire, Eau Claire, WI, United States.
| | - B M Imhoff
- Department of Psychology, University of Wisconsin - Eau Claire, Eau Claire, WI, United States
| |
Collapse
|
10
|
Effect of chronic alcohol intake on motor functions on the elderly. Neurosci Lett 2021; 745:135630. [PMID: 33440234 DOI: 10.1016/j.neulet.2021.135630] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2020] [Revised: 12/22/2020] [Accepted: 01/04/2021] [Indexed: 12/21/2022]
Abstract
Alcohol use disorder (AUD) is a chronic and progressive disease influenced by genetic, psychosocial, and environmental factors. The consequences of alcohol consumption involve alterations in neural circuits of emotion and cognition, as well as in the motor planning circuit. Furthermore, during the natural aging process, several biochemical and functional alterations are also observed with neurological consequences. Thus, considering the consequences of chronic alcohol consumption on neural systems and natural aging process, we aimed to analyze the degree of motor and functional impairment in elderly with chronic alcohol consumption. Sixty elderly underwent an analysis of alcohol consumption profile (Alcohol Use Disorders Identification Test - AUDIT) that divided them into a control group (CON) and an alcohol group (ALC). The analysis of quality of life was performed using the Medical Outcomes Study 36-Item Short-Form Health Survey (SF-36), the analysis of motor function was performed using the Borg Scale, the Six-Minute Walk Test (6MWT) and the Motor Scale for Elderly (MSE). We were able to conclude that the misuse of alcohol by the elderly promotes significant physical limitations. These limitations result in a worsening of functional capacity of walking and various dimensions of motor ability: fine motor skill, global coordination, balance, body scheme, spatial organization, temporal organization, and general motor aptitude. Besides the physical limitations caused by alcohol use, the quality of life in their physical, mental, and social aspects was reduced. Thus, actions are required to help the elderly understand these losses and exercise control over alcohol misuse.
Collapse
|
11
|
Zhang D, Dong X, Liu X, Ye L, Li S, Zhu R, Ye Y, Jiang Y. Proteomic Analysis of Brain Regions Reveals Brain Regional Differences and the Involvement of Multiple Keratins in Chronic Alcohol Neurotoxicity. Alcohol Alcohol 2020; 55:147-156. [PMID: 32047899 DOI: 10.1093/alcalc/agaa007] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2019] [Revised: 08/22/2019] [Accepted: 01/13/2020] [Indexed: 12/29/2022] Open
Abstract
AIMS Alcohol abuse has attracted public attention and chronic alcohol exposure can result in irreversible structural changes in the brain. The molecular mechanisms underlying alcohol neurotoxicity are complex, mandating comprehensive mining of spatial protein expression profile. METHODS In this study, mice models of chronic alcohol intoxication were established after 95% alcohol vapor administration for 30 consecutive days. On Day 30, striatum (the dorsal and ventral striatum) and hippocampus, the two major brain regions responsible for learning and memorizing while being sensitive to alcohol toxicity, were collected. After that, isobaric tags for relative and absolute quantitation -based quantitative proteomic analysis were carried out for further exploration of the novel mechanisms underlying alcohol neurotoxicity. RESULTS Proteomic results showed that in the striatum, 29 proteins were significantly up-regulated and 17 proteins were significantly down-regulated. In the hippocampus, 72 proteins were significantly up-regulated, while 2 proteins were significantly down-regulated. Analysis of the overlay proteins revealed that a total of 102 proteins were consistently altered (P < 0.05) in both hippocampus and striatum regions, including multiple keratins such as Krt6a, Krt17 and Krt5. Ingenuity pathway analysis revealed that previously reported diseases/biofunctions such as dermatological diseases and developmental disorders were enriched in those proteins. Interestingly, the glucocorticoid receptor (GR) signaling was among the top enriched pathways in both brain regions, while multiple keratins from the GR signaling such as Krt1 and Krt17 exhibited significantly opposite expression patterns in the two brain nuclei. Moreover, there are several other involved pathways significantly differed between the hippocampus and striatum. CONCLUSIONS Our data revealed brain regional differences upon alcohol consumption and indicated the critical involvement of keratins from GR signaling in alcohol neurotoxicity. The differences in proteomic results between the striatum and hippocampus suggested a necessity of taking into consideration brain regional differences and intertwined signaling pathways rather than merely focusing on single nuclei or molecule during the study of drug-induced neurotoxicity in the future.
Collapse
Affiliation(s)
- Dingang Zhang
- Department of Forensic Medicine, School of Basic Medical Sciences, Fudan University, Shanghai 200032, China
| | - Xiaoru Dong
- Department of Forensic Medicine, School of Basic Medical Sciences, Fudan University, Shanghai 200032, China
| | - Xiaochen Liu
- Department of Forensic Medicine, School of Basic Medical Sciences, Fudan University, Shanghai 200032, China
| | - Lin Ye
- Department of Forensic Medicine, School of Basic Medical Sciences, Fudan University, Shanghai 200032, China
| | - Shuhao Li
- Department of Forensic Medicine, School of Basic Medical Sciences, Fudan University, Shanghai 200032, China
| | - Rongzhe Zhu
- Department of Forensic Medicine, School of Basic Medical Sciences, Fudan University, Shanghai 200032, China
| | - Yonghong Ye
- Department of Forensic Medicine, School of Basic Medical Sciences, Fudan University, Shanghai 200032, China
| | - Yan Jiang
- Department of Forensic Medicine, School of Basic Medical Sciences, Fudan University, Shanghai 200032, China
| |
Collapse
|
12
|
Wukitsch TJ, Moser TJ, Brase EC, Kiefer SW, Cain ME. Adolescent ethanol exposure and differential rearing environment affect taste reactivity to ethanol in rats. Alcohol 2020; 89:113-122. [PMID: 32937167 DOI: 10.1016/j.alcohol.2020.09.001] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2020] [Revised: 09/02/2020] [Accepted: 09/08/2020] [Indexed: 12/20/2022]
Abstract
The identification and characterization of variables that influence "liking" and enhance vulnerability to repeated alcohol use are vital to understanding and treating alcohol use disorders. In the current study, we explore the influence of rearing environment and experimenter-administered adolescent ethanol on the hedonic value of ethanol, sucrose, and quinine. Male and female rats were reared for 30 days starting at postnatal day (PND) 21 in either an enriched, isolated, or standard condition and received 1.5 g/kg (intraperitoneally [i.p.]) 20% (w/v) ethanol or saline every other day for 12 days starting at PND 28. Thereafter, all rats had indwelling intraoral fistulae implanted and their taste reactivities to water, ethanol (5, 10, 20, 30, 40% v/v), sucrose (0.1, 0.25, 0.5 M), and quinine (0.1, 0.5 mM) were recorded and analyzed. Results indicated that enrichment elevated hedonic responding to sucrose compared to isolation, and induced a stronger negative relationship between hedonic responding and ethanol concentration compared to standard conditions. Enrichment also elevated aversive responding to ethanol and quinine compared to both isolated and standard condition rats. Adolescent ethanol injections marginally reduced aversive responding to quinine. These results replicate previous findings that environmental enrichment enhances both "liking" and aversion. In addition, the current findings suggest that, while adolescent ethanol injections may blunt aversive responses to quinine, they have no effect on aversive or hedonic responding to ethanol or sucrose. Together with existing literature, our results may suggest that experience with the taste of ethanol is necessary for alterations to ethanol "liking" and aversion.
Collapse
|
13
|
Matthews DB, Scaletty S, Schreiber A, Trapp S. Acute ethanol administration produces larger spatial and nonspatial memory impairments in 29-33 month old rats compared to adult and 18-24 month old rats. Pharmacol Biochem Behav 2020; 199:173074. [PMID: 33212145 DOI: 10.1016/j.pbb.2020.173074] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/31/2020] [Revised: 11/11/2020] [Accepted: 11/13/2020] [Indexed: 01/11/2023]
Abstract
The average age of the population in many countries is continuing to increase. Older people continue to consume alcohol, often in a binge like fashion. Previous research has demonstrated that older human subjects and aged animal subjects have an increased sensitivity to the effects of ethanol on a variety of behaviors. However, it has yet to be determined if acute ethanol exposure impairs spatial and/or nonspatial memory to a greater extent in aged rats compared to adult rats. In the current studies we trained male rats ranging in age from young adult (2 months of age) to aged rats (29-33 months of age) in the standard nonspatial task followed by the standard spatial task in the Morris water maze. Only animals deemed "cognitively-spared", that is aged animals that learn as well as young animals, were administered one of two doses of moderate ethanol and had their memory tested 30 min later. Acute ethanol administration produced similar performance impairments in spatial and nonspatial memory in all cognitively-spared animals except for the 29-33 month old animals which showed a significantly greater cognitive impairment in both tasks. In addition, blood ethanol levels were similar across all ages. The present work adds to the growing literature on the selective effects of acute ethanol exposure in aged animals.
Collapse
Affiliation(s)
- Douglas B Matthews
- Department of Psychology, University of Wisconsin - Eau Claire, Eau Claire, WI 54701, United States of America.
| | - Samantha Scaletty
- Department of Psychology, University of Wisconsin - Eau Claire, Eau Claire, WI 54701, United States of America
| | - Areonna Schreiber
- Department of Psychology, University of Wisconsin - Eau Claire, Eau Claire, WI 54701, United States of America
| | - Sarah Trapp
- Department of Psychology, University of Wisconsin - Eau Claire, Eau Claire, WI 54701, United States of America
| |
Collapse
|
14
|
Zhang D, Liu X, Dong X, Zhu R, Jiang J, Ye Y, Jiang Y. Cannabinoid 1 Receptor Antagonists Play a Neuroprotective Role in Chronic Alcoholic Hippocampal Injury Related to Pyroptosis Pathway. Alcohol Clin Exp Res 2020; 44:1585-1597. [PMID: 32524615 DOI: 10.1111/acer.14391] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2020] [Revised: 05/02/2020] [Accepted: 05/28/2020] [Indexed: 12/19/2022]
Abstract
BACKGROUND Alcohol use disorders affect millions of people worldwide, and there is growing evidence that excessive alcohol intake causes severe damage to the brain of both humans and animals. Numerous studies on chronic alcohol exposure in animal models have identified that many functional impairments are associated with the hippocampus, which is a structure exhibiting substantial vulnerability to alcohol exposure. However, the precise mechanisms that lead to structural and functional impairments of the hippocampus are poorly understood. Herein, we report a novel cell death type, namely pyroptosis, which accounts for alcohol neurotoxicity in mice. METHODS For this study, we used an in vivo model to induce alcohol-related neurotoxicity in the hippocampus. Adult male C57BL/6 mice were treated with 95% alcohol vapor either alone or in combination with selective cannabinoid receptor antagonists or agonists, and VX765 (Belnacasan), which is a selective caspase-1 inhibitor. RESULTS Alcohol-induced in vivo pyroptosis occurs because of an increase in the levels of pyroptotic proteins such as nucleotide-binding domain (NOD)-like receptor protein 3 (NLRP3), caspase-1, gasdermin D (GSDMD), and amplified inflammatory response. Our results indicated that VX765 suppressed the expression of caspase-1 and inhibited the maturation of the proinflammatory cytokines interleukin-1β (IL-1β) and IL-18. Additionally, chronic alcohol intake created an imbalance in the endocannabinoid system and regulated 2 cannabinoid receptors (CB1R and CB2R) in the hippocampus. Specific antagonists of CB1R (AM251 and AM281) significantly ameliorated alcohol-induced pyroptosis signaling and inactivated the inflammatory response. CONCLUSIONS Alcohol induces hippocampal pyroptosis, which leads to neurotoxicity, thereby indicating that pyroptosis may be an essential pathway involved in chronic alcohol-induced hippocampal neurotoxicity. Furthermore, cannabinoid receptors are regulated during this process, which suggests promising therapeutic strategies against alcohol-induced neurotoxicity through pharmacologic inhibition of CB1R.
Collapse
Affiliation(s)
- Dingang Zhang
- From the, Department of Forensic Medicine, School of Basic Medical Sciences, Fudan University, Shanghai, China
| | - Xiaochen Liu
- From the, Department of Forensic Medicine, School of Basic Medical Sciences, Fudan University, Shanghai, China
| | - Xiaoru Dong
- From the, Department of Forensic Medicine, School of Basic Medical Sciences, Fudan University, Shanghai, China
| | - Rongzhe Zhu
- From the, Department of Forensic Medicine, School of Basic Medical Sciences, Fudan University, Shanghai, China
| | - Jieqing Jiang
- From the, Department of Forensic Medicine, School of Basic Medical Sciences, Fudan University, Shanghai, China
| | - Yonghong Ye
- From the, Department of Forensic Medicine, School of Basic Medical Sciences, Fudan University, Shanghai, China
| | - Yan Jiang
- From the, Department of Forensic Medicine, School of Basic Medical Sciences, Fudan University, Shanghai, China
| |
Collapse
|
15
|
Watson MR, James K, Mittleman G, Matthews DB. Impact of acute ethanol exposure on body temperatures in aged, adult and adolescent male rats. Alcohol 2020; 82:81-89. [PMID: 31408671 DOI: 10.1016/j.alcohol.2019.08.001] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2019] [Revised: 08/06/2019] [Accepted: 08/06/2019] [Indexed: 12/31/2022]
Abstract
The mean population age of the United States continues to increase, and data suggest that by the year 2060 the population of people over the age of 65 will more than double, providing a potentially massive strain on health care systems. Research demonstrates individuals 65 and older continue to consume ethanol, often at high levels. However, preclinical animal models are still being developed to understand how ethanol might interact with the aged population. The current experiments investigated differential body temperature responses in aged rats compared to adult rats and adolescent rats. Aged (19 months of age), adult (70 days of age), or adolescent (30 days of age) male Sprague Dawley rats were administered 1.0 g/kg, 2.0 g/kg, or 3.0 g/kg ethanol, intraperitoneally (i.p.), in a balanced Latin square design. Prior to ethanol administration, a core body temperature via an anal probe was obtained, and then repeatedly determined every 60 min following ethanol exposure for a total of 360 min. In addition, a blood sample was obtained from a tail nick 60, 180, and 300 min following the ethanol injection to investigate the relationship of ethanol levels and body temperature in the same animals. Aged rats had significantly greater reductions in body temperature compared to either adult or adolescent rats following both the 2.0 g/kg and 3.0 g/kg ethanol injection. Additionally, adolescent rats cleared ethanol significantly faster than aged or adult animals. These experiments suggest body temperature regulation in aged rats might be more sensitive to acute ethanol compared to adult rats or adolescent rats. Future studies are needed to identify the neurobiological effects underlying the differential sensitivity in aged rats to ethanol.
Collapse
Affiliation(s)
- Meredith R Watson
- Department of Psychology, University of Wisconsin - Eau Claire, Eau Claire, WI 54701, United States
| | - Kimberly James
- Department of Psychology, University of Wisconsin - Eau Claire, Eau Claire, WI 54701, United States
| | - Guy Mittleman
- Department of Psychological Science, Ball State University, Muncie, IN 47306, United States
| | - Douglas B Matthews
- Department of Psychology, University of Wisconsin - Eau Claire, Eau Claire, WI 54701, United States.
| |
Collapse
|
16
|
Pucci M, Micioni Di Bonaventura MV, Wille-Bille A, Fernández MS, Maccarrone M, Pautassi RM, Cifani C, D’Addario C. Environmental stressors and alcoholism development: Focus on molecular targets and their epigenetic regulation. Neurosci Biobehav Rev 2019; 106:165-181. [DOI: 10.1016/j.neubiorev.2018.07.004] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2018] [Revised: 06/13/2018] [Accepted: 07/09/2018] [Indexed: 01/17/2023]
|
17
|
Matthews DB, Schneider A, Kastner A, Scaletty S, Szenay R. I can't drink what I used to: The interaction between ethanol and the aging brain. INTERNATIONAL REVIEW OF NEUROBIOLOGY 2019; 148:79-99. [PMID: 31733668 DOI: 10.1016/bs.irn.2019.09.003] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
The population of most countries is increasing and the United Nations predicts that by the year 2050 those over the age of 60 years old will increase from 900 million individuals to approximately 2.1 billion individuals (United Nations, 2015). The increase in the number of older individuals will place a strain on many national health care systems making it important to investigate behaviors in the aged that may negatively impact general health in this demographic. Recent work has shown that older adults consume alcohol, often at levels that exceed the legal limit of intoxication. Unfortunately, consumption of high levels of ethanol in the older population is associated with many health consequences and may negatively impact the brain. Given ethical constraints found in many biomedical studies, animal models are needed to investigate the possible negative impact of high ethanol use in aged populations. However, few studies have investigated the effect of ethanol exposure in aged animals compared to ethanol exposure in younger animals and consequently the impact of ethanol in the aged population is not well understood. The current review summarizes initial work establishing the impact of ethanol in aged animals. The reviewed research studies support the working hypothesis that ethanol exposure produces significantly greater effects in aged animals compared to younger animals on many, if not all, behavioral tasks. In addition, the review proposes several initial, promising avenues of research to explore the neurobiological mechanisms that underly greater effects on ethanol-induced ataxia, cognition and sleep time. It is hoped that this effort will not only lead to a better understanding of behaviors impacted by ethanol in aged animals, but also improve the understanding brain mechanisms of the reported increased sensitivity to ethanol in the aged population.
Collapse
Affiliation(s)
- Douglas B Matthews
- Department of Psychology, University of Wisconsin-Eau Claire, Eau Claire, WI, United States.
| | - Amelia Schneider
- Department of Psychology, University of Wisconsin-Eau Claire, Eau Claire, WI, United States
| | - Abigail Kastner
- Department of Psychology, University of Wisconsin-Eau Claire, Eau Claire, WI, United States
| | - Samantha Scaletty
- Department of Psychology, University of Wisconsin-Eau Claire, Eau Claire, WI, United States
| | - Rachel Szenay
- Department of Psychology, University of Wisconsin-Eau Claire, Eau Claire, WI, United States
| |
Collapse
|
18
|
Perkins AE, Varlinskaya EI, Deak T. From adolescence to late aging: A comprehensive review of social behavior, alcohol, and neuroinflammation across the lifespan. INTERNATIONAL REVIEW OF NEUROBIOLOGY 2019; 148:231-303. [PMID: 31733665 DOI: 10.1016/bs.irn.2019.08.001] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
The passage of time dictates the pace at which humans and other organisms age but falls short of providing a complete portrait of how environmental, lifestyle and underlying biological processes contribute to senescence. Two fundamental features of the human experience that change dramatically across the lifespan include social interactions and, for many, patterns of alcohol consumption. Rodent models show great utility for understanding complex interactions among aging, social behavior and alcohol use and abuse, yet little is known about the neural changes in late aging that contribute to the natural decline in social behavior. Here, we posit that aging-related neuroinflammation contributes to the insipid loss of social motivation across the lifespan, an effect that is exacerbated by patterns of repeated alcohol consumption observed in many individuals. We provide a comprehensive review of (i) neural substrates crucial for the expression of social behavior under non-pathological conditions; (ii) unique developmental/lifespan vulnerabilities that may contribute to the divergent effects of low-and high-dose alcohol exposure; and (iii) aging-associated changes in neuroinflammation that may sit at the intersection between social processes and alcohol exposure. In doing so, we provide an overview of correspondence between lifespan/developmental periods between common rodent models and humans, give careful consideration to model systems used to aptly probe social behavior, identify points of coherence between human and animal models, and point toward a multitude of unresolved issues that should be addressed in future studies. Together, the combination of low-dose and high-dose alcohol effects serve to disrupt the normal development and maintenance of social relationships, which are critical for both healthy aging and quality of life across the lifespan. Thus, a more complete understanding of neural systems-including neuroinflammatory processes-which contribute to alcohol-induced changes in social behavior will provide novel opportunities and targets for promoting healthy aging.
Collapse
Affiliation(s)
- Amy E Perkins
- Developmental Exposure Alcohol Research Center, Behavioral Neuroscience Program, Department of Psychology, Binghamton University-SUNY, Binghamton, NY, United States
| | - Elena I Varlinskaya
- Developmental Exposure Alcohol Research Center, Behavioral Neuroscience Program, Department of Psychology, Binghamton University-SUNY, Binghamton, NY, United States
| | - Terrence Deak
- Developmental Exposure Alcohol Research Center, Behavioral Neuroscience Program, Department of Psychology, Binghamton University-SUNY, Binghamton, NY, United States.
| |
Collapse
|
19
|
Matthews DB, Watson MR, James K, Kastner A, Schneider A, Mittleman G. The impact of low to moderate chronic intermittent ethanol exposure on behavioral endpoints in aged, adult, and adolescent rats. Alcohol 2019; 78:33-42. [PMID: 30472308 DOI: 10.1016/j.alcohol.2018.11.005] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2018] [Revised: 11/13/2018] [Accepted: 11/16/2018] [Indexed: 01/02/2023]
Abstract
The average age of the population in the United States and other countries is increasing. Understanding the health consequences in the aged population is critical. Elderly individuals consume ethanol, often at elevated rates, and in some cases in a binge episode. The present study sought to investigate whether binge-like ethanol exposure in aged male rats produced differential health and behavioral effects compared to adult male and adolescent male rats. Subjects were exposed to either 1.0 g/kg or 2.0 g/kg ethanol every other day via intraperitoneal injection for 20 days, and tested on a variety of behavioral measures and body weight. Binge-like ethanol exposure produced differential effects on body weight between aged and adolescent and adult rats. In addition, aged rats had a significantly longer loss of righting reflex and demonstrated a trend toward tolerance following the 2.0-g/kg exposure. No significant effects on anxiety-like behavior as measured by open arm entries, depressive-like symptoms as measured by immobility in the forced swim test, or cognitive performance as measured by latency and path length in the Morris water maze were found. These results demonstrate that aged animals are differentially sensitive to the impact of chronic intermittent ethanol exposure in some, but not all behaviors. Future research is needed to understand the mechanisms of these differential effects.
Collapse
|
20
|
Restraint stress exacerbates cell degeneration induced by acute binge ethanol in the adolescent, but not in the adult or middle-aged, brain. Behav Brain Res 2019; 364:317-327. [PMID: 30797854 DOI: 10.1016/j.bbr.2019.02.035] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2019] [Revised: 02/12/2019] [Accepted: 02/20/2019] [Indexed: 12/22/2022]
Abstract
Restraint stress (RS) induces neurotoxicity in the hippocampus, yet most of the studies have employed protracted RS (i.e., ≈ 21 days). Binge ethanol can induce brain toxicity, an effect affected by age. It could be postulated that RS may facilitate ethanol-induced neurotoxicity, perhaps to a greater extent in adolescent vs. older subjects. We analyzed whether adolescent, adult or middle-aged male rats exposed to five episodes of RS followed, 72h later, by binge ethanol (i.e., two administrations of 2.5 g/kg ethanol) exhibited hippocampal neurotoxicity. Adolescents, but not adult or middle-aged rats, exhibited sensitivity to the neurotoxic effects of ethanol at dorsal CA2, ventral CA3 and ventral DG, and a neurotoxic effect of stress at dorsal CA1. Moreover, the combination of ethanol and stress exerted a synergistic effect upon cell degeneration at ventral CA1 and CA2, which was restricted to adolescents. Ethanol also increased cell degeneration, irrespective of age or stress, in dorsal CA3 and in dorsal DG; and ethanol and stress had, across all ages, a synergistic effect upon cell degeneration at the dorsal CA1. The greater neurotoxic response of adolescents to ethanol, stress, or ethanol+stress can put them at risk for the development of alcohol problems.
Collapse
|
21
|
Perkins AE, Vore AS, Lovelock D, Varlinskaya E, Deak T. Late aging alters behavioral sensitivity to ethanol in a sex-specific manner in Fischer 344 rats. Pharmacol Biochem Behav 2018; 175:1-9. [PMID: 30171932 DOI: 10.1016/j.pbb.2018.07.012] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/04/2018] [Revised: 07/23/2018] [Accepted: 07/25/2018] [Indexed: 12/27/2022]
Abstract
Responsiveness to ethanol (EtOH) differs as a function of age. Adolescent rodents are less sensitive than adults to the sedative effects of EtOH, whereas they show enhanced sensitivity to EtOH-induced social facilitation. Late aging is associated with a natural decline in social behavior and aging-related peculiarities in sensitivity to EtOH have been largely unexplored. Whether there are sex differences in the behavioral response to EtOH during late aging remains unknown. Thus, behavioral responses to EtOH in male and female Fischer (F) 344 rats aged 4-5 months (adult) and 19-20 months (aging) were examined. First, the effects of saline and EtOH (0.5 and 0.75 g/kg) on social interaction were assessed. Social investigation and contact behavior were lower in aging animals and higher in females. Interestingly, in aged females, social contact behavior was increased following a 0.5 g/kg EtOH dose, whereas the same dose suppressed social contact in aged males. Behavioral sensitivity to the sedative effects of 3.0 and 3.5 g/kg EtOH was assessed with the loss of righting reflex (LORR) test. Although latency to LORR did not differ as a function of age or sex, aged rats showed significantly greater LORR duration and significantly lower blood ethanol concentrations (BECs) at regaining of the righting reflex relative to adults. In addition, females had a lower LORR duration, regardless of age; no sex differences were evident in BECs at awakening. In a second experiment, blood ethanol concentrations (BECs) over time were assessed following 0.75, 1.5, and 3.0 g/kg EtOH in 3-, 12-, and 18-month-old male and female F344 rats. Aged rats had higher peak BECs following 3.0 g/kg EtOH, whereas few age or sex differences were apparent at lower doses. Taken together, these data indicate that late aging is associated with altered sensitivity to the social facilitating effects and sedative effects of EtOH.
Collapse
Affiliation(s)
- Amy E Perkins
- Developmental Exposure to Alcohol Research Center (DEARC), Behavioral Neuroscience Program, Department of Psychology, Binghamton University-SUNY, Binghamton, NY 13902-6000, United States of America
| | - Andrew S Vore
- Developmental Exposure to Alcohol Research Center (DEARC), Behavioral Neuroscience Program, Department of Psychology, Binghamton University-SUNY, Binghamton, NY 13902-6000, United States of America
| | - Dennis Lovelock
- Developmental Exposure to Alcohol Research Center (DEARC), Behavioral Neuroscience Program, Department of Psychology, Binghamton University-SUNY, Binghamton, NY 13902-6000, United States of America
| | - Elena Varlinskaya
- Developmental Exposure to Alcohol Research Center (DEARC), Behavioral Neuroscience Program, Department of Psychology, Binghamton University-SUNY, Binghamton, NY 13902-6000, United States of America
| | - Terrence Deak
- Developmental Exposure to Alcohol Research Center (DEARC), Behavioral Neuroscience Program, Department of Psychology, Binghamton University-SUNY, Binghamton, NY 13902-6000, United States of America.
| |
Collapse
|
22
|
Effects of ethanol on negative phototaxis and motility in brown planarians (Dugesia tigrina). Neurosci Lett 2018; 685:102-108. [PMID: 30145368 DOI: 10.1016/j.neulet.2018.08.030] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2018] [Revised: 08/20/2018] [Accepted: 08/20/2018] [Indexed: 11/20/2022]
Abstract
The behavioral effects of ethanol in brown planarians were studied in four experiments. In the first two experiments, acute administrations of ethanol increased travel time in a dose-dependent fashion in individual planarians moving away from a light source. Orderly results were obtained using both within-subject and between-group designs. In a third experiment, ethanol dose was arranged by time rather than concentration. Ethanol increased travel time overall, but variability between subjects was considerable. In a final experiment, ethanol administration reduced motility and altered movement patterns in planarians in an open-field test. These experiments demonstrated that negative phototaxis by planarians may exhibit sufficient stability to allow for experimental determinations of dose-response curves utilizing both within-subject and between-subject designs.
Collapse
|