1
|
Tian Q, Li Z, Yan Z, Jiang S, Zhao X, Wang L, Li M. Inflammatory role of S100A8/A9 in the central nervous system non-neoplastic diseases. Brain Res Bull 2024; 218:111100. [PMID: 39396712 DOI: 10.1016/j.brainresbull.2024.111100] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2024] [Revised: 09/27/2024] [Accepted: 10/10/2024] [Indexed: 10/15/2024]
Abstract
S100A8 (MRP8) and S100A9 (MRP14) are critical mediators of the inflammatory response; they are usually present as heterodimers because of the instability of homodimers. Studies have demonstrated that S100A8/A9 expression is significantly upregulated in several central nervous system (CNS) diseases. S100A8/A9 is actively released by neutrophils and monocytes; it plays a key role in regulating the inflammatory response by stimulating leukocyte recruitment and inducing cytokine secretion during inflammation. Additionally, S100A8/A9 can be used as a diagnostic biomarker for several CNS diseases and as a predictor of therapeutic response to inflammation-related diseases. In this work, we reviewed our current understanding of S100A8/A9 overexpression in inflammation and its importance in the development and progression of CNS inflammatory diseases, such as Alzheimer's disease (AD), Parkinson's disease (PD), multiple sclerosis (MS), and stroke, and the functional roles and therapeutic applications of S100A8/A9 in these diseases. Finally, we discussed the current barriers and future research directions of S100A8/A9 in CNS diseases.
Collapse
Affiliation(s)
- Qi Tian
- Department of Neurosurgery, Renmin Hospital of Wuhan University, Wuhan, Hubei 430060, China.
| | - Zhijie Li
- Department of Neurosurgery, Renmin Hospital of Wuhan University, Wuhan, Hubei 430060, China.
| | - Ziang Yan
- Department of Neurosurgery, Renmin Hospital of Wuhan University, Wuhan, Hubei 430060, China.
| | - Shengming Jiang
- Department of Neurosurgery, Renmin Hospital of Wuhan University, Wuhan, Hubei 430060, China.
| | - Xincan Zhao
- Department of Neurosurgery, Renmin Hospital of Wuhan University, Wuhan, Hubei 430060, China.
| | - Lei Wang
- The First College of Clinical Medical Science, China Three Gorges University, Yichang, Hubei 443000, China; Department of Neurosurgery, Yichang Central People's Hospital, Yichang, Hubei, China.
| | - Mingchang Li
- Department of Neurosurgery, Renmin Hospital of Wuhan University, Wuhan, Hubei 430060, China.
| |
Collapse
|
2
|
Wang X, Liu H, Li J, Jiang J, Li T. Association study of S100A9 gene polymorphisms with Parkinson's disease risk and age of disease onset. Acta Neurol Belg 2024; 124:919-925. [PMID: 38413479 DOI: 10.1007/s13760-024-02486-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2023] [Accepted: 01/23/2024] [Indexed: 02/29/2024]
Abstract
PURPOSE Intestinal inflammation is associated with several neurodegenerative diseases, including Parkinson's disease (PD). Intestinal inflammation is also closely related to genetic and environmental factors. S100 calcium-binding protein A9 (S100A9) is also thought to be genetically associated with intestinal inflammation and PD risk. This study investigated the association between S100A9 gene polymorphisms and PD risk and age of disease onset. METHODS This study used a case-control method and included 242 PD patients and 242 healthy participants. Polymerase chain reaction-restriction fragment length polymorphism (PCR-RFLP) was performed. S100A9 expression in the serum of the patients and controls was detected using reverse transcription‑quantitative PCR (RT-qPCR). RESULTS The CC genotype and C allele of the rs3014866 polymorphism in S100A9 had significantly higher distribution in PD patients. The recessive and dominant models demonstrated that the patients carrying the rs3014866 C allele had a significantly increased risk of developing PD as compared with patients homozygous for the TT genotype. The generalized linear model results demonstrated that rs3014866 was associated with the age of disease onset independent of environmental exposure factors (smoking and toxins). Furthermore, the S100A9 mRNA transcription level in the patients' serum was significantly higher than that of the controls. Moreover, the serum of patients with the CC genotype had higher S100A9 expression levels. CONCLUSIONS The results combined the relationship between S100A9 and PD susceptibility and age of disease onset. The findings might suggest new ideas for PD clinical diagnosis and treatment.
Collapse
Affiliation(s)
- Xingqiong Wang
- School of Statistics, Renmin University of China, Beijing, 100000, China
| | - Hanxuan Liu
- Beijing Jinghua Anliang Technology Co., Ltd, Beijing, 100000, China
| | - Jian Li
- School of Statistics, Renmin University of China, Beijing, 100000, China
| | - Jingjing Jiang
- Clinical Biological Sample Center, Medical Innovation Research Division of Chinese, PLA General Hospital, Beijing, 100000, China
| | - Teng Li
- Department of Pain Center, Beijing Tsinghua Changgung Hospital, School of Clinical Medicine, Tinghua University, Beijing, 100000, China.
- Department of Pain Center, Xiamen Changgung Hospital, Xiamen, 361000, China.
| |
Collapse
|
3
|
Lillian A, Zuo W, Laham L, Hilfiker S, Ye JH. Pathophysiology and Neuroimmune Interactions Underlying Parkinson's Disease and Traumatic Brain Injury. Int J Mol Sci 2023; 24:7186. [PMID: 37108349 PMCID: PMC10138999 DOI: 10.3390/ijms24087186] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2023] [Revised: 04/06/2023] [Accepted: 04/11/2023] [Indexed: 04/29/2023] Open
Abstract
Parkinson's disease (PD) is a progressive neurodegenerative disorder clinically defined by motor instability, bradykinesia, and resting tremors. The clinical symptomatology is seen alongside pathologic changes, most notably the loss of dopaminergic neurons in the substantia nigra pars compacta (SNpc) and the accumulation of α-synuclein and neuromelanin aggregates throughout numerous neural circuits. Traumatic brain injury (TBI) has been implicated as a risk factor for developing various neurodegenerative diseases, with the most compelling argument for the development of PD. Dopaminergic abnormalities, the accumulation of α-synuclein, and disruptions in neural homeostatic mechanisms, including but not limited to the release of pro-inflammatory mediators and the production of reactive oxygen species (ROS), are all present following TBI and are closely related to the pathologic changes seen in PD. Neuronal iron accumulation is discernable in degenerative and injured brain states, as is aquaporin-4 (APQ4). APQ4 is an essential mediator of synaptic plasticity in PD and regulates edematous states in the brain after TBI. Whether the cellular and parenchymal changes seen post-TBI directly cause neurodegenerative diseases such as PD is a point of considerable interest and debate; this review explores the vast array of neuroimmunological interactions and subsequent analogous changes that occur in TBI and PD. There is significant interest in exploring the validity of the relationship between TBI and PD, which is a focus of this review.
Collapse
Affiliation(s)
- Alyssa Lillian
- New Jersey Medical School, Rutgers University, 185 South Orange Avenue, Newark, NJ 08901, USA
| | - Wanhong Zuo
- New Jersey Medical School, Rutgers University, 185 South Orange Avenue, Newark, NJ 08901, USA
| | - Linda Laham
- New Jersey Medical School, Rutgers University, 185 South Orange Avenue, Newark, NJ 08901, USA
| | - Sabine Hilfiker
- New Jersey Medical School, Rutgers University, 185 South Orange Avenue, Newark, NJ 08901, USA
| | - Jiang-Hong Ye
- Department of Anesthesiology, Pharmacology, Physiology & Neuroscience, New Jersey Medical School, Rutgers University, 185 South Orange Avenue, Newark, NJ 08901, USA
| |
Collapse
|
4
|
Zhang X, Sun D, Zhou X, Zhang C, Yin Q, Chen L, Tang Y, Liu Y, Morozova-Roche LA. Proinflammatory S100A9 stimulates TLR4/NF-κB signaling pathways causing enhanced phagocytic capacity of microglial cells. Immunol Lett 2023; 255:54-61. [PMID: 36870421 DOI: 10.1016/j.imlet.2023.02.008] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2022] [Revised: 02/26/2023] [Accepted: 02/26/2023] [Indexed: 03/06/2023]
Abstract
Alzheimer's disease (AD) is the main cause of dementia, affecting the increasingly aging population. Growing evidence indicates that neuro-inflammation plays crucial roles, e.g., the association between AD risk genes with innate immune functions. In this study, we demonstrate that moderate concentrations of pro-inflammatory cytokine S100A9 regulate immune response of BV2 microglial cells, i.e., the phagocytic capacity, reflected by elevated number of 1 μm diameter Dsred-stained latex beads in the cytoplasm. In contrast, at high S100A9 concentrations, both the viability and phagocytic capacity of BV2 cells drop substantially. Furthermore, it is uncovered that S100A9 affects phagocytosis of microglia via NF-κB signaling pathways. Application of related target-specific drugs, i.e., IKK and TLR4 inhibitors, effectively suppresses BV2 cells' immune responses. These results suggest that pro-inflammatory S100A9 activates microglial phagocytosis, and possibly contributes to the clearance of amyloidogenic species at the early stage of AD.
Collapse
Affiliation(s)
- Xiaoyin Zhang
- Laboratory of stem cell and Tissue Engineering, Chongqing Medical University, 400016, Chongqing, China
| | - Dan Sun
- State Key Laboratory of Photon-Technology in Western China Energy, Institute of Photonics and Photon Technology, Northwest University, 710127, Xi'an, China
| | - Xin Zhou
- Laboratory of stem cell and Tissue Engineering, Chongqing Medical University, 400016, Chongqing, China
| | - Ce Zhang
- State Key Laboratory of Photon-Technology in Western China Energy, Institute of Photonics and Photon Technology, Northwest University, 710127, Xi'an, China
| | - Qing Yin
- Laboratory of stem cell and Tissue Engineering, Chongqing Medical University, 400016, Chongqing, China
| | - Li Chen
- Laboratory of stem cell and Tissue Engineering, Chongqing Medical University, 400016, Chongqing, China
| | - Yong Tang
- Laboratory of stem cell and Tissue Engineering, Chongqing Medical University, 400016, Chongqing, China
| | - Yonggang Liu
- Laboratory of stem cell and Tissue Engineering, Chongqing Medical University, 400016, Chongqing, China.
| | | |
Collapse
|
5
|
Evidence that complement and coagulation proteins are mediating the clinical response to omega-3 fatty acids: A mass spectrometry-based investigation in subjects at clinical high-risk for psychosis. Transl Psychiatry 2022; 12:454. [PMID: 36307392 PMCID: PMC9616837 DOI: 10.1038/s41398-022-02217-0] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/11/2022] [Revised: 09/21/2022] [Accepted: 10/04/2022] [Indexed: 11/08/2022] Open
Abstract
Preliminary evidence indicates beneficial effects of omega-3 polyunsaturated fatty acids (PUFAs) in early psychosis. The present study investigates the molecular mechanism of omega-3 PUFA-associated therapeutic effects in clinical high-risk (CHR) participants. Plasma samples of 126 CHR psychosis participants at baseline and 6-months follow-up were included. Plasma protein levels were quantified using mass spectrometry and erythrocyte omega-3 PUFA levels were quantified using gas chromatography. We examined the relationship between change in polyunsaturated PUFAs (between baseline and 6-month follow-up) and follow-up plasma proteins. Using mediation analysis, we investigated whether plasma proteins mediated the relationship between change in omega-3 PUFAs and clinical outcomes. A 6-months change in omega-3 PUFAs was associated with 24 plasma proteins at follow-up. Pathway analysis revealed the complement and coagulation pathway as the main biological pathway to be associated with change in omega-3 PUFAs. Moreover, complement and coagulation pathway proteins significantly mediated the relationship between change in omega-3 PUFAs and clinical outcome at follow-up. The inflammatory protein complement C5 and protein S100A9 negatively mediated the relationship between change in omega-3 PUFAs and positive symptom severity, while C5 positively mediated the relationship between change in omega-3 and functional outcome. The relationship between change in omega-3 PUFAs and cognition was positively mediated through coagulation factor V and complement protein C1QB. Our findings provide evidence for a longitudinal association of omega-3 PUFAs with complement and coagulation protein changes in the blood. Further, the results suggest that an increase in omega-3 PUFAs decreases symptom severity and improves cognition in the CHR state through modulating effects of complement and coagulation proteins.
Collapse
|
6
|
Zervides KA, Jern A, Nystedt J, Gullstrand B, Nilsson PC, Sundgren PC, Bengtsson AA, Jönsen A. Serum S100A8/A9 concentrations are associated with neuropsychiatric involvement in systemic lupus erythematosus: a cross-sectional study. BMC Rheumatol 2022; 6:38. [PMID: 35804434 PMCID: PMC9270742 DOI: 10.1186/s41927-022-00268-w] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2021] [Accepted: 03/30/2022] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Neuropsychiatric (NP) involvement and fatigue are major problems in systemic lupus erythematosus (SLE). S100A8/A9 is a marker of inflammation and responds to therapy in SLE patients. S100A8/A9 has an immunopathogenic role in various neurological diseases. We investigated S100A8/A9 in relation to NP-involvement and fatigue in SLE. METHODS 72 consecutive SLE outpatients at a tertiary centre and 26 healthy controls were included in this cross-sectional study. NPSLE was determined by specialists in rheumatology and neurology and defined according to three attribution models: "ACR", "SLICC A" and "SLICC B". Cerebral MRI was assessed by a neuroradiologist and neurocognitive testing by a neuropsychologist. The individuals were assessed by scores of pain (VAS), fatigue (VAS and FSS), and depression (MADRS-S). Concentrations of S100A8/A9 in serum and cerebrospinal fluid were measured with ELISA. Statistical calculations were performed using non-parametric methods. RESULTS Serum concentrations of S100A8/A9 were higher in SLE patients compared with controls (medians 1230 ng/ml; 790 ng/ml, p = 0.023). The concentrations were higher in NPSLE patients compared with non-NPSLE patients when applying the SLICC A and ACR models, but not significant when applying the SLICC B model (medians 1400 ng/ml; 920 ng/ml, p = 0.011; 1560 ng/ml; 1090 ng/ml, p = 0.050; 1460 ng/ml; 1090 ng/ml, p = 0.083, respectively). No differences of CSF S100A8/A9 concentrations were observed between NPSLE and non-NPSLE patients. SLE patients with depression or cognitive dysfunction as an ACR NPSLE manifestation had higher serum S100A8/A9 concentrations than non-NPSLE patients (median 1460 ng/ml, p = 0.007 and 1380 ng/ml, p = 0.013, respectively). Higher serum S100A8/A9 correlated with higher VAS fatigue (r = 0.31; p = 0.008) and VAS pain (r = 0.27, p = 0.021) in SLE patients. Serum S100A8/A9 was not independently associated with NPSLE when adjusting for scores of fatigue (FSS) and pain (VAS) (OR 1.86, 95% CI 0.93-3.73, p = 0.08). CONCLUSIONS Serum S100A8/A9 concentrations may be associated with NPSLE and fatigue. S100A8/A9 may be of interest in evaluating NPSLE, although further investigations are needed.
Collapse
Affiliation(s)
- Kristoffer A Zervides
- Department of Clinical Sciences, Rheumatology, Lund University, Skåne University Hospital, Lund, Sweden.
- Department of Clinical Sciences, Neurology, Lund University, Skåne University Hospital, Lund, Sweden.
| | - Andreas Jern
- Department of Clinical Sciences, Rheumatology, Lund University, Skåne University Hospital, Lund, Sweden
| | - Jessika Nystedt
- Department of Clinical Sciences, Neurology, Lund University, Skåne University Hospital, Lund, Sweden
| | - Birgitta Gullstrand
- Department of Clinical Sciences, Rheumatology, Lund University, Skåne University Hospital, Lund, Sweden
| | - Petra C Nilsson
- Department of Clinical Sciences, Neurology, Lund University, Skåne University Hospital, Lund, Sweden
| | - Pia C Sundgren
- Department of Clinical Sciences, Diagnostic Radiology, Lund University, Skåne University Hospital, Lund, Sweden
- Lund University BioImaging Center, Lund University, Lund, Sweden
| | - Anders A Bengtsson
- Department of Clinical Sciences, Rheumatology, Lund University, Skåne University Hospital, Lund, Sweden
| | - Andreas Jönsen
- Department of Clinical Sciences, Rheumatology, Lund University, Skåne University Hospital, Lund, Sweden
| |
Collapse
|
7
|
Interactions between S100A9 and Alpha-Synuclein: Insight from NMR Spectroscopy. Int J Mol Sci 2022; 23:ijms23126781. [PMID: 35743221 PMCID: PMC9224231 DOI: 10.3390/ijms23126781] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2022] [Revised: 06/14/2022] [Accepted: 06/15/2022] [Indexed: 12/14/2022] Open
Abstract
S100A9 is a pro-inflammatory protein that co-aggregates with other proteins in amyloid fibril plaques. S100A9 can influence the aggregation kinetics and amyloid fibril structure of alpha-synuclein (α-syn), which is involved in Parkinson's disease. Currently, there are limited data regarding their cross-interaction and how it influences the aggregation process. In this work, we analyzed this interaction using solution 19F and 2D 15N-1H HSQC NMR spectroscopy and studied the aggregation properties of these two proteins. Here, we show that α-syn interacts with S100A9 at specific regions, which are also essential in the first step of aggregation. We also demonstrate that the 4-fluorophenylalanine label in alpha-synuclein is a sensitive probe to study interaction and aggregation using 19F NMR spectroscopy.
Collapse
|
8
|
Liu S, Song Y, Zhang IY, Zhang L, Gao H, Su Y, Yang Y, Yin S, Zheng Y, Ren L, Yin HH, Pillai R, Nath A, Medina EF, Cosgrove PA, Bild AH, Badie B. RAGE Inhibitors as Alternatives to Dexamethasone for Managing Cerebral Edema Following Brain Tumor Surgery. Neurotherapeutics 2022; 19:635-648. [PMID: 35226341 PMCID: PMC9226224 DOI: 10.1007/s13311-022-01207-w] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/16/2022] [Indexed: 10/19/2022] Open
Abstract
Resection of brain tumors frequently causes injury to the surrounding brain tissue that exacerbates cerebral edema by activating an inflammatory cascade. Although corticosteroids are often utilized peri-operatively to alleviate the symptoms associated with brain edema, they increase operative morbidities and suppress the efficacy of immunotherapy. Thus, novel approaches to minimize cerebral edema caused by neurosurgical procedures will have significant utility in the management of patients with brain tumors. We have studied the role of the receptor for advanced glycation end products (RAGE) and its ligands on inflammatory responses to neurosurgical injury in mice and humans. Blood-brain barrier (BBB) integrity and neuroinflammation were characterized by Nanostring, flow cytometry, qPCR, and immunoblotting of WT and RAGE knockout mice brains subjected to surgical brain injury (SBI). Human tumor tissue and fluid collected from the resection cavity of patients undergoing craniotomy were also analyzed by single-cell RNA sequencing and ELISA. Genetic ablation of RAGE significantly abrogated neuroinflammation and BBB disruption in the murine SBI model. The inflammatory responses to SBI were associated with infiltration of S100A9-expressing myeloid-derived cells into the brain. Local release of pro-inflammatory S100A9 was confirmed in patients following tumor resection. RAGE and S100A9 inhibitors were as effective as dexamethasone in attenuating neuroinflammation. However, unlike dexamethasone and S100A9 inhibitor, RAGE inhibition did not diminish the efficacy of anti-PD-1 immunotherapy in glioma-bearing mice. These observations confirm the role of the RAGE axis in surgically induced neuroinflammation and provide an alternative therapeutic option to dexamethasone in managing post-operative cerebral edema.
Collapse
Affiliation(s)
- Shunan Liu
- Institute of Translational Medicine, the First Hospital of Jilin University, Changchun, Jilin Province, People's Republic of China
| | - Yanyan Song
- Department of Nephrology, The Second Hospital of Jilin University, Changchun, Jilin Province, People's Republic of China
| | - Ian Y Zhang
- Division of Neurosurgery, City of Hope Beckman Research Institute, 1500 East Duarte Road, Duarte, CA, 91010, USA
| | - Leying Zhang
- Division of Neurosurgery, City of Hope Beckman Research Institute, 1500 East Duarte Road, Duarte, CA, 91010, USA
| | - Hang Gao
- Department of Bone and Joint Surgery, No.1 Hospital of Jilin University, Changchun, Jilin Province, People's Republic of China
| | - Yanping Su
- College of Pharmacy, Fujian Province, Fujian Medical University, Fuzhou, People's Republic of China
| | - Yihang Yang
- Department of Neurosurgery, Shandong Province, Shandong Provincial Hospital Affiliated To Shandong University, Jinan, People's Republic of China
| | - Shi Yin
- Department of Neurosurgery, the Second Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang, China
| | - Yawen Zheng
- Department of Obstetrics & Gynecology, Qilu Hospital of Shandong University, Jinan, Shandong, People's Republic of China
| | - Lyuzhi Ren
- Division of Neurosurgery, City of Hope Beckman Research Institute, 1500 East Duarte Road, Duarte, CA, 91010, USA
| | - Hongwei Holly Yin
- Department of Pathology, City of Hope Beckman Research Institute, Duarte, CA, USA
| | - Raju Pillai
- Department of Pathology, City of Hope Beckman Research Institute, Duarte, CA, USA
| | - Aritro Nath
- Department of Medical Oncology & Therapeutics Research, City of Hope Beckman Research Institute, Duarte, CA, USA
| | - Eric F Medina
- Department of Medical Oncology & Therapeutics Research, City of Hope Beckman Research Institute, Duarte, CA, USA
| | - Patrick A Cosgrove
- Department of Medical Oncology & Therapeutics Research, City of Hope Beckman Research Institute, Duarte, CA, USA
| | - Andrea H Bild
- Department of Medical Oncology & Therapeutics Research, City of Hope Beckman Research Institute, Duarte, CA, USA
| | - Behnam Badie
- Division of Neurosurgery, City of Hope Beckman Research Institute, 1500 East Duarte Road, Duarte, CA, 91010, USA.
| |
Collapse
|
9
|
Co-Aggregation of S100A9 with DOPA and Cyclen-Based Compounds Manifested in Amyloid Fibril Thickening without Altering Rates of Self-Assembly. Int J Mol Sci 2021; 22:ijms22168556. [PMID: 34445262 PMCID: PMC8395260 DOI: 10.3390/ijms22168556] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2021] [Revised: 08/03/2021] [Accepted: 08/05/2021] [Indexed: 11/24/2022] Open
Abstract
The amyloid cascade is central for the neurodegeneration disease pathology, including Alzheimer’s and Parkinson’s, and remains the focus of much current research. S100A9 protein drives the amyloid-neuroinflammatory cascade in these diseases. DOPA and cyclen-based compounds were used as amyloid modifiers and inhibitors previously, and DOPA is also used as a precursor of dopamine in Parkinson’s treatment. Here, by using fluorescence titration experiments we showed that five selected ligands: DOPA-D-H-DOPA, DOPA-H-H-DOPA, DOPA-D-H, DOPA-cyclen, and H-E-cyclen, bind to S100A9 with apparent Kd in the sub-micromolar range. Ligand docking and molecular dynamic simulation showed that all compounds bind to S100A9 in more than one binding site and with different ligand mobility and H-bonds involved in each site, which all together is consistent with the apparent binding determined in fluorescence experiments. By using amyloid kinetic analysis, monitored by thioflavin-T fluorescence, and AFM imaging, we found that S100A9 co-aggregation with these compounds does not hinder amyloid formation but leads to morphological changes in the amyloid fibrils, manifested in fibril thickening. Thicker fibrils were not observed upon fibrillation of S100A9 alone and may influence the amyloid tissue propagation and modulate S100A9 amyloid assembly as part of the amyloid-neuroinflammatory cascade in neurodegenerative diseases.
Collapse
|
10
|
S100A9 Alters the Pathway of Alpha-Synuclein Amyloid Aggregation. Int J Mol Sci 2021; 22:ijms22157972. [PMID: 34360737 PMCID: PMC8348003 DOI: 10.3390/ijms22157972] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2021] [Revised: 07/18/2021] [Accepted: 07/19/2021] [Indexed: 12/13/2022] Open
Abstract
The formation of amyloid fibril plaques in the brain creates inflammation and neuron death. This process is observed in neurodegenerative disorders, such as Alzheimer's and Parkinson's diseases. Alpha-synuclein is the main protein found in neuronal inclusions of patients who have suffered from Parkinson's disease. S100A9 is a calcium-binding, pro-inflammation protein, which is also found in such amyloid plaques. To understand the influence of S100A9 on the aggregation of α-synuclein, we analyzed their co-aggregation kinetics and the resulting amyloid fibril structure by Fourier-transform infrared spectroscopy and atomic force microscopy. We found that the presence of S100A9 alters the aggregation kinetics of α-synuclein and stabilizes the formation of a particular amyloid fibril structure. We also show that the solution's ionic strength influences the interplay between S100A9 and α-synuclein, stabilizing a different structure of α-synuclein fibrils.
Collapse
|
11
|
Effect of Xenon Treatment on Gene Expression in Brain Tissue after Traumatic Brain Injury in Rats. Brain Sci 2021; 11:brainsci11070889. [PMID: 34356124 PMCID: PMC8301933 DOI: 10.3390/brainsci11070889] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2021] [Revised: 06/27/2021] [Accepted: 06/29/2021] [Indexed: 01/21/2023] Open
Abstract
The overactivation of inflammatory pathways and/or a deficiency of neuroplasticity may result in the delayed recovery of neural function in traumatic brain injury (TBI). A promising approach to protecting the brain tissue in TBI is xenon (Xe) treatment. However, xenon's mechanisms of action remain poorly clarified. In this study, the early-onset expression of 91 target genes was investigated in the damaged and in the contralateral brain areas (sensorimotor cortex region) 6 and 24 h after injury in a TBI rat model. The expression of genes involved in inflammation, oxidation, antioxidation, neurogenesis and neuroplasticity, apoptosis, DNA repair, autophagy, and mitophagy was assessed. The animals inhaled a gas mixture containing xenon and oxygen (ϕXe = 70%; ϕO2 25-30% 60 min) 15-30 min after TBI. The data showed that, in the contralateral area, xenon treatment induced the expression of stress genes (Irf1, Hmox1, S100A8, and S100A9). In the damaged area, a trend towards lower expression of the inflammatory gene Irf1 was observed. Thus, our results suggest that xenon exerts a mild stressor effect in healthy brain tissue and has a tendency to decrease the inflammation following damage, which might contribute to reducing the damage and activating the early compensatory processes in the brain post-TBI.
Collapse
|
12
|
Leri M, Chaudhary H, Iashchishyn IA, Pansieri J, Svedružić ŽM, Gómez Alcalde S, Musteikyte G, Smirnovas V, Stefani M, Bucciantini M, Morozova-Roche LA. Natural Compound from Olive Oil Inhibits S100A9 Amyloid Formation and Cytotoxicity: Implications for Preventing Alzheimer's Disease. ACS Chem Neurosci 2021; 12:1905-1918. [PMID: 33979140 PMCID: PMC8291483 DOI: 10.1021/acschemneuro.0c00828] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
![]()
Polyphenolic compounds
in the Mediterranean diet have received
increasing attention due to their protective properties in amyloid
neurodegenerative and many other diseases. Here, we have demonstrated
for the first time that polyphenol oleuropein aglycone (OleA), which
is the most abundant compound in olive oil, has multiple potencies
for the inhibition of amyloid self-assembly of pro-inflammatory protein
S100A9 and the mitigation of the damaging effect of its amyloids on
neuroblastoma SH-SY5Y cells. OleA directly interacts with both native
and fibrillar S100A9 as shown by intrinsic fluorescence and molecular
dynamic simulation. OleA prevents S100A9 amyloid oligomerization as
shown using amyloid oligomer-specific antibodies and cross-β-sheet
formation detected by circular dichroism. It decreases the length
of amyloid fibrils measured by atomic force microscopy (AFM) as well
as reduces the effective rate of amyloid growth and the overall amyloid
load as derived from the kinetic analysis of amyloid formation. OleA
disintegrates already preformed fibrils of S100A9, converting them
into nonfibrillar and nontoxic aggregates as revealed by amyloid thioflavin-T
dye binding, AFM, and cytotoxicity assays. At the cellular level,
OleA targets S100A9 amyloids already at the membranes as shown by
immunofluorescence and fluorescence resonance energy transfer, significantly
reducing the amyloid accumulation in GM1 ganglioside containing membrane
rafts. OleA increases overall cell viability when neuroblastoma cells
are subjected to the amyloid load and alleviates amyloid-induced intracellular
rise of reactive oxidative species and free Ca2+. Since
S100A9 is both a pro-inflammatory and amyloidogenic protein, OleA
may effectively mitigate the pathological consequences of the S100A9-dependent
amyloid-neuroinflammatory cascade as well as provide protection from
neurodegeneration, if used within the Mediterranean diet as a potential
preventive measure.
Collapse
Affiliation(s)
- Manuela Leri
- Department of Experimental and Clinical Biomedical Sciences “Mario Serio”, University of Florence, 50134 Florence, Italy
- Department of Neuroscience, Psychology, Drug Research and Child Health, University of Florence, 50139 Florence, Italy
| | - Himanshu Chaudhary
- Department of Medical Biochemistry and Biophysics, Umeå University, 90187 Umeå, Sweden
| | - Igor A. Iashchishyn
- Department of Medical Biochemistry and Biophysics, Umeå University, 90187 Umeå, Sweden
| | - Jonathan Pansieri
- Department of Medical Biochemistry and Biophysics, Umeå University, 90187 Umeå, Sweden
| | | | - Silvia Gómez Alcalde
- Department of Medical Biochemistry and Biophysics, Umeå University, 90187 Umeå, Sweden
| | - Greta Musteikyte
- Institute of Biotechnology, Life Sciences Center, Vilnius University, LT-10257 Vilnius, Lithuania
| | - Vytautas Smirnovas
- Institute of Biotechnology, Life Sciences Center, Vilnius University, LT-10257 Vilnius, Lithuania
| | - Massimo Stefani
- Department of Experimental and Clinical Biomedical Sciences “Mario Serio”, University of Florence, 50134 Florence, Italy
| | - Monica Bucciantini
- Department of Experimental and Clinical Biomedical Sciences “Mario Serio”, University of Florence, 50134 Florence, Italy
| | | |
Collapse
|
13
|
Fennema Galparsoro D, Zhou X, Jaaloul A, Piccirilli F, Vetri V, Foderà V. Conformational Transitions upon Maturation Rule Surface and pH-Responsiveness of α-Lactalbumin Microparticulates. ACS APPLIED BIO MATERIALS 2021; 4:1876-1887. [PMID: 35014457 DOI: 10.1021/acsabm.0c01541] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
De novo designed protein supramolecular structures are nowadays attracting much interest as highly performing biomaterials. While a clear advantage is provided by the intrinsic biocompatibility and biodegradability of protein and peptide building blocks, developing sustainable and green bottom up approaches for finely tuning the material properties still remains a challenge. Here, we present an experimental study on the formation of protein microparticles in the form of particulates from the protein α-lactalbumin using bulk mixing in water solution and high temperature. Once formed, the structure and stability of these spherical protein condensates change upon further thermal incubation while the size of aggregates does not significantly increase. Combining advanced microscopy and spectroscopy methods, we prove that this process, named maturation, is characterized by a gradual increase of amyloid-like structure in protein particulates, an enhancement in surface roughness and in molecular compactness, providing a higher stability and resistance of the structure in acidic environments. When dissolved at pH 2, early stage particulates disassemble into a homogeneous population of small oligomers, while the late stage particulates remain unaffected. Particulates at the intermediate stage of maturation partially disassemble into a heterogeneous population of fragments. Importantly, differently matured microparticles show different features when loading a model lipophilic molecule. Our findings suggest conformational transitions localized at the interface as a key step in the maturation of amyloid protein condensates, promoting this phenomenon as an intrinsic knob to tailor the properties of protein microparticles formed via bulk mixing in aqueous solution. This provides a simple and sustainable platform for the design and realization of protein microparticles for tailored applications.
Collapse
Affiliation(s)
- Dirk Fennema Galparsoro
- Dipartimento di Fisica e Chimica, Università degli Studi di Palermo, Viale delle scienze Edificio 18, 90128 Palermo, Italy
| | - Xin Zhou
- Department of Pharmacy, Faculty of Health and Medical Sciences, University of Copenhagen, Universitetsparken 2, 2100 Copenhagen, Denmark
| | - Anas Jaaloul
- Department of Pharmacy, Faculty of Health and Medical Sciences, University of Copenhagen, Universitetsparken 2, 2100 Copenhagen, Denmark
| | - Federica Piccirilli
- CNR-IOM, Istituto Officina dei Materiali, Area Science Park - Basovizza, Strada Statale 14 km 163,5, 34149 Trieste, Italy
| | - Valeria Vetri
- Dipartimento di Fisica e Chimica, Università degli Studi di Palermo, Viale delle scienze Edificio 18, 90128 Palermo, Italy
| | - Vito Foderà
- Department of Pharmacy, Faculty of Health and Medical Sciences, University of Copenhagen, Universitetsparken 2, 2100 Copenhagen, Denmark
| |
Collapse
|
14
|
Nieves MD, Furmanski O, Doughty ML. Sensorimotor dysfunction in a mild mouse model of cortical contusion injury without significant neuronal loss is associated with increases in inflammatory proteins with innate but not adaptive immune functions. J Neurosci Res 2020; 99:1533-1549. [PMID: 33269491 DOI: 10.1002/jnr.24766] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2020] [Revised: 10/16/2020] [Accepted: 11/01/2020] [Indexed: 12/12/2022]
Abstract
Traumatic brain injury is a leading cause of mortality and morbidity in the United States. Acute trauma to the brain triggers chronic secondary injury mechanisms that contribute to long-term neurological impairment. We have developed a single, unilateral contusion injury model of sensorimotor dysfunction in adult mice. By targeting a topographically defined neurological circuit with a mild impact, we are able to track sustained behavioral deficits in sensorimotor function in the absence of tissue cavitation or neuronal loss in the contused cortex of these mice. Stereological histopathology and multiplex enzyme-linked immunosorbent assay proteomic screening confirm contusion resulted in chronic gliosis and the robust expression of innate immune cytokines and monocyte attractant chemokines IL-1β, IL-5, IL-6, TNFα, CXCL1, CXCL2, CXCL10, CCL2, and CCL3 in the contused cortex. In contrast, the expression of neuroinflammatory proteins with adaptive immune functions was not significantly modulated by injury. Our data support widespread activation of innate but not adaptive immune responses, confirming an association between sensorimotor dysfunction with innate immune activation in the absence of tissue or neuronal loss in our mice.
Collapse
Affiliation(s)
- Michael D Nieves
- Center for Neuroscience and Regenerative Medicine, Uniformed Services University of the Health Sciences, Bethesda, MD, USA.,Department of Anatomy, Physiology & Genetics, F.E. Hébert School of Medicine, Uniformed Services University of the Health Sciences, Bethesda, MD, USA.,Graduate Program in Neuroscience, F.E. Hébert School of Medicine, Uniformed Services University of the Health Sciences, Bethesda, MD, USA
| | - Orion Furmanski
- Center for Neuroscience and Regenerative Medicine, Uniformed Services University of the Health Sciences, Bethesda, MD, USA.,Department of Anatomy, Physiology & Genetics, F.E. Hébert School of Medicine, Uniformed Services University of the Health Sciences, Bethesda, MD, USA
| | - Martin L Doughty
- Center for Neuroscience and Regenerative Medicine, Uniformed Services University of the Health Sciences, Bethesda, MD, USA.,Department of Anatomy, Physiology & Genetics, F.E. Hébert School of Medicine, Uniformed Services University of the Health Sciences, Bethesda, MD, USA.,Graduate Program in Neuroscience, F.E. Hébert School of Medicine, Uniformed Services University of the Health Sciences, Bethesda, MD, USA
| |
Collapse
|
15
|
Kawashima Y, Watanabe E, Umeyama T, Nakajima D, Hattori M, Honda K, Ohara O. Optimization of Data-Independent Acquisition Mass Spectrometry for Deep and Highly Sensitive Proteomic Analysis. Int J Mol Sci 2019; 20:ijms20235932. [PMID: 31779068 PMCID: PMC6928715 DOI: 10.3390/ijms20235932] [Citation(s) in RCA: 73] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2019] [Revised: 11/20/2019] [Accepted: 11/23/2019] [Indexed: 02/07/2023] Open
Abstract
Data-independent acquisition (DIA)-mass spectrometry (MS)-based proteomic analysis overtop the existing data-dependent acquisition (DDA)-MS-based proteomic analysis to enable deep proteome coverage and precise relative quantitative analysis in single-shot liquid chromatography (LC)-MS/MS. However, DIA-MS-based proteomic analysis has not yet been optimized in terms of system robustness and throughput, particularly for its practical applications. We established a single-shot LC-MS/MS system with an MS measurement time of 90 min for a highly sensitive and deep proteomic analysis by optimizing the conditions of DIA and nanoLC. We identified 7020 and 4068 proteins from 200 ng and 10 ng, respectively, of tryptic floating human embryonic kidney cells 293 (HEK293F) cell digest by performing the constructed LC-MS method with a protein sequence database search. The numbers of identified proteins from 200 ng and 10 ng of tryptic HEK293F increased to 8509 and 5706, respectively, by searching the chromatogram library created by gas-phase fractionated DIA. Moreover, DIA protein quantification was highly reproducible, with median coefficients of variation of 4.3% in eight replicate analyses. We could demonstrate the power of this system by applying the proteomic analysis to detect subtle changes in protein profiles between cerebrums in germ-free and specific pathogen-free mice, which successfully showed that >40 proteins were differentially produced between the cerebrums in the presence or absence of bacteria.
Collapse
Affiliation(s)
- Yusuke Kawashima
- Department of Applied Genomics, Kazusa DNA Research Institute, Chiba 292-0818, Japan; (Y.K.); (D.N.)
| | - Eiichiro Watanabe
- Laboratory for Gut Homeostasis, RIKEN Center for Integrative Medical Sciences, Kanagawa 230-0045, Japan; (E.W.); (K.H.)
- Department of Microbiology and Immunology, Keio University School of Medicine, Tokyo 160-8582, Japan
- Department of Pediatric Surgery, Faculty of Medicine, The University of Tokyo, Tokyo 113-8655, Japan
| | - Taichi Umeyama
- Laboratory for Microbiome Sciences, RIKEN Center for Integrative Medical Sciences, Kanagawa 230-0045, Japan; (T.U.); (M.H.)
| | - Daisuke Nakajima
- Department of Applied Genomics, Kazusa DNA Research Institute, Chiba 292-0818, Japan; (Y.K.); (D.N.)
| | - Masahira Hattori
- Laboratory for Microbiome Sciences, RIKEN Center for Integrative Medical Sciences, Kanagawa 230-0045, Japan; (T.U.); (M.H.)
- Graduate School of Advanced Science and Engineering, Waseda University, Tokyo 169-8555, Japan
| | - Kenya Honda
- Laboratory for Gut Homeostasis, RIKEN Center for Integrative Medical Sciences, Kanagawa 230-0045, Japan; (E.W.); (K.H.)
- Department of Microbiology and Immunology, Keio University School of Medicine, Tokyo 160-8582, Japan
| | - Osamu Ohara
- Department of Applied Genomics, Kazusa DNA Research Institute, Chiba 292-0818, Japan; (Y.K.); (D.N.)
- Laboratory for Integrative Genomics, RIKEN Center for Integrative Medical Sciences, Kanagawa 230-0045, Japan
- Correspondence: ; Tel.: +81-438-52-391; Fax: +81-438-52-3914
| |
Collapse
|
16
|
Pansieri J, Ostojić L, Iashchishyn IA, Magzoub M, Wallin C, Wärmländer SK, Gräslund A, Nguyen Ngoc M, Smirnovas V, Svedružić Ž, Morozova-Roche LA. Pro-Inflammatory S100A9 Protein Aggregation Promoted by NCAM1 Peptide Constructs. ACS Chem Biol 2019; 14:1410-1417. [PMID: 31194501 DOI: 10.1021/acschembio.9b00394] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Amyloid cascade and neuroinflammation are hallmarks of neurodegenerative diseases, and pro-inflammatory S100A9 protein is central to both of them. Here, we have shown that NCAM1 peptide constructs carrying polycationic sequences derived from Aβ peptide (KKLVFF) and PrP protein (KKRPKP) significantly promote the S100A9 amyloid self-assembly in a concentration-dependent manner by making transient interactions with individual S100A9 molecules, perturbing its native structure and acting as catalysts. Since the individual molecule misfolding is a rate-limiting step in S100A9 amyloid aggregation, the effects of the NCAM1 construct on the native S100A9 are so critical for its amyloid self-assembly. S100A9 rapid self-assembly into large aggregated clumps may prevent its amyloid tissue propagation, and by modulating S100A9 aggregation as a part of the amyloid cascade, the whole process may be effectively tuned.
Collapse
Affiliation(s)
- Jonathan Pansieri
- Department of Medical Biochemistry and Biophysics, Umeå University, SE-901 87 Umeå, Sweden
| | - Lucija Ostojić
- Department of Medical Biochemistry and Biophysics, Umeå University, SE-901 87 Umeå, Sweden
| | - Igor A. Iashchishyn
- Department of Medical Biochemistry and Biophysics, Umeå University, SE-901 87 Umeå, Sweden
| | - Mazin Magzoub
- New York University Abu Dhabi, Saadiyat Island, Abu Dhabi, United Arab Emirates
| | - Cecilia Wallin
- Department of Biochemistry and Biophysics, Arrhenius Laboratories, Stockholm University, Stockholm, Sweden
| | | | - Astrid Gräslund
- Department of Biochemistry and Biophysics, Arrhenius Laboratories, Stockholm University, Stockholm, Sweden
| | - Mai Nguyen Ngoc
- Institute of Biotechnology, Life Sciences Center, Vilnius University, Vilnius, Lithuania
| | - Vytautas Smirnovas
- Institute of Biotechnology, Life Sciences Center, Vilnius University, Vilnius, Lithuania
| | - Željko Svedružić
- Department of Biomedical Technology, University of Rijeka, HR 51000, Rijeka, Croatia
| | | |
Collapse
|