1
|
Delivery of the 5-HT 2A Receptor Agonist, DOI, Enhances Activity of the Sphincter Muscle during the Micturition Reflex in Rats after Spinal Cord Injury. BIOLOGY 2021; 10:biology10010068. [PMID: 33477834 PMCID: PMC7832846 DOI: 10.3390/biology10010068] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/12/2020] [Revised: 01/10/2021] [Accepted: 01/15/2021] [Indexed: 11/17/2022]
Abstract
Simple Summary Spinal cord injury often disrupts connections between the brain and spinal cord leading to a plethora of health complications, including bladder dysfunction. Spinal cord injured patients are left with symptoms such as a leaky bladder (the inability to hold their urine), frequent urinary tract infections, and potential kidney failure. However, previous studies have shown that manipulation of serotoninergic receptors can improve urinary performance following spinal cord injury. In the current study, we sought to explore how stimulation of a specific serotonergic receptor subtype can significantly enhance bladder function in spinal cord injured rats. To do so, we utilized spinal cord injured female rats that underwent various bladder performance evaluations combined with pharmacological intervention of a specific serotonergic subtype. Additionally, the primary site of action was investigated to determine effects elicited during various administration routes (e.g., directly into the cord, into the femoral vein, or into the skin). Stimulation of this receptor subtype, regardless of delivery route, improved activity of the external urethral sphincter and detrusor-sphincter coordination in spinal cord injured rats. Collectively, the results of these experiments have the potential to provide vital guidance for the development of therapeutic strategies to alleviate urinary dysfunction following spinal cord injury. Abstract Traumatic spinal cord injury (SCI) interrupts spinobulbospinal micturition reflex pathways and results in urinary dysfunction. Over time, an involuntary bladder reflex is established due to the reorganization of spinal circuitry. Previous studies show that manipulation of serotonin 2A (5-HT2A) receptors affects recovered bladder function, but it remains unclear if this receptor regulates the activity of the external urethral sphincter (EUS) following SCI. To elucidate how central and peripheral serotonergic machinery acts on the lower urinary tract (LUT) system, we employed bladder cystometry and EUS electromyography recordings combined with intravenous or intrathecal pharmacological interventions of 5-HT2A receptors in female SCI rats. Three to four weeks after a T10 spinal transection, systemic and central blockage of 5-HT2A receptors with MDL only slightly influenced the micturition reflex. However, delivery of the 5-HT2A receptor agonist, DOI, increased EUS tonic activity and elicited bursting during voiding. Additionally, subcutaneous administration of DOI verified the enhancement of continence and voiding capability during spontaneous micturition in metabolic cage assays. Although spinal 5HT2A receptors may not be actively involved in the recovered micturition reflex, stimulating this receptor subtype enhances EUS function and the synergistic activity between the detrusor and sphincter to improve the micturition reflex in rats with SCI.
Collapse
|
2
|
Chiba H, Kitta T, Ohmura Y, Higuchi M, Kon M, Nakamura M, Yoshioka M, Shinohara N. Serotonin in the rat prefrontal cortex controls the micturition reflex through 5-hydroxytryptamine 2A and 5-hydroxytryptamine 7 receptors. Int J Urol 2020; 27:684-689. [PMID: 32533581 PMCID: PMC7496571 DOI: 10.1111/iju.14267] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2020] [Accepted: 04/23/2020] [Indexed: 11/29/2022]
Abstract
Objectives To identify the types of serotonin (5‐hydroxytryptamine) receptors of the prefrontal cortex related to the micturition reflex. Methods Female Sprague–Dawley rats and a microinjection method were used for this study. Stainless steel guide cannulas were implanted bilaterally into the prefrontal cortex, and a polyethylene catheter was inserted into the bladder. Cystometric parameters (intercontraction interval and maximum voiding pressure) were measured before and after injection of any one of six specific antagonists of 5‐hydroxytriptamine receptors (5‐hydroxytryptamine 1A, 5‐hydroxytryptamine 2A, 5‐hydroxytryptamine 2C, 5‐hydroxytryptamine 3, 5‐hydroxytryptamine 4 and 5‐hydroxytryptamine 7) into the prefrontal cortex. The prefrontal cortex was divided into two regions, namely the prelimbic cortex and the infralimbic cortex. The experiments were carried out in conscious and free‐moving rats. Results The intercontraction interval value increased significantly after injection of the 5‐hydroxytriptamine 2A receptor antagonist, MDL11939, into the prelimbic cortex of the rat prefrontal cortex (7.68 ± 1.28 vs 9.02 ± 1.41 min, P < 0.05), whereas the intercontraction interval value decreased significantly after injection of the 5‐hydroxytriptamine 7 antagonist SB269970 into the prelimbic cortex (9.42 ± 0.39 vs 8.14 ± 0.71 min, P < 0.05). The intercontraction interval was unaffected by injection of either of these two antagonists into the infralimbic cortex. The other four antagonists (5‐hydroxytryptamine 1A, 5‐hydroxytryptamine 2C, 5‐hydroxytryptamine 3 and 5‐hydroxytryptamine 4) had no effect on the intercontraction interval after injection into the prelimbic cortex and the infralimbic cortex. The maximum voiding pressure was unaffected by injection of any one of the six 5‐hydroxytriptamine antagonists into the prelimbic cortex and infralimbic cortex. Conclusions In the rat prefrontal cortex5‐hydroxytryptamine 2A receptors excite the micturition reflex, whereas 5‐hydroxytryptamine 7 receptors inhibit this reflex.
Collapse
Affiliation(s)
- Hiroki Chiba
- Departments of, Department of, Renal and Genitourinary Surgery, and Graduate School of Medicine, Hokkaido University, Sapporo, Hokkaido, Japan
| | - Takeya Kitta
- Departments of, Department of, Renal and Genitourinary Surgery, and Graduate School of Medicine, Hokkaido University, Sapporo, Hokkaido, Japan
| | - Yu Ohmura
- Department of, Neuropharmacology, Graduate School of Medicine, Hokkaido University, Sapporo, Hokkaido, Japan
| | - Madoka Higuchi
- Departments of, Department of, Renal and Genitourinary Surgery, and Graduate School of Medicine, Hokkaido University, Sapporo, Hokkaido, Japan
| | - Masafumi Kon
- Departments of, Department of, Renal and Genitourinary Surgery, and Graduate School of Medicine, Hokkaido University, Sapporo, Hokkaido, Japan
| | - Michiko Nakamura
- Departments of, Department of, Renal and Genitourinary Surgery, and Graduate School of Medicine, Hokkaido University, Sapporo, Hokkaido, Japan
| | - Mitsuhiro Yoshioka
- Department of, Neuropharmacology, Graduate School of Medicine, Hokkaido University, Sapporo, Hokkaido, Japan
| | - Nobuo Shinohara
- Departments of, Department of, Renal and Genitourinary Surgery, and Graduate School of Medicine, Hokkaido University, Sapporo, Hokkaido, Japan
| |
Collapse
|