1
|
Hu B, Xu M, Zhu L, Lin J, Zhizhi Wang, Wang D, Zhang D. A bidirectional Hopf bifurcation analysis of Parkinson's oscillation in a simplified basal ganglia model. J Theor Biol 2021; 536:110979. [PMID: 34942160 DOI: 10.1016/j.jtbi.2021.110979] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2021] [Revised: 11/13/2021] [Accepted: 12/01/2021] [Indexed: 11/16/2022]
Abstract
In this paper, we study the parkinson oscillation mechanism in a computational model by bifurcation analysis and numerical simulation. Oscillatory activities can be induced by abnormal coupling weights and delays. The bidirectional Hopf bifurcation phenomena are found in simulations, which can uniformly explain the oscillation mechanism in this model. The Hopf1 represents the transition between the low firing rate stable state (SS) and oscillation state (OS), the Hopf2 represents the transition between the high firing rate stable state (HSS) and the OS, the mechanisms of them are different. The Hopf1 and Hopf2 bifurcations both show that when the state transfers from the stable region to the oscillation region, oscillatory activities always originate from the beta frequency band, and then gradually evolve into the alpha frequency band, the theta frequency band and delta frequency band in this model. We find that the changing trends of the DF and oscillation amplitude (OSAM) are contrary, oscillation activities in lower frequency band are more stable than that in higher frequency band. The effect of the delay in inhibitory pathways is greater than that of in excitatory pathways, and appropriate delays improve the discharge activation level (DAL) of the system. In all, we infer that oscillations can be induced by the follow factors: 1. Improvement of the DAL of the globus pallidus externa (GPe); 2. Reduce the DAL of the GPe from the HSS or the discharge saturation state; 3. The GPe can also resonate with the subthalamic nucleus (STN).
Collapse
Affiliation(s)
- Bing Hu
- Department of Applied Mathematics, Zhejiang University of Technology, Hangzhou 310023, China.
| | - Minbo Xu
- Department of Applied Mathematics, Zhejiang University of Technology, Hangzhou 310023, China
| | - Luyao Zhu
- Department of Applied Mathematics, Zhejiang University of Technology, Hangzhou 310023, China
| | - Jiahui Lin
- Department of Applied Mathematics, Zhejiang University of Technology, Hangzhou 310023, China
| | - Zhizhi Wang
- Department of Applied Mathematics, Zhejiang University of Technology, Hangzhou 310023, China
| | - Dingjiang Wang
- Department of Applied Mathematics, Zhejiang University of Technology, Hangzhou 310023, China.
| | - Dongmei Zhang
- Department of Applied Mathematics, Zhejiang University of Technology, Hangzhou 310023, China
| |
Collapse
|
2
|
De Groote E, Eqlimi E, Bockstael A, Botteldooren D, Santens P, De Letter M. Parkinson's disease affects the neural alpha oscillations associated with speech-in-noise processing. Eur J Neurosci 2021; 54:7355-7376. [PMID: 34617350 DOI: 10.1111/ejn.15477] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2021] [Revised: 09/03/2021] [Accepted: 09/21/2021] [Indexed: 11/29/2022]
Abstract
Parkinson's disease (PD) has increasingly been associated with auditory dysfunction, including alterations regarding the control of auditory information processing. Although these alterations may interfere with the processing of speech in degraded listening conditions, behavioural studies have generally found preserved speech-in-noise recognition in PD. However, behavioural speech audiometry does not capture the neurophysiological mechanisms supporting speech-in-noise processing. Therefore, the aim of this study was to investigate the neural oscillatory mechanisms associated with speech-in-noise processing in PD. Twelve persons with PD and 12 age- and gender-matched healthy controls (HCs) were included in this study. Persons with PD were studied in the medication off condition. All subjects underwent an audiometric screening and performed a sentence-in-noise recognition task under simultaneous electroencephalography (EEG) recording. Behavioural speech recognition scores and self-reported ratings of effort, performance, and motivation were collected. Time-frequency analysis of EEG data revealed no significant difference between persons with PD and HCs regarding delta-theta (2-8 Hz) inter-trial phase coherence to noise and sentence onset. In contrast, significantly increased alpha (8-12 Hz) power was found in persons with PD compared with HCs during the sentence-in-noise recognition task. Behaviourally, persons with PD demonstrated significantly decreased speech recognition scores, whereas no significant differences were found regarding effort, performance, and motivation ratings. These results suggest that persons with PD allocate more cognitive resources to support speech-in-noise processing. The interpretation of this finding is discussed in the context of a top-down mediated compensation mechanism for inefficient filtering and degradation of auditory input in PD.
Collapse
Affiliation(s)
- Evelien De Groote
- Department of Rehabilitation Sciences, BrainComm Research Group, Ghent University, Ghent, Belgium
| | - Ehsan Eqlimi
- Department of Information Technology, WAVES Research Group, Ghent University, Ghent, Belgium
| | - Annelies Bockstael
- Department of Information Technology, WAVES Research Group, Ghent University, Ghent, Belgium
| | - Dick Botteldooren
- Department of Information Technology, WAVES Research Group, Ghent University, Ghent, Belgium
| | - Patrick Santens
- Department of Neurology, Ghent University Hospital, Ghent, Belgium
| | - Miet De Letter
- Department of Rehabilitation Sciences, BrainComm Research Group, Ghent University, Ghent, Belgium
| |
Collapse
|
3
|
Li S, Cheng C, Lu L, Ma X, Zhang X, Li A, Chen J, Qian X, Gao X. Hearing Loss in Neurological Disorders. Front Cell Dev Biol 2021; 9:716300. [PMID: 34458270 PMCID: PMC8385440 DOI: 10.3389/fcell.2021.716300] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2021] [Accepted: 07/23/2021] [Indexed: 12/11/2022] Open
Abstract
Sensorineural hearing loss (SNHL) affects approximately 466 million people worldwide, which is projected to reach 900 million by 2050. Its histological characteristics are lesions in cochlear hair cells, supporting cells, and auditory nerve endings. Neurological disorders cover a wide range of diseases affecting the nervous system, including Alzheimer's disease (AD), Parkinson's disease (PD), Huntington's disease (HD), autism spectrum disorder (ASD), etc. Many studies have revealed that neurological disorders manifest with hearing loss, in addition to typical nervous symptoms. The prevalence, manifestations, and neuropathological mechanisms underlying vary among different diseases. In this review, we discuss the relevant literature, from clinical trials to research mice models, to provide an overview of auditory dysfunctions in the most common neurological disorders, particularly those associated with hearing loss, and to explain their underlying pathological and molecular mechanisms.
Collapse
Affiliation(s)
- Siyu Li
- Department of Otolaryngology Head and Neck Surgery, Affiliated Drum Tower Hospital of Nanjing University Medical School, Jiangsu Provincial Key Medical Discipline (Laboratory), Nanjing, China
- Research Institute of Otolaryngology, Nanjing, China
| | - Cheng Cheng
- Department of Otolaryngology Head and Neck Surgery, Affiliated Drum Tower Hospital of Nanjing University Medical School, Jiangsu Provincial Key Medical Discipline (Laboratory), Nanjing, China
- Research Institute of Otolaryngology, Nanjing, China
| | - Ling Lu
- Department of Otolaryngology Head and Neck Surgery, Affiliated Drum Tower Hospital of Nanjing University Medical School, Jiangsu Provincial Key Medical Discipline (Laboratory), Nanjing, China
- Research Institute of Otolaryngology, Nanjing, China
| | - Xiaofeng Ma
- Department of Otolaryngology Head and Neck Surgery, Affiliated Drum Tower Hospital of Nanjing University Medical School, Jiangsu Provincial Key Medical Discipline (Laboratory), Nanjing, China
| | - Xiaoli Zhang
- Department of Otolaryngology Head and Neck Surgery, Affiliated Drum Tower Hospital of Nanjing University Medical School, Jiangsu Provincial Key Medical Discipline (Laboratory), Nanjing, China
- Research Institute of Otolaryngology, Nanjing, China
| | - Ao Li
- Department of Otolaryngology Head and Neck Surgery, Affiliated Drum Tower Hospital of Nanjing University Medical School, Jiangsu Provincial Key Medical Discipline (Laboratory), Nanjing, China
- Research Institute of Otolaryngology, Nanjing, China
| | - Jie Chen
- Department of Otolaryngology Head and Neck Surgery, Affiliated Drum Tower Hospital of Nanjing University Medical School, Jiangsu Provincial Key Medical Discipline (Laboratory), Nanjing, China
- Research Institute of Otolaryngology, Nanjing, China
| | - Xiaoyun Qian
- Department of Otolaryngology Head and Neck Surgery, Affiliated Drum Tower Hospital of Nanjing University Medical School, Jiangsu Provincial Key Medical Discipline (Laboratory), Nanjing, China
- Research Institute of Otolaryngology, Nanjing, China
| | - Xia Gao
- Department of Otolaryngology Head and Neck Surgery, Affiliated Drum Tower Hospital of Nanjing University Medical School, Jiangsu Provincial Key Medical Discipline (Laboratory), Nanjing, China
- Research Institute of Otolaryngology, Nanjing, China
| |
Collapse
|
4
|
De Keyser K, De Letter M, Santens P, Talsma D, Botteldooren D, Bockstael A. Neurophysiological investigation of auditory intensity dependence in patients with Parkinson's disease. J Neural Transm (Vienna) 2021; 128:345-356. [PMID: 33515333 DOI: 10.1007/s00702-021-02305-3] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2020] [Accepted: 01/12/2021] [Indexed: 02/07/2023]
Abstract
There is accumulating evidence for auditory dysfunctions in patients with Parkinson's disease (PD). Moreover, a possible relationship has been suggested between altered auditory intensity processing and the hypophonic speech characteristics in PD. Nonetheless, further insight into the neurophysiological correlates of auditory intensity processing in patients with PD is needed primarily. In the present study, high-density EEG recordings were used to investigate intensity dependence of auditory evoked potentials (IDAEPs) in 14 patients with PD and 14 age- and gender-matched healthy control participants (HCs). Patients with PD were evaluated in both the on- and off-medication states. HCs were also evaluated twice. Significantly increased IDAEP of the N1/P2 was demonstrated in patients with PD evaluated in the on-medication state compared to HCs. Distinctive results were found for the N1 and P2 component. Regarding the N1 component, no differences in latency or amplitude were shown between patients with PD and HCs regardless of the medication state. In contrast, increased P2 amplitude was demonstrated in patients with PD evaluated in the on-medication state compared to the off-medication state and HCs. In addition to a dopaminergic deficiency, deficits in serotonergic neurotransmission in PD were shown based on increased IDAEP. Due to specific alterations of the N1-P2 complex, the current results suggest deficiencies in early-attentive inhibitory processing of auditory input in PD. This interpretation is consistent with the involvement of the basal ganglia and the role of dopaminergic and serotonergic neurotransmission in auditory gating.
Collapse
Affiliation(s)
- Kim De Keyser
- Department of Rehabilitation Sciences, Faculty of Medicine and Health Sciences, Ghent University, Corneel Heymanslaan 10, 9000, Ghent, Belgium
| | - Miet De Letter
- Department of Rehabilitation Sciences, Faculty of Medicine and Health Sciences, Ghent University, Corneel Heymanslaan 10, 9000, Ghent, Belgium.
| | - Patrick Santens
- Department of Neurology, Ghent University Hospital, Corneel Heymanslaan 10, 9000, Ghent, Belgium
| | - Durk Talsma
- Department of Experimental Psychology, Ghent University, Henri Dunantlaan 2, 9000, Ghent, Belgium
| | - Dick Botteldooren
- Department of Information Technology (INTEC), Acoustics Research Group, Ghent University, Technologiepark-Zwijnaarde 15, 9052, Ghent, Belgium
| | - Annelies Bockstael
- Department of Information Technology (INTEC), Acoustics Research Group, Ghent University, Technologiepark-Zwijnaarde 15, 9052, Ghent, Belgium
| |
Collapse
|
5
|
Weber J, Abeln V, Steichele K, Foitschik T, Stuckenschneider T. Inefficient resource allocation is associated with reduced alpha activity in parietal regions in individuals with Parkinson's disease. Eur J Neurosci 2020; 53:1225-1237. [PMID: 33058347 DOI: 10.1111/ejn.15008] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2020] [Revised: 09/15/2020] [Accepted: 10/06/2020] [Indexed: 12/14/2022]
Abstract
The brain's ability to act as an input filter and to suppress actions is crucial to navigate everyday life and impairments in these abilities affect quality of life substantially. Although Parkinson's disease (PD) is primarily known as a movement disorder, recent research has redefined it as a multisystem disorder affecting cognition, in particular inhibitory control and attentional resource allocation. Analysing the neural mechanisms underlying this cognitive deficit provides a better understanding of brain changes observed in patients affected by PD. Therefore, this study aimed to identify resource allocation to relevant and irrelevant stimuli in patients affected by PD. Besides neuropsychological tests, we employed electroencephalographic recordings during an auditory oddball paradigm in 13 patients suffering from idiopathic PD and 11 healthy controls (HC). Participants were instructed to ignore the standard stimulus and to respond as fast as possible to the rarely presented target tone. Event-related potentials (ERP) and time-frequency representations (TFR) were analyzed. Patients affected by PD showed faster response latencies to the task-irrelevant standard tones, but slower response latencies to target tones compared to HC. This observation was prominent at frontal sites during later P3-like processing stages. Reaction time, however, was prolonged in patients with PD, suggesting inefficient resource allocation. Additionally, TFR revealed reduced parietal alpha activity, which is associated with distractor suppression and functional inhibition in patients with PD compared to healthy controls. Thus, our results point towards inefficient resource allocation in patients with PD possibly driven by less functional inhibition through parietal alpha activity.
Collapse
Affiliation(s)
- Jan Weber
- Institute of Movement and Neurosciences, German Sport University, Cologne, Germany.,Graduate Training Center of Neuroscience, University of Tuebingen, Tuebingen, Germany.,Hertie-Institute for Clinical Brain Research, University Medical Center Tuebingen, Tuebingen, Germany
| | - Vera Abeln
- Institute of Movement and Neurosciences, German Sport University, Cologne, Germany
| | - Kathrin Steichele
- Institute of Movement and Neurosciences, German Sport University, Cologne, Germany
| | - Tina Foitschik
- Institute of Movement and Neurosciences, German Sport University, Cologne, Germany
| | - Tim Stuckenschneider
- Institute of Movement and Neurosciences, German Sport University, Cologne, Germany
| |
Collapse
|
6
|
Lopez-Juarez A, Gonzalez-Vega A, Kleinert-Altamirano A, Piazza V, Garduno-Robles A, Alata M, Villaseñor-Mora C, Eguibar JR, Cortes C, Padierna LC, Hernandez VH. Auditory impairment in H-ABC tubulinopathy. J Comp Neurol 2020; 529:957-968. [PMID: 32681585 DOI: 10.1002/cne.24990] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2020] [Revised: 06/12/2020] [Accepted: 07/10/2020] [Indexed: 12/20/2022]
Abstract
Hypomyelination with atrophy of the basal ganglia and cerebellum (H-ABC) is a neurodegenerative disease due to mutations in TUBB4A. Patients suffer from extrapyramidal movements, spasticity, ataxia, and cognitive deficits. Magnetic resonance imaging features are hypomyelination and atrophy of the striatum and cerebellum. A correlation between the mutations and their cellular, tissue and organic effects is largely missing. The effects of these mutations on sensory functions have not been described so far. We have previously reported a rat carrying a TUBB4A (A302T) mutation and sharing most of the clinical and radiological signs with H-ABC patients. Here, for the first time, we did a comparative study of the hearing function in an H-ABC patient and in this mutant model. By analyzing hearing function, we found that there are no significant differences in the auditory brainstem response (ABR) thresholds between mutant rats and WT controls. Nevertheless, ABRs show longer latencies in central waves (II-IV) that in some cases disappear when compared to WT. The patient also shows abnormal AEPs presenting only Waves I and II. Distortion product of otoacoustic emissions and immunohistochemistry in the rat show that the peripheral hearing function and morphology of the organ of Corti are normal. We conclude that the tubulin mutation severely impairs the central hearing pathway most probably by progressive central white matter degeneration. Hearing function might be affected in a significant fraction of patients with H-ABC; therefore, screening for auditory function should be done on patients with tubulinopathies to evaluate hearing support therapies.
Collapse
Affiliation(s)
| | - Arturo Gonzalez-Vega
- Division of Sciences and Engineering, University of Guanajuato, Guanajuato, Mexico
| | | | | | - Angeles Garduno-Robles
- Division of Sciences and Engineering, University of Guanajuato, Guanajuato, Mexico.,Center of Research in Optics, Leon, Mexico
| | | | | | - Jose R Eguibar
- Institute of Physiology, Benemérita Universidad Autónoma de Puebla, Puebla, Mexico.,Vicerrectoría de Investigación y Estudios de Posgrado, Benemérita Universidad Autónoma de Puebla, Puebla, Mexico
| | - Carmen Cortes
- Institute of Physiology, Benemérita Universidad Autónoma de Puebla, Puebla, Mexico
| | - Luis Carlos Padierna
- Division of Sciences and Engineering, University of Guanajuato, Guanajuato, Mexico
| | - Victor H Hernandez
- Division of Sciences and Engineering, University of Guanajuato, Guanajuato, Mexico
| |
Collapse
|
7
|
Jafari Z, Kolb BE, Mohajerani MH. Auditory Dysfunction in Parkinson's Disease. Mov Disord 2020; 35:537-550. [PMID: 32052894 DOI: 10.1002/mds.28000] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2019] [Revised: 01/21/2020] [Accepted: 01/27/2020] [Indexed: 12/11/2022] Open
Abstract
PD is a progressive and complex neurological disorder with heterogeneous symptomatology. PD is characterized by classical motor features of parkinsonism and nonmotor symptoms and involves extensive regions of the nervous system, various neurotransmitters, and protein aggregates. Extensive evidence supports auditory dysfunction as an additional nonmotor feature of PD. Studies indicate a broad range of auditory impairments in PD, from the peripheral hearing system to the auditory brainstem and cortical areas. For instance, research demonstrates a higher occurrence of hearing loss in early-onset PD and evidence of abnormal auditory evoked potentials, event-related potentials, and habituation to novel stimuli. Electrophysiological data, such as auditory P3a, also is suggested as a sensitive measure of illness duration and severity. Improvement in auditory responses following dopaminergic therapies also indicates the presence of similar neurotransmitters (i.e., glutamate and dopamine) in the auditory system and basal ganglia. Nonetheless, hearing impairments in PD have received little attention in clinical practice so far. This review summarizes evidence of peripheral and central auditory impairments in PD and provides conclusions and directions for future empirical and clinical research. © 2020 International Parkinson and Movement Disorder Society.
Collapse
Affiliation(s)
- Zahra Jafari
- Department of Neuroscience, Canadian Centre for Behavioural Neuroscience, University of Lethbridge, Lethbridge, AB, Canada.,Department of Basic Sciences in Rehabilitation, School of Rehabilitation Sciences, Iran University of Medical Science (IUMS), Tehran, Iran
| | - Bryan E Kolb
- Department of Neuroscience, Canadian Centre for Behavioural Neuroscience, University of Lethbridge, Lethbridge, AB, Canada
| | - Majid H Mohajerani
- Department of Neuroscience, Canadian Centre for Behavioural Neuroscience, University of Lethbridge, Lethbridge, AB, Canada
| |
Collapse
|
8
|
Deaf adolescents have bigger responses for somatosensory and visual stimulations. Neurosci Lett 2019; 707:134283. [DOI: 10.1016/j.neulet.2019.134283] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2018] [Revised: 05/14/2019] [Accepted: 05/20/2019] [Indexed: 11/18/2022]
|