1
|
Yoshida S, Hasegawa T, Nakamura T, Sato K, Sugeno N, Ishiyama S, Sekiguchi K, Tobita M, Takeda A, Aoki M. Dysregulation of SNX1-retromer axis in pharmacogenetic models of Parkinson's disease. Cell Death Discov 2024; 10:290. [PMID: 38886344 PMCID: PMC11183211 DOI: 10.1038/s41420-024-02062-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2024] [Revised: 05/30/2024] [Accepted: 06/05/2024] [Indexed: 06/20/2024] Open
Abstract
Since the identification of vacuolar protein sorting (VPS) 35, as a causative molecule for familial Parkinson's disease (PD), retromer-mediated endosomal machinery has been a rising factor in the pathogenesis of the disease. The retromer complex cooperates with sorting nexin (SNX) dimer and DNAJC13, another causal molecule in PD, to transport cargoes from endosomes to the trans-Golgi network, and is also involved in mitochondrial dynamics and autophagy. Retromer dysfunction may induce neuronal death leading to PD via several biological cascades, including misfolded, insoluble α-synuclein (aS) accumulation and mitochondrial dysfunction; however, the detailed mechanisms remain poorly understood. In this study, we showed that the stagnation of retromer-mediated retrograde transport consistently occurs in different PD-mimetic conditions, i.e., overexpression of PD-linked mutant DNAJC13, excess aS induction, or toxin-induced mitochondrial dysfunction. Mechanistically, DNAJC13 was found to be involved in clathrin-dependent retromer transport as a functional modulator of SNX1 together with heat shock cognate 70 kDa protein (Hsc70), which was controlled by the binding and dissociation of DNAJC13 and SNX1 in an Hsc70 activity-dependent manner. In addition, excess amount of aS decreased the interaction between SNX1 and VPS35, the core component of retromer. Furthermore, R33, a pharmacological retromer chaperone, reduced insoluble aS and mitigated rotenone-induced neuronal apoptosis. These findings suggest that retrograde transport regulated by SNX1-retromer may be profoundly involved in the pathogenesis of PD and is a potential target for disease-modifying therapy for the disease.
Collapse
Grants
- 20K07896 Ministry of Education, Culture, Sports, Science and Technology (MEXT)
- 23K06823 Ministry of Education, Culture, Sports, Science and Technology (MEXT)
- 19K16998 Ministry of Education, Culture, Sports, Science and Technology (MEXT)
- 23K14769 Ministry of Education, Culture, Sports, Science and Technology (MEXT)
- 20K07862 Ministry of Education, Culture, Sports, Science and Technology (MEXT)
- 23K19557 Ministry of Education, Culture, Sports, Science and Technology (MEXT)
Collapse
Affiliation(s)
- Shun Yoshida
- Division of Neurology, Department of Neuroscience & Sensory Organs, Tohoku University Graduate School of Medicine, Sendai, Miyagi, 980-8574, Japan
- Department of Neurology, NHO Yonezawa National Hospital, Yonezawa, Yamagata, 992-1202, Japan
| | - Takafumi Hasegawa
- Division of Neurology, Department of Neuroscience & Sensory Organs, Tohoku University Graduate School of Medicine, Sendai, Miyagi, 980-8574, Japan.
- Department of Neurology, NHO Sendai-Nishitaga Hospital, Sendai, Miyagi, 982-8555, Japan.
| | - Takaaki Nakamura
- Division of Neurology, Department of Neuroscience & Sensory Organs, Tohoku University Graduate School of Medicine, Sendai, Miyagi, 980-8574, Japan
- Department of Neurology, NHO Miyagi National Hospital, Watari, Miyagi, 989-2202, Japan
| | - Kazuki Sato
- Division of Neurology, Department of Neuroscience & Sensory Organs, Tohoku University Graduate School of Medicine, Sendai, Miyagi, 980-8574, Japan
| | - Naoto Sugeno
- Division of Neurology, Department of Neuroscience & Sensory Organs, Tohoku University Graduate School of Medicine, Sendai, Miyagi, 980-8574, Japan
| | - Shun Ishiyama
- Division of Neurology, Department of Neuroscience & Sensory Organs, Tohoku University Graduate School of Medicine, Sendai, Miyagi, 980-8574, Japan
| | - Kiyotoshi Sekiguchi
- Division of Matrixome Research and Application, Institute for Protein Research, Osaka University, Suita, Osaka, 565-0871, Japan
| | - Muneshige Tobita
- Department of Neurology, NHO Yonezawa National Hospital, Yonezawa, Yamagata, 992-1202, Japan
| | - Atsushi Takeda
- Department of Neurology, NHO Sendai-Nishitaga Hospital, Sendai, Miyagi, 982-8555, Japan
| | - Masashi Aoki
- Division of Neurology, Department of Neuroscience & Sensory Organs, Tohoku University Graduate School of Medicine, Sendai, Miyagi, 980-8574, Japan
| |
Collapse
|
2
|
Yoshida S, Hasegawa T. Beware of Misdelivery: Multifaceted Role of Retromer Transport in Neurodegenerative Diseases. Front Aging Neurosci 2022; 14:897688. [PMID: 35601613 PMCID: PMC9120357 DOI: 10.3389/fnagi.2022.897688] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2022] [Accepted: 04/19/2022] [Indexed: 11/13/2022] Open
Abstract
Retromer is a highly integrated multimeric protein complex that mediates retrograde cargo sorting from endosomal compartments. In concert with its accessory proteins, the retromer drives packaged cargoes to tubular and vesicular structures, thereby transferring them to the trans-Golgi network or to the plasma membrane. In addition to the endosomal trafficking, the retromer machinery participates in mitochondrial dynamics and autophagic processes and thus contributes to cellular homeostasis. The retromer components and their associated molecules are expressed in different types of cells including neurons and glial cells, and accumulating evidence from genetic and biochemical studies suggests that retromer dysfunction is profoundly involved in the pathogenesis of neurodegenerative diseases including Alzheimer’s Disease and Parkinson’s disease. Moreover, targeting retromer components could alleviate the neurodegenerative process, suggesting that the retromer complex may serve as a promising therapeutic target. In this review, we will provide the latest insight into the regulatory mechanisms of retromer and discuss how its dysfunction influences the pathological process leading to neurodegeneration.
Collapse
Affiliation(s)
- Shun Yoshida
- Division of Neurology, Department of Neuroscience and Sensory Organs, Tohoku University Graduate School of Medicine, Sendai, Japan
- Department of Neurology, National Hospital Organization Yonezawa Hospital, Yonezawa, Japan
| | - Takafumi Hasegawa
- Division of Neurology, Department of Neuroscience and Sensory Organs, Tohoku University Graduate School of Medicine, Sendai, Japan
- *Correspondence: Takafumi Hasegawa,
| |
Collapse
|
3
|
Gock N, Follett J, Rintoul GL, Beischlag TV, Lee FJ. Endosomal recycling and dopamine neurotransmission: Exploring the links between the retromer and Parkinson's disease. Synapse 2022; 76:e22224. [DOI: 10.1002/syn.22224] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2021] [Revised: 12/17/2021] [Accepted: 01/23/2022] [Indexed: 11/11/2022]
Affiliation(s)
- Nathan Gock
- Faculty of Health Sciences Simon Fraser University 8888 University Dr Burnaby BC V5A 1S6 Canada
- Centre for Cell Biology, Development, and Disease Simon Fraser University 8888 University Dr Burnaby BC V5A 1S6 Canada
| | - Jordan Follett
- Laboratory of Neurogenetics and Neuroscience Department of Neurology University of Florida 1149 Newell Dr Gainesville FL 32610‐0236 United States
| | - Gordon L Rintoul
- Department of Biological Sciences Simon Fraser University 8888 University Dr Burnaby BC V5A 1S6 Canada
- Centre for Cell Biology, Development, and Disease Simon Fraser University 8888 University Dr Burnaby BC V5A 1S6 Canada
| | - Timothy V Beischlag
- Faculty of Health Sciences Simon Fraser University 8888 University Dr Burnaby BC V5A 1S6 Canada
- Centre for Cell Biology, Development, and Disease Simon Fraser University 8888 University Dr Burnaby BC V5A 1S6 Canada
| | - Frank J.S. Lee
- Faculty of Health Sciences Simon Fraser University 8888 University Dr Burnaby BC V5A 1S6 Canada
- Centre for Cell Biology, Development, and Disease Simon Fraser University 8888 University Dr Burnaby BC V5A 1S6 Canada
| |
Collapse
|
4
|
Courtland JL, Bradshaw TWA, Waitt G, Soderblom EJ, Ho T, Rajab A, Vancini R, Kim IH, Soderling SH. Genetic disruption of WASHC4 drives endo-lysosomal dysfunction and cognitive-movement impairments in mice and humans. eLife 2021; 10:e61590. [PMID: 33749590 PMCID: PMC7984842 DOI: 10.7554/elife.61590] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2020] [Accepted: 02/09/2021] [Indexed: 12/12/2022] Open
Abstract
Mutation of the Wiskott-Aldrich syndrome protein and SCAR homology (WASH) complex subunit, SWIP, is implicated in human intellectual disability, but the cellular etiology of this association is unknown. We identify the neuronal WASH complex proteome, revealing a network of endosomal proteins. To uncover how dysfunction of endosomal SWIP leads to disease, we generate a mouse model of the human WASHC4c.3056C>G mutation. Quantitative spatial proteomics analysis of SWIPP1019R mouse brain reveals that this mutation destabilizes the WASH complex and uncovers significant perturbations in both endosomal and lysosomal pathways. Cellular and histological analyses confirm that SWIPP1019R results in endo-lysosomal disruption and uncover indicators of neurodegeneration. We find that SWIPP1019R not only impacts cognition, but also causes significant progressive motor deficits in mice. A retrospective analysis of SWIPP1019R patients reveals similar movement deficits in humans. Combined, these findings support the model that WASH complex destabilization, resulting from SWIPP1019R, drives cognitive and motor impairments via endo-lysosomal dysfunction in the brain.
Collapse
Affiliation(s)
- Jamie L Courtland
- Department of Neurobiology, Duke University School of MedicineDurhamUnited States
| | - Tyler WA Bradshaw
- Department of Neurobiology, Duke University School of MedicineDurhamUnited States
| | - Greg Waitt
- Proteomics and Metabolomics Shared Resource, Duke University School of MedicineDurhamUnited States
| | - Erik J Soderblom
- Proteomics and Metabolomics Shared Resource, Duke University School of MedicineDurhamUnited States
- Department of Cell Biology, Duke University School of MedicineDurhamUnited States
| | - Tricia Ho
- Proteomics and Metabolomics Shared Resource, Duke University School of MedicineDurhamUnited States
| | - Anna Rajab
- Burjeel Hospital, VPS HealthcareMuscatOman
| | - Ricardo Vancini
- Department of Pathology, Duke University School of MedicineDurhamUnited States
| | - Il Hwan Kim
- Department of Cell Biology, Duke University School of MedicineDurhamUnited States
- Department of Anatomy and Neurobiology, University of Tennessee Heath Science CenterMemphisUnited States
| | - Scott H Soderling
- Department of Neurobiology, Duke University School of MedicineDurhamUnited States
- Department of Cell Biology, Duke University School of MedicineDurhamUnited States
| |
Collapse
|
5
|
Follett J, Farrer MJ. LRRK2; a dynamic regulator of cellular trafficking. Brain Res 2021; 1761:147394. [PMID: 33662339 DOI: 10.1016/j.brainres.2021.147394] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2020] [Revised: 01/11/2021] [Accepted: 02/20/2021] [Indexed: 12/26/2022]
Abstract
Parkinson's disease (PD) represents the second most common neurodegenerative disorder, characterized clinically by bradykinesia, resting tremor, rigidity and postural instability, and a variety of non-motor features. The etiology of PD is unknown, however genetic, environmental and inflammatory factors may influence disease onset and progression. Genetic variability in leucine-rich repeat kinase 2 confers significant genotypic and population-attributable risk for LRRK2-parkinsonism that is clinically indistinguishable from idiopathic PD. Nevertheless, the age-associated midbrain pathology observed post-mortem in LRRK2-parkinsonism may involve the abnormal accumulation of either α-synuclein or tau, or just the loss of dopaminergic neurons and gliosis. While diverse biological functions have been described for this multi-domain protein in many cell types, evidence suggests LRRK2 may sense endosomal trafficking to orchestrate dynamic changes in vesicular flux and cytoskeletal architecture. This review posits the long-held belief that synaptic-axonal dysfunction and terminal degeneration may precede dopaminergic cell loss, and provocatively questions how facets of LRRK2 biology may influence this molecular pathogenesis.
Collapse
Affiliation(s)
- Jordan Follett
- Laboratory of Neurogenetics and Neuroscience, Department of Neurology, University of Florida, Gainesville, FL, USA.
| | - Matthew J Farrer
- Laboratory of Neurogenetics and Neuroscience, Department of Neurology, University of Florida, Gainesville, FL, USA
| |
Collapse
|
6
|
Besemer AS, Maus J, Ax MDA, Stein A, Vo S, Freese C, Nalbach K, von Hilchen C, Pfalzgraf IF, Koziollek-Drechsler I, Silva B, Huesmann H, Boukhallouk F, Florin L, Kern A, Behl C, Clement AM. Receptor-mediated endocytosis 8 (RME-8)/DNAJC13 is a novel positive modulator of autophagy and stabilizes cellular protein homeostasis. Cell Mol Life Sci 2020; 78:645-660. [PMID: 32322926 PMCID: PMC7873018 DOI: 10.1007/s00018-020-03521-y] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2019] [Revised: 03/20/2020] [Accepted: 04/06/2020] [Indexed: 12/15/2022]
Abstract
The cellular protein homeostasis (proteostasis) network responds effectively to insults. In a functional screen in C. elegans, we recently identified the gene receptor-mediated endocytosis 8 (rme-8; human ortholog: DNAJC13) as a component of the proteostasis network. Accumulation of aggregation-prone proteins, such as amyloid-β 42 (Aβ), α-synuclein, or mutant Cu/Zn-superoxide dismutase (SOD1), were aggravated upon the knockdown of rme-8/DNAJC13 in C. elegans and in human cell lines, respectively. DNAJC13 is involved in endosomal protein trafficking and associated with the retromer and the WASH complex. As both complexes have been linked to autophagy, we investigated the role of DNAJC13 in this degradative pathway. In knockdown and overexpression experiments, DNAJC13 acts as a positive modulator of autophagy. In contrast, the overexpression of the Parkinson’s disease-associated mutant DNAJC13(N855S) did not enhance autophagy. Reduced DNAJC13 levels affected ATG9A localization at and its transport from the recycling endosome. As a consequence, ATG9A co-localization at LC3B-positive puncta under steady-state and autophagy-induced conditions is impaired. These data demonstrate a novel function of RME-8/DNAJC13 in cellular homeostasis by modulating ATG9A trafficking and autophagy.
Collapse
Affiliation(s)
- Anna S Besemer
- Institute of Pathobiochemistry, University Medical Center of the Johannes Gutenberg-University, Duesbergweg 6, 55128, Mainz, Germany
| | - Joanna Maus
- Institute of Pathobiochemistry, University Medical Center of the Johannes Gutenberg-University, Duesbergweg 6, 55128, Mainz, Germany
| | - Mirjam D A Ax
- Institute of Pathobiochemistry, University Medical Center of the Johannes Gutenberg-University, Duesbergweg 6, 55128, Mainz, Germany
| | - Anna Stein
- Institute of Pathobiochemistry, University Medical Center of the Johannes Gutenberg-University, Duesbergweg 6, 55128, Mainz, Germany
| | - Stella Vo
- Institute of Pathobiochemistry, University Medical Center of the Johannes Gutenberg-University, Duesbergweg 6, 55128, Mainz, Germany
| | - Christian Freese
- Institute of Pathobiochemistry, University Medical Center of the Johannes Gutenberg-University, Duesbergweg 6, 55128, Mainz, Germany
| | - Karsten Nalbach
- Institute of Pathobiochemistry, University Medical Center of the Johannes Gutenberg-University, Duesbergweg 6, 55128, Mainz, Germany
| | - Christian von Hilchen
- Institute of Pathobiochemistry, University Medical Center of the Johannes Gutenberg-University, Duesbergweg 6, 55128, Mainz, Germany
| | - Ines F Pfalzgraf
- Institute of Pathobiochemistry, University Medical Center of the Johannes Gutenberg-University, Duesbergweg 6, 55128, Mainz, Germany
| | - Ingrid Koziollek-Drechsler
- Institute of Pathobiochemistry, University Medical Center of the Johannes Gutenberg-University, Duesbergweg 6, 55128, Mainz, Germany
| | - Beate Silva
- Institute of Pathobiochemistry, University Medical Center of the Johannes Gutenberg-University, Duesbergweg 6, 55128, Mainz, Germany
| | - Heike Huesmann
- Institute of Pathobiochemistry, University Medical Center of the Johannes Gutenberg-University, Duesbergweg 6, 55128, Mainz, Germany
| | - Fatima Boukhallouk
- Institute of Medical Microbiology and Hygiene, University Medical Center of the Johannes Gutenberg-University, 55101 Mainz, Germany
| | - Luise Florin
- Institute for Virology and Research Center for Immunotherapy (FZI), University Medical Center of the Johannes Gutenberg-University, 55101 Mainz, Germany
| | - Andreas Kern
- Institute of Pathobiochemistry, University Medical Center of the Johannes Gutenberg-University, Duesbergweg 6, 55128, Mainz, Germany
| | - Christian Behl
- Institute of Pathobiochemistry, University Medical Center of the Johannes Gutenberg-University, Duesbergweg 6, 55128, Mainz, Germany.
| | - Albrecht M Clement
- Institute of Pathobiochemistry, University Medical Center of the Johannes Gutenberg-University, Duesbergweg 6, 55128, Mainz, Germany.
| |
Collapse
|
7
|
Malik BR, Maddison DC, Smith GA, Peters OM. Autophagic and endo-lysosomal dysfunction in neurodegenerative disease. Mol Brain 2019; 12:100. [PMID: 31783880 PMCID: PMC6884906 DOI: 10.1186/s13041-019-0504-x] [Citation(s) in RCA: 121] [Impact Index Per Article: 20.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2019] [Accepted: 10/01/2019] [Indexed: 12/11/2022] Open
Abstract
Due to their post-mitotic state, metabolic demands and often large polarised morphology, the function and survival of neurons is dependent on an efficient cellular waste clearance system both for generation of materials for metabolic processes and removal of toxic components. It is not surprising therefore that deficits in protein clearance can tip the balance between neuronal health and death. Here we discuss how autophagy and lysosome-mediated degradation pathways are disrupted in several neurological disorders. Both genetic and cell biological evidence show the diversity and complexity of vesicular clearance dysregulation in cells, and together may ultimately suggest a unified mechanism for neuronal demise in degenerative conditions. Causative and risk-associated mutations in Alzheimer's disease, Frontotemporal Dementia, Amyotrophic Lateral Sclerosis, Parkinson's disease, Huntington's disease and others have given the field a unique mechanistic insight into protein clearance processes in neurons. Through their broad implication in neurodegenerative diseases, molecules involved in these genetic pathways, in particular those involved in autophagy, are emerging as appealing therapeutic targets for intervention in neurodegeneration.
Collapse
Affiliation(s)
- Bilal R Malik
- UK Dementia Research Institute at Cardiff University, Cardiff, Wales, UK
- School of Biosciences, Cardiff University, Cardiff, Wales, UK
| | - Daniel C Maddison
- UK Dementia Research Institute at Cardiff University, Cardiff, Wales, UK
- School of Medicine, Cardiff University, Cardiff, Wales, UK
| | - Gaynor A Smith
- UK Dementia Research Institute at Cardiff University, Cardiff, Wales, UK.
- School of Medicine, Cardiff University, Cardiff, Wales, UK.
| | - Owen M Peters
- UK Dementia Research Institute at Cardiff University, Cardiff, Wales, UK.
- School of Biosciences, Cardiff University, Cardiff, Wales, UK.
| |
Collapse
|