1
|
Foss CT, Olsen T, Bigelow J, Hasenstaub AR. Sst- and Vip-Cre mouse lines without age-related hearing loss. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.07.15.603003. [PMID: 39071442 PMCID: PMC11275752 DOI: 10.1101/2024.07.15.603003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/30/2024]
Abstract
GABAergic interneurons, including somatostatin (SST) and vasoactive intestinal peptide (VIP) positive cells, play a crucial role in cortical circuit processing. Cre recombinase-mediated manipulation of these interneurons is facilitated by commercially available knock-in mouse strains such as Sst-IRES-Cre (Sst-Cre) and Vip-IRES-Cre (Vip-Cre). However, these strains are troublesome for hearing research because they are only available on the C57BL/6 genetic background, which suffer from early onset age-related hearing loss (AHL) due to a mutation of the Cdh23 gene. To overcome this limitation, we backcrossed Sst-Cre and Vip-Cre mice to CBA mice to create normal-hearing offspring with the desired Cre transgenes. We confirmed that in these "CBA Cre" lines, Cre drives appropriate expression of Cre-dependent genes, by crossing CBA Cre mice to Ai14 reporter mice. To assess the hearing capabilities of the CBA Cre mice, we measured auditory brainstem responses (ABRs) using clicks and tones. CBA Cre mice showed significantly lower ABR thresholds compared to C57 control mice at 3, 6, 9, and 12 months. In conclusion, our study successfully generated Sst-Cre and Vip-Cre mouse lines on the CBA background that will be valuable tools for investigating the roles of SST and VIP positive interneurons without the confounding effects of age-related hearing loss.
Collapse
Affiliation(s)
- Calvin T. Foss
- Department of Otolaryngology-Head and Neck Surgery, Coleman Memorial Laboratory for Auditory Neuroscience, University of California, San Francisco, 675 Nelson Rising Lane, San Francisco, CA, 94158, USA
| | - Timothy Olsen
- Department of Otolaryngology-Head and Neck Surgery, Coleman Memorial Laboratory for Auditory Neuroscience, University of California, San Francisco, 675 Nelson Rising Lane, San Francisco, CA, 94158, USA
| | - James Bigelow
- Department of Otolaryngology-Head and Neck Surgery, Coleman Memorial Laboratory for Auditory Neuroscience, University of California, San Francisco, 675 Nelson Rising Lane, San Francisco, CA, 94158, USA
| | - Andrea R. Hasenstaub
- Department of Otolaryngology-Head and Neck Surgery, Coleman Memorial Laboratory for Auditory Neuroscience, University of California, San Francisco, 675 Nelson Rising Lane, San Francisco, CA, 94158, USA
| |
Collapse
|
2
|
Kolesov DV, Sokolinskaya EL, Lukyanov KA, Bogdanov AM. Molecular Tools for Targeted Control of Nerve Cell Electrical Activity. Part I. Acta Naturae 2021; 13:52-64. [PMID: 34707897 PMCID: PMC8526180 DOI: 10.32607/actanaturae.11414] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2020] [Accepted: 05/14/2021] [Indexed: 12/18/2022] Open
Abstract
In modern life sciences, the issue of a specific, exogenously directed manipulation of a cell's biochemistry is a highly topical one. In the case of electrically excitable cells, the aim of the manipulation is to control the cells' electrical activity, with the result being either excitation with subsequent generation of an action potential or inhibition and suppression of the excitatory currents. The techniques of electrical activity stimulation are of particular significance in tackling the most challenging basic problem: figuring out how the nervous system of higher multicellular organisms functions. At this juncture, when neuroscience is gradually abandoning the reductionist approach in favor of the direct investigation of complex neuronal systems, minimally invasive methods for brain tissue stimulation are becoming the basic element in the toolbox of those involved in the field. In this review, we describe three approaches that are based on the delivery of exogenous, genetically encoded molecules sensitive to external stimuli into the nervous tissue. These approaches include optogenetics (Part I) as well as chemogenetics and thermogenetics (Part II), which are significantly different not only in the nature of the stimuli and structure of the appropriate effector proteins, but also in the details of experimental applications. The latter circumstance is an indication that these are rather complementary than competing techniques.
Collapse
Affiliation(s)
- D. V. Kolesov
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Moscow, 117997 Russia
| | - E. L. Sokolinskaya
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Moscow, 117997 Russia
| | - K. A. Lukyanov
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Moscow, 117997 Russia
| | - A. M. Bogdanov
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Moscow, 117997 Russia
| |
Collapse
|
3
|
Zhang J, Firestone E, Elattma A. Animal Models of Tinnitus Treatment: Cochlear and Brain Stimulation. Curr Top Behav Neurosci 2021; 51:83-129. [PMID: 34282563 DOI: 10.1007/7854_2021_227] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Neuromodulation, via stimulation of a variety of peripheral and central structures, is used to suppress tinnitus. However, investigative limitations in humans due to ethical reasons have made it difficult to decipher the mechanisms underlying treatment-induced tinnitus relief, so a number of animal models have arisen to address these unknowns. This chapter reviews animal models of cochlear and brain stimulation and assesses their modulatory effects on behavioral evidence of tinnitus and its related neural correlates. When a structure is stimulated, localized modulation, often presenting as downregulation of spontaneous neuronal spike firing rate, bursting and neurosynchrony, occurs within the brain area. Through anatomical projections and transmitter pathways, the interventions activate both auditory- and non-auditory structures by taking bottom-up ascending and top-down descending modes to influence their target brain structures. Furthermore, it is the brain oscillations that cochlear or brain stimulation evoke and connect the prefrontal cortex, striatal systems, and other limbic structures to refresh neural networks and relieve auditory, attentive, conscious, as well as emotional reactive aspects of tinnitus. This oscillatory neural network connectivity is achieved via the thalamocorticothalamic circuitry including the lemniscal and non-lemniscal auditory brain structures. Beyond existing technologies, the review also reveals opportunities for developing advanced animal models using new modalities to achieve precision neuromodulation and tinnitus abatement, such as optogenetic cochlear and/or brain stimulation.
Collapse
Affiliation(s)
- Jinsheng Zhang
- Department of Otolaryngology-Head and Neck Surgery, Wayne State University School of Medicine, Detroit, MI, USA. .,Department of Communication Sciences and Disorders, Wayne State University College of Liberal Arts and Sciences, Detroit, MI, USA.
| | - Ethan Firestone
- Department of Otolaryngology-Head and Neck Surgery, Wayne State University School of Medicine, Detroit, MI, USA
| | - Ahmed Elattma
- Department of Otolaryngology-Head and Neck Surgery, Wayne State University School of Medicine, Detroit, MI, USA
| |
Collapse
|
4
|
Shen Y, Campbell RE, Côté DC, Paquet ME. Challenges for Therapeutic Applications of Opsin-Based Optogenetic Tools in Humans. Front Neural Circuits 2020; 14:41. [PMID: 32760252 PMCID: PMC7373823 DOI: 10.3389/fncir.2020.00041] [Citation(s) in RCA: 67] [Impact Index Per Article: 13.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2020] [Accepted: 06/16/2020] [Indexed: 12/29/2022] Open
Abstract
As the technological hurdles are overcome and optogenetic techniques advance to have more control over neurons, therapies based on these approaches will begin to emerge in the clinic. Here, we consider the technical challenges surrounding the transition of this breakthrough technology from an investigative tool to a true therapeutic avenue. The emerging strategies and remaining tasks surrounding genetically encoded molecules which respond to light as well as the vehicles required to deliver them are discussed.The use of optogenetics in humans would represent a completely new paradigm in medicine and would be associated with unprecedented technical considerations. To be applied for stimulation of neurons in humans, an ideal optogenetic tool would need to be non-immunogenic, highly sensitive, and activatable with red light or near-infrared light (to maximize light penetration while minimizing photodamage). To enable sophisticated levels of neuronal control, the combined use of optogenetic actuators and indicators could enable closed-loop all-optical neuromodulation. Such systems would introduce additional challenges related to spectral orthogonality between actuator and indicator, the need for decision making computational algorithms and requirements for large gene cassettes. As in any gene therapy, the therapeutic efficiency of optogenetics will rely on vector delivery and expression in the appropriate cell type. Although viral vectors such as those based on AAVs are showing great potential in human trials, barriers to their general use remain, including immune responses, delivery/transport, and liver clearance. Limitations associated with the gene cassette size which can be packaged in currently approved vectors also need to be addressed.
Collapse
Affiliation(s)
- Yi Shen
- Department of Chemistry, University of Alberta, Edmonton, AB, Canada
| | - Robert E Campbell
- Department of Chemistry, University of Alberta, Edmonton, AB, Canada.,Department of Chemistry, Graduate School of Science, The University of Tokyo, Tokyo, Japan
| | - Daniel C Côté
- Centre de Recherche CERVO, Université Laval, Quebec City, QC, Canada.,Département de Physique et Génie Physique, Université Laval, Quebec City, QC, Canada
| | - Marie-Eve Paquet
- Centre de Recherche CERVO, Université Laval, Quebec City, QC, Canada.,Département de Biochimie, Microbiologie et Bioinformatique, Université Laval, Quebec City, QC, Canada
| |
Collapse
|
5
|
Yu D, Gu J, Chen Y, Kang W, Wang X, Wu H. Current Strategies to Combat Cisplatin-Induced Ototoxicity. Front Pharmacol 2020; 11:999. [PMID: 32719605 PMCID: PMC7350523 DOI: 10.3389/fphar.2020.00999] [Citation(s) in RCA: 67] [Impact Index Per Article: 13.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2020] [Accepted: 06/22/2020] [Indexed: 12/13/2022] Open
Abstract
Cisplatin is widely used for the treatment of a number of solid malignant tumors. However, ototoxicity induced by cisplatin is an obstacle to effective treatment of tumors. The basis for this toxicity has not been fully elucidated. It is generally accepted that hearing loss is due to excessive production of reactive oxygen species by cells of the cochlea. In addition, recent data suggest that inflammation may trigger inner ear cell death through endoplasmic reticulum stress, autophagy, and necroptosis, which induce apoptosis. Strategies have been extensively explored by which to prevent, alleviate, and treat cisplatin-induced ototoxicity, which minimize interference with antitumor activity. Of these strategies, none have been approved by the Federal Drug Administration, although several preclinical studies have been promising. This review highlights recent strategies that reduce cisplatin-induced ototoxicity. The focus of this review is to identify candidate agents as novel molecular targets, drug administration routes, delivery systems, and dosage schedules. Animal models of cisplatin ototoxicity are described that have been used to evaluate drug efficacy and side effect prevention. Finally, clinical reports of otoprotection in patients treated with cisplatin are highlighted. For the future, high-quality studies are required to provide reliable data regarding the safety and effectiveness of pharmacological interventions that reduce cisplatin-induced ototoxicity.
Collapse
Affiliation(s)
- Dehong Yu
- Department of Otolaryngology-Head and Neck Surgery, Shanghai Ninth People's Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China.,Ear Institute, School of Medicine, Shanghai Jiao Tong University, Shanghai, China.,Shanghai Key Laboratory of Translational Medicine on Ear and Nose Diseases (14DZ2260300), Shanghai, China
| | - Jiayi Gu
- Department of Otolaryngology-Head and Neck Surgery, Shanghai Ninth People's Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China.,Ear Institute, School of Medicine, Shanghai Jiao Tong University, Shanghai, China.,Shanghai Key Laboratory of Translational Medicine on Ear and Nose Diseases (14DZ2260300), Shanghai, China
| | - Yuming Chen
- Department of Otolaryngology-Head and Neck Surgery, Shanghai Ninth People's Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China.,Ear Institute, School of Medicine, Shanghai Jiao Tong University, Shanghai, China.,Shanghai Key Laboratory of Translational Medicine on Ear and Nose Diseases (14DZ2260300), Shanghai, China
| | - Wen Kang
- Department of Otolaryngology-Head and Neck Surgery, Shanghai Ninth People's Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China.,Ear Institute, School of Medicine, Shanghai Jiao Tong University, Shanghai, China.,Shanghai Key Laboratory of Translational Medicine on Ear and Nose Diseases (14DZ2260300), Shanghai, China
| | - Xueling Wang
- Department of Otolaryngology-Head and Neck Surgery, Shanghai Ninth People's Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China.,Ear Institute, School of Medicine, Shanghai Jiao Tong University, Shanghai, China.,Shanghai Key Laboratory of Translational Medicine on Ear and Nose Diseases (14DZ2260300), Shanghai, China
| | - Hao Wu
- Department of Otolaryngology-Head and Neck Surgery, Shanghai Ninth People's Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China.,Ear Institute, School of Medicine, Shanghai Jiao Tong University, Shanghai, China.,Shanghai Key Laboratory of Translational Medicine on Ear and Nose Diseases (14DZ2260300), Shanghai, China
| |
Collapse
|