1
|
Komoltsev IG, Gulyaeva NV. Brain Trauma, Glucocorticoids and Neuroinflammation: Dangerous Liaisons for the Hippocampus. Biomedicines 2022; 10:biomedicines10051139. [PMID: 35625876 PMCID: PMC9138485 DOI: 10.3390/biomedicines10051139] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2022] [Revised: 04/30/2022] [Accepted: 05/13/2022] [Indexed: 12/02/2022] Open
Abstract
Glucocorticoid-dependent mechanisms of inflammation-mediated distant hippocampal damage are discussed with a focus on the consequences of traumatic brain injury. The effects of glucocorticoids on specific neuronal populations in the hippocampus depend on their concentration, duration of exposure and cell type. Previous stress and elevated level of glucocorticoids prior to pro-inflammatory impact, as well as long-term though moderate elevation of glucocorticoids, may inflate pro-inflammatory effects. Glucocorticoid-mediated long-lasting neuronal circuit changes in the hippocampus after brain trauma are involved in late post-traumatic pathology development, such as epilepsy, depression and cognitive impairment. Complex and diverse actions of the hypothalamic–pituitary–adrenal axis on neuroinflammation may be essential for late post-traumatic pathology. These mechanisms are applicable to remote hippocampal damage occurring after other types of focal brain damage (stroke, epilepsy) or central nervous system diseases without obvious focal injury. Thus, the liaisons of excessive glucocorticoids/dysfunctional hypothalamic–pituitary–adrenal axis with neuroinflammation, dangerous to the hippocampus, may be crucial to distant hippocampal damage in many brain diseases. Taking into account that the hippocampus controls both the cognitive functions and the emotional state, further research on potential links between glucocorticoid signaling and inflammatory processes in the brain and respective mechanisms is vital.
Collapse
Affiliation(s)
- Ilia G. Komoltsev
- Department of Functional Biochemistry of the Nervous System, Institute of Higher Nervous Activity and Neurophysiology, Russian Academy of Sciences, 117465 Moscow, Russia;
- Moscow Research and Clinical Center for Neuropsychiatry, 115419 Moscow, Russia
| | - Natalia V. Gulyaeva
- Department of Functional Biochemistry of the Nervous System, Institute of Higher Nervous Activity and Neurophysiology, Russian Academy of Sciences, 117465 Moscow, Russia;
- Moscow Research and Clinical Center for Neuropsychiatry, 115419 Moscow, Russia
- Correspondence: ; Tel.: +7-495-9524007 or +7-495-3347020
| |
Collapse
|
2
|
Lajud N, Roque A, Cheng JP, Bondi CO, Kline AE. Early Life Stress Preceding Mild Pediatric Traumatic Brain Injury Increases Neuroinflammation but Does Not Exacerbate Impairment of Cognitive Flexibility during Adolescence. J Neurotrauma 2020; 38:411-421. [PMID: 33040677 DOI: 10.1089/neu.2020.7354] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023] Open
Abstract
Early life stress (ELS) followed by pediatric mild traumatic brain injury (mTBI) negatively impacts spatial learning and memory and increases microglial activation in adolescent rats, but whether the same paradigm negatively affects higher order executive function is not known. Hence, we utilized the attentional set-shifting test (AST) to evaluate executive function (cognitive flexibility) and to determine its relationship with neuroinflammation and hypothalamic-pituitary-adrenal (HPA) axis activity after pediatric mTBI in male rats. ELS was induced via maternal separation for 180 min per day (MS180) during the first 21 post-natal (P) days, while controls (CONT) were undisturbed. At P21, fully anesthetized rats received a mild controlled cortical impact (2.2 mm tissue deformation at 4 m/sec) or sham injury. AST was evaluated during adolescence on P35-P40 and cytokine expression and HPA activity were analyzed on P42. The data indicate that pediatric mTBI produced a significant reversal learning deficit on the AST versus sham (p < 0.05), but that the impairment was not exacerbated further by MS180. Additionally, ELS produced an overall elevation in set-loss errors on the AST, and increased hippocampal interleukin (IL)-1β expression after TBI. A significant correlation was observed in executive dysfunction and IL-1β expression in the ipsilateral pre-frontal cortex and hippocampus. Although the combination of ELS and pediatric mTBI did not worsen executive function beyond that of mTBI alone (p > 0.05), it did result in increased hippocampal neuroinflammation relative to mTBI (p < 0.05). These findings provide important insight into the susceptibility to incur alterations in cognitive and neuroimmune functioning after stress exposure and TBI during early life.
Collapse
Affiliation(s)
- Naima Lajud
- División de Neurociencias, Centro de Investigación Biomédica de Michoacán - Instituto Mexicano del Seguro Social, Morelia, Michoacán, México
| | - Angélica Roque
- División de Neurociencias, Centro de Investigación Biomédica de Michoacán - Instituto Mexicano del Seguro Social, Morelia, Michoacán, México.,Physical Medicine and Rehabilitation, University of Pittsburgh, Pittsburgh, Pennsylvania, USA.,Safar Center for Resuscitation Research, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Jeffrey P Cheng
- Physical Medicine and Rehabilitation, University of Pittsburgh, Pittsburgh, Pennsylvania, USA.,Safar Center for Resuscitation Research, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Corina O Bondi
- Physical Medicine and Rehabilitation, University of Pittsburgh, Pittsburgh, Pennsylvania, USA.,Safar Center for Resuscitation Research, University of Pittsburgh, Pittsburgh, Pennsylvania, USA.,Neurobiology, University of Pittsburgh, Pittsburgh, Pennsylvania, USA.,Center for Neuroscience, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Anthony E Kline
- Physical Medicine and Rehabilitation, University of Pittsburgh, Pittsburgh, Pennsylvania, USA.,Safar Center for Resuscitation Research, University of Pittsburgh, Pittsburgh, Pennsylvania, USA.,Center for Neuroscience, University of Pittsburgh, Pittsburgh, Pennsylvania, USA.,Center for the Neural Basis of Cognition, University of Pittsburgh, Pittsburgh, Pennsylvania, USA.,Critical Care Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania, USA.,Psychology, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| |
Collapse
|
3
|
Marti AR, Pedersen TT, Wisor JP, Mrdalj J, Holmelid Ø, Patil S, Meerlo P, Bramham CR, Grønli J. Cognitive function and brain plasticity in a rat model of shift work: role of daily rhythms, sleep and glucocorticoids. Sci Rep 2020; 10:13141. [PMID: 32753733 PMCID: PMC7403587 DOI: 10.1038/s41598-020-69969-x] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2020] [Accepted: 07/14/2020] [Indexed: 02/06/2023] Open
Abstract
Many occupations require operations during the night-time when the internal circadian clock promotes sleep, in many cases resulting in impairments in cognitive performance and brain functioning. Here, we use a rat model to attempt to identify the biological mechanisms underlying such impaired performance. Rats were exposed to forced activity, either in their rest-phase (simulating night-shift work; rest work) or in their active-phase (simulating day-shift work; active work). Sleep, wakefulness and body temperature rhythm were monitored throughout. Following three work shifts, spatial memory performance was tested on the Morris Water Maze task. After 4 weeks washout, the work protocol was repeated, and blood and brain tissue collected. Simulated night-shift work impaired spatial memory and altered biochemical markers of cerebral cortical protein synthesis. Measures of daily rhythm strength were blunted, and sleep drive increased. Individual variation in the data suggested differences in shift work tolerance. Hierarchical regression analyses revealed that type of work, changes in daily rhythmicity and changes in sleep drive predict spatial memory performance and expression of brain protein synthesis regulators. Moreover, serum corticosterone levels predicted expression of brain protein synthesis regulators. These findings open new research avenues into the biological mechanisms that underlie individual variation in shift work tolerance.
Collapse
Affiliation(s)
- Andrea R Marti
- Bergen Stress and Sleep Group, Department of Biological and Medical Psychology, Faculty of Psychology, University of Bergen, Jonas Liesvei 91, 5009, Bergen, Norway. .,Bergen Stress and Sleep Group, Department of Biological and Medical Psychology, Faculty of Psychology, University of Bergen, Jonas Liesvei 91, 5009, Bergen, Norway.
| | - Torhild T Pedersen
- Bergen Stress and Sleep Group, Department of Biological and Medical Psychology, Faculty of Psychology, University of Bergen, Jonas Liesvei 91, 5009, Bergen, Norway
| | - Jonathan P Wisor
- College of Medicine, Washington State University, Spokane, WA, USA
| | - Jelena Mrdalj
- Bergen Stress and Sleep Group, Department of Biological and Medical Psychology, Faculty of Psychology, University of Bergen, Jonas Liesvei 91, 5009, Bergen, Norway
| | - Øystein Holmelid
- Bergen Stress and Sleep Group, Department of Biological and Medical Psychology, Faculty of Psychology, University of Bergen, Jonas Liesvei 91, 5009, Bergen, Norway
| | - Sudarshan Patil
- Department of Biomedicine, Faculty of Medicine, University of Bergen, Bergen, Norway
| | - Peter Meerlo
- Groningen Institute for Evolutionary Life Sciences, University of Groningen, Groningen, The Netherlands
| | - Clive R Bramham
- Department of Biomedicine, Faculty of Medicine, University of Bergen, Bergen, Norway
| | - Janne Grønli
- Bergen Stress and Sleep Group, Department of Biological and Medical Psychology, Faculty of Psychology, University of Bergen, Jonas Liesvei 91, 5009, Bergen, Norway
| |
Collapse
|