1
|
Bhattacharjee M, Manoharan S, Sathisaran U, Tamatam A, Perumal E. MAO inhibiting phytochemicals from the roots of Glycyrrhiza glabra L. J Biomol Struct Dyn 2024; 42:3887-3905. [PMID: 37243713 DOI: 10.1080/07391102.2023.2216298] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2023] [Accepted: 05/15/2023] [Indexed: 05/29/2023]
Abstract
Glycyrrhizin, a natural compound that is substantially present in Glycyrrhiza glabra L. (Gg) root. Monoamine oxidase B (MAOB) inhibitor is used for the treatment of several important neuropsychological diseases like Parkinson's disease. Gg is known to possess psychoactive properties which relates to its MAO inhibitory potential. This study sought to determine the MAO inhibition property of glycyrrhizin from Gg root extract. The Aqueous extract containing glycyrrhizin was isolated from the root of Gg and characterized using TLC, HPLC, and LC-MS techniques. In silico docking was conducted using Extra precision Glide 2018, Schrödinger docking suite. In addition, the pharmacokinetic properties of the compounds were predicted using SwissADME. The binding energies of the glycyrrhizin correlated well with their in vitro MAO inhibitory potential. Glycyrrhizin exhibited potent inhibitory activity towards MAOB whereas, an aqueous extract of Gg root inhibits both A and B forms of MAO enzyme. Further, molecular docking and molecular dynamics simulation showed that liquiritigenin and methoxyglabridin showed higher stability than other inhibitor compounds from the Gg root extract. These observations suggest that the phytochemicals from the Gg root extract have potent MAO inhibition properties, which can be exploited for the treatment of neurodegenerative disorders.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Monojit Bhattacharjee
- Defence Research and Development Organisation, Bharathiar University Center for Life Sciences (DRDO-BU CLS), Bharathiar University Campus, Coimbatore, Tamil Nadu, India
| | - Suryaa Manoharan
- Molecular Toxicology Laboratory, Department of Biotechnology, Bharathiar University, Coimbatore, Tamil Nadu, India
| | - Umamaheswari Sathisaran
- Unit of Toxicology, Department of Zoology, School of Life Sciences, Bharathiar University, Coimbatore, India
| | - Anand Tamatam
- Nutrition, Biochemistry and Toxicology Division, Defence Food Research Laboratory (DRDO-DFRL), Mysore, India
| | - Ekambaram Perumal
- Defence Research and Development Organisation, Bharathiar University Center for Life Sciences (DRDO-BU CLS), Bharathiar University Campus, Coimbatore, Tamil Nadu, India
- Molecular Toxicology Laboratory, Department of Biotechnology, Bharathiar University, Coimbatore, Tamil Nadu, India
| |
Collapse
|
2
|
Yoshimoto R, Nakayama Y, Nomura I, Yamamoto I, Nakagawa Y, Tanaka S, Kurihara M, Suzuki Y, Kobayashi T, Kozuka-Hata H, Oyama M, Mito M, Iwasaki S, Yamazaki T, Hirose T, Araki K, Nakagawa S. 4.5SH RNA counteracts deleterious exonization of SINE B1 in mice. Mol Cell 2023; 83:4479-4493.e6. [PMID: 38096826 DOI: 10.1016/j.molcel.2023.11.019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2023] [Revised: 10/09/2023] [Accepted: 11/15/2023] [Indexed: 12/24/2023]
Abstract
4.5SH RNA is a highly abundant, small rodent-specific noncoding RNA that localizes to nuclear speckles enriched in pre-mRNA-splicing regulators. To investigate the physiological functions of 4.5SH RNA, we have created mutant mice that lack the expression of 4.5SH RNA. The mutant mice exhibited embryonic lethality, suggesting that 4.5SH RNA is an essential species-specific noncoding RNA in mice. RNA-sequencing analyses revealed that 4.5SH RNA protects the transcriptome from abnormal exonizations of the antisense insertions of the retrotransposon SINE B1 (asB1), which would otherwise introduce deleterious premature stop codons or frameshift mutations. Mechanistically, 4.5SH RNA base pairs with complementary asB1-containing exons via the target recognition region and recruits effector proteins including Hnrnpm via its 5' stem loop region. The modular organization of 4.5SH RNA allows us to engineer a programmable splicing regulator to induce the skipping of target exons of interest. Our results also suggest the general existence of splicing regulatory noncoding RNAs.
Collapse
Affiliation(s)
- Rei Yoshimoto
- Department of Applied Biological Sciences, Faculty of Agriculture, Setsunan University, 45-1 Nagaotoge-cho, Hirakata City, Osaka 573-0101, Japan.
| | - Yuta Nakayama
- RNA Biology Laboratory, Faculty of Pharmaceutical Sciences, Hokkaido University, Kita 12-jo Nishi 6-chome, Kita-ku, Sapporo 060-0812, Japan
| | - Ikuko Nomura
- RNA Biology Laboratory, Faculty of Pharmaceutical Sciences, Hokkaido University, Kita 12-jo Nishi 6-chome, Kita-ku, Sapporo 060-0812, Japan
| | - Ikuko Yamamoto
- RNA Biology Laboratory, Faculty of Pharmaceutical Sciences, Hokkaido University, Kita 12-jo Nishi 6-chome, Kita-ku, Sapporo 060-0812, Japan
| | - Yumeka Nakagawa
- Department of Applied Biological Sciences, Faculty of Agriculture, Setsunan University, 45-1 Nagaotoge-cho, Hirakata City, Osaka 573-0101, Japan
| | - Shigeyuki Tanaka
- Department of Applied Biological Sciences, Faculty of Agriculture, Setsunan University, 45-1 Nagaotoge-cho, Hirakata City, Osaka 573-0101, Japan
| | - Misuzu Kurihara
- RNA Biology Laboratory, Faculty of Pharmaceutical Sciences, Hokkaido University, Kita 12-jo Nishi 6-chome, Kita-ku, Sapporo 060-0812, Japan
| | - Yu Suzuki
- Laboratory of Genome Regeneration, Institute for Quantitative Biosciences, University of Tokyo, 1-1-1, Yayoi, Bunkyo-ku, Tokyo 113-0032, Japan
| | - Takehiko Kobayashi
- Laboratory of Genome Regeneration, Institute for Quantitative Biosciences, University of Tokyo, 1-1-1, Yayoi, Bunkyo-ku, Tokyo 113-0032, Japan
| | - Hiroko Kozuka-Hata
- Medical Proteomics Laboratory, The Institute of Medical Science, University of Tokyo, 4-6-1, Shirokanedai, Minato-ku, Tokyo 108-8639, Japan
| | - Masaaki Oyama
- Medical Proteomics Laboratory, The Institute of Medical Science, University of Tokyo, 4-6-1, Shirokanedai, Minato-ku, Tokyo 108-8639, Japan
| | - Mari Mito
- RNA Systems Biochemistry Laboratory, RIKEN Cluster for Pioneering Research, 2-1 Hirosawa, Wako, Saitama 351-0198, Japan
| | - Shintaro Iwasaki
- RNA Systems Biochemistry Laboratory, RIKEN Cluster for Pioneering Research, 2-1 Hirosawa, Wako, Saitama 351-0198, Japan; Department of Computational Biology and Medical Sciences, Graduate School of Frontier Sciences, University of Tokyo, Kashiwa, Chiba 277-8561, Japan
| | - Tomohiro Yamazaki
- RNA Biofunction Laboratory, Graduate School of Frontier Biosciences, Osaka University, 1-3 Yamadaoka, Suita, Osaka 565-0871, Japan
| | - Tetsuro Hirose
- RNA Biofunction Laboratory, Graduate School of Frontier Biosciences, Osaka University, 1-3 Yamadaoka, Suita, Osaka 565-0871, Japan; Institute for Open and Transdisciplinary Research Initiatives (OTRI), Osaka University, 1-3 Yamadaoka, Suita, Osaka 565-0871, Japan
| | - Kimi Araki
- Institute of Resource Development and Analysis, Kumamoto University, Kumamoto 860-0811, Japan; Center for Metabolic Regulation of Healthy Aging, Kumamoto University, 1-1-1, Honjo, Kumamoto 860-8556, Japan
| | - Shinichi Nakagawa
- RNA Biology Laboratory, Faculty of Pharmaceutical Sciences, Hokkaido University, Kita 12-jo Nishi 6-chome, Kita-ku, Sapporo 060-0812, Japan.
| |
Collapse
|
3
|
Luo H, Marron Fernandez de Velasco E, Wickman K. Neuronal G protein-gated K + channels. Am J Physiol Cell Physiol 2022; 323:C439-C460. [PMID: 35704701 PMCID: PMC9362898 DOI: 10.1152/ajpcell.00102.2022] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
G protein-gated inwardly rectifying K+ (GIRK/Kir3) channels exert a critical inhibitory influence on neurons. Neuronal GIRK channels mediate the G protein-dependent, direct/postsynaptic inhibitory effect of many neurotransmitters including γ-aminobutyric acid (GABA), serotonin, dopamine, adenosine, somatostatin, and enkephalin. In addition to their complex regulation by G proteins, neuronal GIRK channel activity is sensitive to PIP2, phosphorylation, regulator of G protein signaling (RGS) proteins, intracellular Na+ and Ca2+, and cholesterol. The application of genetic and viral manipulations in rodent models, together with recent progress in the development of GIRK channel modulators, has increased our understanding of the physiological and behavioral impact of neuronal GIRK channels. Work in rodent models has also revealed that neuronal GIRK channel activity is modified, transiently or persistently, by various stimuli including exposure drugs of abuse, changes in neuronal activity patterns, and aversive experience. A growing body of preclinical and clinical evidence suggests that dysregulation of GIRK channel activity contributes to neurological diseases and disorders. The primary goals of this review are to highlight fundamental principles of neuronal GIRK channel biology, mechanisms of GIRK channel regulation and plasticity, the nascent landscape of GIRK channel pharmacology, and the potential relevance of GIRK channels to the pathophysiology and treatment of neurological diseases and disorders.
Collapse
Affiliation(s)
- Haichang Luo
- Department of Pharmacology, University of Minnesota, Minneapolis, MN, United States
| | | | - Kevin Wickman
- Department of Pharmacology, University of Minnesota, Minneapolis, MN, United States
| |
Collapse
|
4
|
Lu Y, Yang J, Sun J, Lu W, Wang JH. mRNA and miRNA profiles in the nucleus accumbens are associated with psychological stress-induced susceptible and resilient mice. Pharmacol Biochem Behav 2020; 199:173062. [PMID: 33098854 DOI: 10.1016/j.pbb.2020.173062] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/25/2020] [Revised: 10/15/2020] [Accepted: 10/18/2020] [Indexed: 11/24/2022]
Abstract
BACKGROUND Stress may be one of the main causes of fear and anxiety. Previous studies have shown that the nucleus accumbens is involved in emotional responses. However, in the nucleus accumbens, the mRNA and miRNA profiles of stress susceptibility and resilience of psychological stress still need to be studied. MATERIALS AND METHODS In this study, by observing the conspecific being attacked, the witness group experienced psychological stress. After five days of psychological stress, the fear memory of mice was measured by social interaction test, and the degree of anxiety was measured by elevated plus maze. mRNA and miRNA profiles in the nucleus accumbens tissue of control, susceptible and resilient mice were established by high-throughput sequencing. RESULTS In susceptible mice versus resilient mice, the Differentially expressed genes (DEGs) may be related to psychological stress-induced susceptibility. DEGs enriched in Cell adhesion molecules, Neuroactive ligand-receptor interaction, Gap junction, PI3K-Akt, VEGF, Jak-STAT, Ras, and Chemokine pathways were up-regulated. DEGs enriched in cGMP-PKG, B cell receptor, and NOD-like receptor pathways were down- regulated. The sequencing results of mRNAs and miRNAs were verified by qRT-PCR and dual luciferase reporter assay. CONCLUSION The imbalance of different synapses and pathways in the nucleus accumbens may be related to susceptibility and resilience caused by psychological stress.
Collapse
Affiliation(s)
- Yanjun Lu
- Qingdao University, School of Pharmacy, Qingdao, Shandong 266021, China
| | - Jiuyong Yang
- Qingdao University, School of Pharmacy, Qingdao, Shandong 266021, China
| | - Jinyan Sun
- Qingdao University, School of Pharmacy, Qingdao, Shandong 266021, China
| | - Wei Lu
- Qingdao University, School of Pharmacy, Qingdao, Shandong 266021, China.
| | - Jin-Hui Wang
- Qingdao University, School of Pharmacy, Qingdao, Shandong 266021, China; University of Chinese Academy of Sciences, Beijing 100049, China; Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China.
| |
Collapse
|
5
|
Korczak M, Kurowski P, Leśniak A, Grönbladh A, Filipowska A, Bujalska-Zadrożny M. GABA B receptor intracellular signaling: novel pathways for depressive disorder treatment? Eur J Pharmacol 2020; 885:173531. [PMID: 32871173 DOI: 10.1016/j.ejphar.2020.173531] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2020] [Revised: 08/26/2020] [Accepted: 08/28/2020] [Indexed: 12/22/2022]
Abstract
Affecting over 320 million people around the world, depression has become a formidable challenge for modern medicine. In addition, an increasing number of studies cast doubt on the monoamine theory of depressive disorder and, worryingly, antidepressant medications only significantly benefit patients with severe depression. Thus, it is not surprising that researchers have shown an increased interest in new theories attempting to explain the pathogenesis of this disease. One example is the excitatory/inhibitory transmission imbalance theory. These abnormalities involve glutamate and γ-aminobutyric acid (GABA) signaling. Studies on GABAB receptors and their antagonists are particularly promising for the treatment of depressive disorders. In this paper, intracellular pathways controlled by GABAB receptors and their links to depression are described, including the impact of ketamine on GABAergic synaptic transmission.
Collapse
Affiliation(s)
- Maciej Korczak
- Department of Pharmacodynamics, Centre for Preclinical Research and Technology, The Medical University of Warsaw, Warsaw, Poland
| | - Przemysław Kurowski
- Department of Pharmacodynamics, Centre for Preclinical Research and Technology, The Medical University of Warsaw, Warsaw, Poland.
| | - Anna Leśniak
- Department of Pharmacodynamics, Centre for Preclinical Research and Technology, The Medical University of Warsaw, Warsaw, Poland
| | - Alfhild Grönbladh
- The Beijer Laboratory, Biological Research on Drug Dependence, Department of Pharmaceutical Biosciences, The Uppsala University, Uppsala, Sweden
| | - Anna Filipowska
- Department of Biosensors and Processing of Biomedical Signals, The Silesian University of Technology, Zabrze, Poland
| | - Magdalena Bujalska-Zadrożny
- Department of Pharmacodynamics, Centre for Preclinical Research and Technology, The Medical University of Warsaw, Warsaw, Poland
| |
Collapse
|
6
|
GIRK Channel Activity in Dopamine Neurons of the Ventral Tegmental Area Bidirectionally Regulates Behavioral Sensitivity to Cocaine. J Neurosci 2019; 39:3600-3610. [PMID: 30837265 DOI: 10.1523/jneurosci.3101-18.2019] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2018] [Revised: 02/17/2019] [Accepted: 02/22/2019] [Indexed: 12/19/2022] Open
Abstract
Dopamine (DA) neurons of the VTA have been widely implicated in the cellular and behavioral responses to drugs of abuse. Inhibitory G protein signaling mediated by GABAB receptors (GABABRs) and D2 DA receptors (D2Rs) regulates the excitability of VTA DA neurons, DA neurotransmission, and behaviors modulated by DA. Most of the somatodendritic inhibitory effect of GABABR and D2R activation on DA neurons reflects the activation of G protein-gated inwardly rectifying K+ (GIRK) channels. Furthermore, GIRK-dependent signaling in VTA DA neurons can be weakened by exposure to psychostimulants and strengthened by phasic DA neuron firing. The objective of this study was to determine how the strength of GIRK channel activity in VTA DA neurons influences sensitivity to cocaine. We used a Cre-dependent viral strategy to overexpress the individual GIRK channel subunits in VTA DA neurons of male and female adult mice, leading to enhancement (GIRK2) or suppression (GIRK3) of GIRK channel activity. Overexpression of GIRK3 decreased somatodendritic GABABR- and D2R-dependent signaling and increased cocaine-induced locomotor activity, whereas overexpression of GIRK2 increased GABABR-dependent signaling and decreased cocaine-induced locomotion. Neither manipulation impacted anxiety- or depression-related behavior, despite the link between such behaviors and DA signaling. Together, these data show that behavioral sensitivity to cocaine in mice is inversely proportional to the strength of GIRK channel activity in VTA DA neurons and suggest that direct activators of the unique VTA DA neuron GIRK channel subtype (GIRK2/GIRK3 heteromer) could represent a promising therapeutic target for treatment of addiction.SIGNIFICANCE STATEMENT Inhibitory G protein signaling in dopamine (DA) neurons, including that mediated by G protein-gated inwardly rectifying K+ (GIRK) channels, has been implicated in behavioral sensitivity to cocaine. Here, we used a viral approach to bidirectionally manipulate GIRK channel activity in DA neurons of the VTA. We found that decreasing GIRK channel activity in VTA DA neurons increased behavioral sensitivity to cocaine, whereas increasing GIRK channel activity decreased behavioral sensitivity to cocaine. These manipulations did not alter anxiety- or depression-related behaviors. These data highlight the unique GIRK channel subtype in VTA DA neurons as a possible therapeutic target for addiction.
Collapse
|