1
|
Chapp AD, Shan Z, Chen QH. Acetic Acid: An Underestimated Metabolite in Ethanol-Induced Changes in Regulating Cardiovascular Function. Antioxidants (Basel) 2024; 13:139. [PMID: 38397737 PMCID: PMC10886048 DOI: 10.3390/antiox13020139] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2023] [Revised: 01/13/2024] [Accepted: 01/18/2024] [Indexed: 02/25/2024] Open
Abstract
Acetic acid is a bioactive short-chain fatty acid produced in large quantities from ethanol metabolism. In this review, we describe how acetic acid/acetate generates oxidative stress, alters the function of pre-sympathetic neurons, and can potentially influence cardiovascular function in both humans and rodents after ethanol consumption. Our recent findings from in vivo and in vitro studies support the notion that administration of acetic acid/acetate generates oxidative stress and increases sympathetic outflow, leading to alterations in arterial blood pressure. Real-time investigation of how ethanol and acetic acid/acetate modulate neural control of cardiovascular function can be conducted by microinjecting compounds into autonomic control centers of the brain and measuring changes in peripheral sympathetic nerve activity and blood pressure in response to these compounds.
Collapse
Affiliation(s)
- Andrew D. Chapp
- Department of Neuroscience, University of Minnesota, Minneapolis, MN 55455, USA
| | - Zhiying Shan
- Kinesiology and Integrative Physiology, Michigan Technological University, Houghton, MI 49931, USA;
| | - Qing-Hui Chen
- Kinesiology and Integrative Physiology, Michigan Technological University, Houghton, MI 49931, USA;
| |
Collapse
|
2
|
Matsuura K, Kushio S, Imai H, Kudo H, Wakuda H, Otani N, Kuranari M, Sekiguchi A, Ohyama T, Uemura N. Association between psychomotor function and ALDH2 genotype after consuming barley shochu: A randomized crossover trial. Clin Transl Sci 2023; 16:686-693. [PMID: 36748664 PMCID: PMC10087066 DOI: 10.1111/cts.13482] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2022] [Revised: 12/13/2022] [Accepted: 01/09/2023] [Indexed: 02/08/2023] Open
Abstract
Sustained exposure to acetaldehyde, the major metabolite of ethanol, may influence psychomotor performance even after the breath ethanol level significantly drops several hours following ethanol consumption. We examined the relationship between psychomotor function and changes in exhaled ethanol and acetaldehyde concentrations after consuming a low dose (0.33 g/kg) of barley shochu, a traditional Japanese distilled alcohol beverage, at the point when the exhaled ethanol concentrations dropped below 78,000 parts per billion (0.15 mg/L), the standard threshold for driving under the influence of alcohol in Japan. We assessed how the genetic polymorphisms of rs671 G/G homozygous (*1/*1) and G/A heterozygous (*1/*2) of ALDH2 influenced the kinetics of ethanol and acetaldehyde in exhaled air and psychomotor dynamics using the Digit Symbol Substitution Test (DSST), Critical Flicker Fusion Test (CFFT), and visual analogue scale (VAS) up to 12 h after shochu or water intake. There was no significant difference in DSST and CFFT scores depending on genotype; however, the time required for the DSST to attain the level prior to drinking was longer in the ALDH2 *1/*2 group than in the *1/*1 group. In the VAS test, facial flushing and mood elevation tended to be higher in the *1/*2 group after shochu consumption. VAS scores for mood elevation and facial flushing correlated with acetaldehyde concentration in exhaled breath. These results indicate that DSST recovery tends to be slower and mood elevation higher in the ALDH2 *1/*2 group even when exposed to a low dose of alcohol.
Collapse
Affiliation(s)
- Keiko Matsuura
- Department of Biomedicine, Faculty of Medicine, Oita University, Oita, Japan
| | - Satoshi Kushio
- Sanwa Research and Development Laboratory, Sanwa Shurui Co., Oita, Japan
| | - Hiromitsu Imai
- Department of Medical Ethics, Faculty of Medicine, Oita University, Oita, Japan.,Clinical Pharmacology Center, Oita University Hospital, Oita, Japan
| | - Hideo Kudo
- Department of Clinical Pharmacology and Therapeutics, Faculty of Medicine, Oita University, Oita, Japan
| | - Hirokazu Wakuda
- Clinical Pharmacology Center, Oita University Hospital, Oita, Japan
| | - Naoyuki Otani
- Department of Clinical Pharmacology and Therapeutics, Faculty of Medicine, Oita University, Oita, Japan
| | - Masae Kuranari
- General Clinical Research Center, Oita University Hospital, Oita, Japan
| | - Ai Sekiguchi
- Department of Clinical Pharmacology and Therapeutics, Faculty of Medicine, Oita University, Oita, Japan
| | | | - Naoto Uemura
- Clinical Pharmacology Center, Oita University Hospital, Oita, Japan.,Department of Clinical Pharmacology and Therapeutics, Faculty of Medicine, Oita University, Oita, Japan
| |
Collapse
|
3
|
Chen Z, Rasheed M, Deng Y. The epigenetic mechanisms involved in mitochondrial dysfunction: Implication for Parkinson's disease. Brain Pathol 2021; 32:e13012. [PMID: 34414627 PMCID: PMC9048811 DOI: 10.1111/bpa.13012] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2021] [Revised: 06/21/2021] [Accepted: 07/27/2021] [Indexed: 12/18/2022] Open
Abstract
Mitochondrial dysfunction is one of the crucial factors involved in PD’s pathogenicity, which emerges from a combination of genetic and environmental factors. These factors cause differential molecular expression in neurons, such as varied transcriptional regulation of genes, elevated oxidative stress, α‐synuclein aggregation and endogenous neurotoxins release, which induces epigenetic modifications and triggers energy crisis by damaging mitochondria of the dopaminergic neurons (DN). So far, these events establish a complicated relationship with underlying mechanisms of mitochondrial anomalies in PD, which has remained unclear for years and made PD diagnosis and treatment extremely difficult. Therefore, in this review, we endeavored to discuss the complex association of epigenetic modifications and other associated vital factors in mitochondrial dysfunction. We propose a hypothesis that describes a vicious cycle in which mitochondrial dysfunction and oxidative stress act as a hub for regulating DA neuron's fate in PD. Oxidative stress triggers the release of endogenous neurotoxins (CTIQs) that lead to mitochondrial dysfunction along with abnormal α‐synuclein aggregation and epigenetic modifications. These disturbances further intensify oxidative stress and mitochondrial damage, amplifying the synthesis of CTIQs and works vice versa. This vicious cycle may result in the degeneration of DN to hallmark Parkinsonism. Furthermore, we have also highlighted various endogenous compounds and epigenetic marks (neurotoxic and neuroprotective), which may help for devising future diagnostic biomarkers and target specific drugs using novel PD management strategies.
Collapse
Affiliation(s)
- Zixuan Chen
- School of Life Science, Beijing Institute of Technology, Beijing, China
| | - Madiha Rasheed
- School of Life Science, Beijing Institute of Technology, Beijing, China
| | - Yulin Deng
- School of Life Science, Beijing Institute of Technology, Beijing, China
| |
Collapse
|
4
|
Rodriguez FD, Coveñas R. Biochemical Mechanisms Associating Alcohol Use Disorders with Cancers. Cancers (Basel) 2021; 13:cancers13143548. [PMID: 34298760 PMCID: PMC8306032 DOI: 10.3390/cancers13143548] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2021] [Revised: 07/01/2021] [Accepted: 07/14/2021] [Indexed: 02/06/2023] Open
Abstract
Simple Summary Of all yearly deaths attributable to alcohol consumption globally, approximately 12% are due to cancers, representing approximately 0.4 million deceased individuals. Ethanol metabolism disturbs cell biochemistry by targeting the structure and function of essential biomolecules (proteins, nucleic acids, and lipids) and by provoking alterations in cell programming that lead to cancer development and cancer malignancy. A better understanding of the metabolic and cell signaling realm affected by ethanol is paramount to designing effective treatments and preventive actions tailored to specific neoplasias. Abstract The World Health Organization identifies alcohol as a cause of several neoplasias of the oropharynx cavity, esophagus, gastrointestinal tract, larynx, liver, or female breast. We review ethanol’s nonoxidative and oxidative metabolism and one-carbon metabolism that encompasses both redox and transfer reactions that influence crucial cell proliferation machinery. Ethanol favors the uncontrolled production and action of free radicals, which interfere with the maintenance of essential cellular functions. We focus on the generation of protein, DNA, and lipid adducts that interfere with the cellular processes related to growth and differentiation. Ethanol’s effects on stem cells, which are responsible for building and repairing tissues, are reviewed. Cancer stem cells (CSCs) of different origins suffer disturbances related to the expression of cell surface markers, enzymes, and transcription factors after ethanol exposure with the consequent dysregulation of mechanisms related to cancer metastasis or resistance to treatments. Our analysis aims to underline and discuss potential targets that show more sensitivity to ethanol’s action and identify specific metabolic routes and metabolic realms that may be corrected to recover metabolic homeostasis after pharmacological intervention. Specifically, research should pay attention to re-establishing metabolic fluxes by fine-tuning the functioning of specific pathways related to one-carbon metabolism and antioxidant processes.
Collapse
Affiliation(s)
- Francisco D. Rodriguez
- Department of Biochemistry and Molecular Biology, Faculty of Chemistry, University of Salamanca, 37007 Salamanca, Spain
- Group GIR USAL: BMD (Bases Moleculares del Desarrollo), 37007 Salamanca, Spain;
- Correspondence: ; Tel.: +34-677-510-030
| | - Rafael Coveñas
- Group GIR USAL: BMD (Bases Moleculares del Desarrollo), 37007 Salamanca, Spain;
- Institute of Neurosciences of Castilla y León (INCYL), Laboratory of Neuroanatomy of the Peptidergic Systems, University of Salamanca, 37007 Salamanca, Spain
| |
Collapse
|
5
|
Kim S, Jang EY, Song SH, Kim JS, Ryu IS, Jeong CH, Lee S. Brain Microdialysis Coupled to LC-MS/MS Revealed That CVT-10216, a Selective Inhibitor of Aldehyde Dehydrogenase 2, Alters the Neurochemical and Behavioral Effects of Methamphetamine. ACS Chem Neurosci 2021; 12:1552-1562. [PMID: 33871963 DOI: 10.1021/acschemneuro.1c00039] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Methamphetamine (MA), a potent central nervous system stimulant, mainly affects the brain dopaminergic and serotoninergic systems. Monoamine oxidase, catechol-O-methyltransferase, and aldehyde dehydrogenase 2 (ALDH2) are important enzymes in the metabolism of dopamine (DA) and serotonin (5-HT); however, the role of ALDH2 in MA addiction remains unclear. This study focused on the real-time changes in DA, 5-HT, and their metabolites, including 3,4-dihydroxyphenylacetic aldehyde and salsolinol, which are metabolites directly related to ALDH2, to examine the effects of the inhibition of ALDH2 on hyperlocomotion induced by MA. Locomotor activity was evaluated in rats after administration of MA and/or CVT-10216 (a selective ALDH2 inhibitor). Moreover, the simultaneous quantification of DA, 5-HT, and their metabolites in brain microdialysates of the rats was performed using a derivatization-assisted LC-MS/MS method after full validation. The validation results proved the method to be selective, sensitive, accurate, and precise, with acceptable linearity within calibration ranges. Intraperitoneal (i.p.) administration of 10 or 20 mg/kg of CVT-10216 significantly decreased MA-induced hyperlocomotion (1 mg/kg, i.p.). The analytical results of rat brain microdialysates demonstrated that the administration of CVT-10216 significantly downregulated DA levels, which were increased upon exposure to MA. Moreover, the increase in 3-methoxytyramine levels following coadministration of CVT-10216 and MA could play a potential role in antagonizing the hyperlocomotion induced by MA. All of these findings suggest that the inhibition of ALDH2 protects against MA-induced hyperlocomotion and has therapeutic potential in MA addiction.
Collapse
Affiliation(s)
- Seungju Kim
- College of Pharmacy, Keimyung University, 1095 Dalgubeoldaero, Dalseo-gu, Daegu 704-701, Republic of Korea
| | - Eun Young Jang
- Pharmacology and Drug Abuse Research Group, Korea Institute of Toxicology, 141 Gajeong-ro, Yuseong-gu, Daegeon 34114, Republic of Korea
| | - Sang-Hoon Song
- College of Pharmacy, Keimyung University, 1095 Dalgubeoldaero, Dalseo-gu, Daegu 704-701, Republic of Korea
| | - Ji Sun Kim
- Pharmacology and Drug Abuse Research Group, Korea Institute of Toxicology, 141 Gajeong-ro, Yuseong-gu, Daegeon 34114, Republic of Korea
| | - In Soo Ryu
- Pharmacology and Drug Abuse Research Group, Korea Institute of Toxicology, 141 Gajeong-ro, Yuseong-gu, Daegeon 34114, Republic of Korea
| | - Chul-Ho Jeong
- College of Pharmacy, Keimyung University, 1095 Dalgubeoldaero, Dalseo-gu, Daegu 704-701, Republic of Korea
| | - Sooyeun Lee
- College of Pharmacy, Keimyung University, 1095 Dalgubeoldaero, Dalseo-gu, Daegu 704-701, Republic of Korea
| |
Collapse
|
6
|
Gaztañaga M, Angulo-Alcalde A, Chotro MG. Prenatal Alcohol Exposure as a Case of Involuntary Early Onset of Alcohol Use: Consequences and Proposed Mechanisms From Animal Studies. Front Behav Neurosci 2020; 14:26. [PMID: 32210773 PMCID: PMC7066994 DOI: 10.3389/fnbeh.2020.00026] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2019] [Accepted: 02/04/2020] [Indexed: 12/25/2022] Open
Abstract
Prenatal alcohol exposure has been found to be an important factor determining later consumption of this drug. In humans, despite the considerable diversity of variables that might influence alcohol consumption, longitudinal studies show that maternal alcohol intake during gestation is one of the best predictors of later alcohol use from adolescence to young adulthood. Experimental studies with animals also provide abundant evidence of the effects of prenatal alcohol exposure on later alcohol intake. In addition to increased consumption, other effects include enhanced palatability and attractiveness of alcohol flavor as well as sensitization to its sensory and reinforcing effects. Most of these outcomes have been obtained after exposing rats to binge-like administrations of moderate alcohol doses during the last gestational period when the fetus is already capable of detecting flavors in the amniotic fluid and learning associations with aversive or appetitive consequences. On this basis, it has been proposed that one of the mechanisms underlying the increased acceptance of alcohol after its prenatal exposure is the acquisition (by the fetus) of appetitive learning via an association between the sensory properties of alcohol and its reinforcing pharmacological effects. It also appears that this prenatal appetitive learning is mediated by the activation of the opioid system, with fetal brain acetaldehyde playing an important role, possibly as the main chemical responsible for its activation. Here, we review and analyze together the results of all animal studies testing these hypotheses through experimental manipulation of the behavioral and neurochemical elements of the assumed prenatal association. Understanding the mechanisms by which prenatal alcohol exposure favors the early initiation of alcohol consumption, along with its role in the causal pathway to alcohol disorders, may allow us to find strategies to mitigate the behavioral effects of this early experience with the drug. We propose that prenatal alcohol exposure is regarded as a case of involuntary early onset of alcohol use when designing prevention policies. This is particularly important, given the notion that the sooner alcohol intake begins, the greater the possibility of a continued history of alcohol consumption that may lead to the development of alcohol use disorders.
Collapse
Affiliation(s)
- Mirari Gaztañaga
- Departamento de Procesos Psicológicos Básicos y su Desarrollo, Facultad de Psicología, University of the Basque Country UPV/EHU-Donostia-San Sebastián, San Sebastian, Spain
| | - Asier Angulo-Alcalde
- Departamento de Procesos Psicológicos Básicos y su Desarrollo, Facultad de Psicología, University of the Basque Country UPV/EHU-Donostia-San Sebastián, San Sebastian, Spain
| | - M Gabriela Chotro
- Departamento de Procesos Psicológicos Básicos y su Desarrollo, Facultad de Psicología, University of the Basque Country UPV/EHU-Donostia-San Sebastián, San Sebastian, Spain
| |
Collapse
|