1
|
Schukarucha Gomes A, Ellis CE, Spigelman AF, Dos Santos T, Maghera J, Suzuki K, MacDonald PE. Molecular correlates of glycine receptor activity in human β cells. Mol Metab 2025; 96:102156. [PMID: 40258441 PMCID: PMC12059332 DOI: 10.1016/j.molmet.2025.102156] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/03/2024] [Revised: 04/07/2025] [Accepted: 04/16/2025] [Indexed: 04/23/2025] Open
Abstract
OBJECTIVES Glycine acts in an autocrine positive feedback loop in human β cells through its ionotropic receptors (GlyRs). In type 2 diabetes (T2D), islet GlyR activity is impaired by unknown mechanisms. We sought to investigate if the GlyR dysfunction in T2D is replicated by hyperglycemia per se, and to further characterize its action in β cells and islets. METHODS GlyR-mediated currents were measured using whole-cell patch-clamp in human β cells from donors with or without T2D, or after high glucose (15 mM) culture. We also correlated glycine-induced current amplitude with transcript expression levels through patch-seq. The expression of the GlyR α1, α3, and β subunit mRNA splice variants was compared between islets from donors with and without T2D, and after high glucose culture. Insulin secretion from human islets was measured in the presence or absence of the GlyR antagonist strychnine. RESULTS Although gene expression of GlyRs was decreased in T2D islets, and β cell GlyR-mediated currents were smaller, we found no evidence for a shift in GlyR subunit splicing. Glycine-induced currents are also reduced after 48 h culture of islets from donors without diabetes in high glucose, where we also find the reduction of the α1 subunit expression, but an increase in the α3 subunit. We discovered that glycine-evoked currents are highly heterogeneous amongst β cells, inversely correlate with donor HbA1c, and are significantly correlated to the expression of 92 different transcripts and gene regulatory networks (GRNs) that include CREB3(+), RREB1(+) and ZNF697(+). Finally, glucose-stimulated insulin secretion is decreased in the presence of the GlyR antagonist strychnine. CONCLUSIONS We demonstrate that glucose can modulate GlyR expression, and that the current decrease in T2D is likely due to the receptor gene expression downregulation, and not a change in transcript splicing. Moreover, we define a previously unknown set of genes and regulons that are correlated to GlyR-mediated currents and could be involved in GlyR downregulation in T2D. Among those we validate the negative impact of EIF4EBP1 expression on GlyR activity.
Collapse
Affiliation(s)
- Amanda Schukarucha Gomes
- Alberta Diabetes Institute, Department of Pharmacology, University of Alberta, Edmonton, Alberta, T6G 2R3, Canada
| | - Cara E Ellis
- Alberta Diabetes Institute, Department of Pharmacology, University of Alberta, Edmonton, Alberta, T6G 2R3, Canada
| | - Aliya F Spigelman
- Alberta Diabetes Institute, Department of Pharmacology, University of Alberta, Edmonton, Alberta, T6G 2R3, Canada
| | - Theodore Dos Santos
- Alberta Diabetes Institute, Department of Pharmacology, University of Alberta, Edmonton, Alberta, T6G 2R3, Canada
| | - Jasmine Maghera
- Alberta Diabetes Institute, Department of Pharmacology, University of Alberta, Edmonton, Alberta, T6G 2R3, Canada
| | - Kunimasa Suzuki
- Alberta Diabetes Institute, Department of Pharmacology, University of Alberta, Edmonton, Alberta, T6G 2R3, Canada
| | - Patrick E MacDonald
- Alberta Diabetes Institute, Department of Pharmacology, University of Alberta, Edmonton, Alberta, T6G 2R3, Canada.
| |
Collapse
|
2
|
Moldovan M, Capraș RD, Paşcalău R, Filip GA. Molecular Findings Before Vision Loss in the Streptozotocin-Induced Rat Model of Diabetic Retinopathy. Curr Issues Mol Biol 2025; 47:28. [PMID: 39852143 PMCID: PMC11763991 DOI: 10.3390/cimb47010028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2024] [Revised: 12/30/2024] [Accepted: 01/02/2025] [Indexed: 01/26/2025] Open
Abstract
The streptozotocin-induced rat model of diabetic retinopathy presents similarities to the disease observed in humans. After four weeks following the induction of diabetes, the rats experience vision impairment. During this crucial four-week period, significant changes occur, with vascular damage standing out as a clinically significant factor, alongside neovascularization. While redox imbalance, activation of microglia, secretion of pro-inflammatory cytokines, and neuronal cell death are also observed, the latter remains an emerging hypothesis requiring further exploration. This review is a comprehensive and up-to-date chronological depiction of the progression of diabetic retinopathy within the initial four weeks of hyperglycemia, which precede the onset of vision loss. The data are structured in weekly changes. In the first week, oxidative stress triggers the activation of retinal microglia, which produces inflammation, leading to altered neurotransmission. The second week is characterized by leukostasis, which promotes ischemia, while neural degeneration begins and is accompanied by a simultaneous increase in vessel permeability. The progression of redox and inflammatory imbalances characterized the third week. Finally, in the fourth week, significant developments occur as vessels dilate and become tortuous, neovascularization develops, and retinal thickness diminishes, ultimately leading to vision loss. Through this clearly structured outline, this review aims to delineate a framework for the progression of streptozotocin-induced diabetic retinopathy.
Collapse
Affiliation(s)
- Mădălina Moldovan
- Department of Anatomy and Embryology, Iuliu Hatieganu University of Medicine and Pharmacy, 400012 Cluj-Napoca, Romania; (M.M.)
| | - Roxana-Denisa Capraș
- Department of Anatomy and Embryology, Iuliu Hatieganu University of Medicine and Pharmacy, 400012 Cluj-Napoca, Romania; (M.M.)
| | - Raluca Paşcalău
- Ophthalmology Clinic, Cluj County Emergency Hospital, 400006 Cluj-Napoca, Romania
- Research and Development Institute, Transilvania University of Brasov, 500484 Brasov, Romania
| | - Gabriela Adriana Filip
- Department of Anatomy and Embryology, Iuliu Hatieganu University of Medicine and Pharmacy, 400012 Cluj-Napoca, Romania; (M.M.)
| |
Collapse
|
3
|
Imenshahidi M, Hossenzadeh H. Effects of glycine on metabolic syndrome components: a review. J Endocrinol Invest 2022; 45:927-939. [PMID: 35013990 DOI: 10.1007/s40618-021-01720-3] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/04/2021] [Accepted: 12/03/2021] [Indexed: 12/27/2022]
Abstract
PURPOSE Glycine is the simplest and major amino acid in humans. It is mainly generated in the liver and kidney and is used to produce collagen, creatine, glucose and purine. It is also involved in immune function, anti-inflammatory processes and anti-oxidation reactions. Here, we reviewed the current evidence supporting the role of glycine in the development and treatment of metabolic syndrome components. METHODS We searched Scopus, PubMed and EMBASE databases for papers concerning glycine and metabolic syndrome. RESULTS Available evidence shows that the amount of glycine synthesized in vivo is insufficient to meet metabolic demands in these species. Plasma glycine levels are lower in subjects with metabolic syndrome than in healthy individuals. Interventions such as lifestyle modification, exercise, weight loss, or drugs that improve manifestations of metabolic syndrome remarkably increase circulating glycine concentrations. CONCLUSION Glycine supplementation improves various components of metabolic syndrome including diabetes, obesity, hyperlipidemia and hypertension. In the future, the use of glycine may have a significant clinical impact on the treatment of patients with metabolic syndrome.
Collapse
Affiliation(s)
- M Imenshahidi
- Department of Pharmacodynamics and Toxicology, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
- Pharmaceutical Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran
| | - H Hossenzadeh
- Department of Pharmacodynamics and Toxicology, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran.
- Pharmaceutical Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran.
| |
Collapse
|
4
|
El-Mansi AA, Al-Kahtani MA, Rady AM, El-Bealy EA, Al-Asmari AM. Vitamin A and Daucus carota root extract mitigate STZ-induced diabetic retinal degeneration in Wistar albino rats by modulating neurotransmission and downregulation of apoptotic pathways. J Food Biochem 2021; 45:e13688. [PMID: 33687088 DOI: 10.1111/jfbc.13688] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2020] [Revised: 02/14/2021] [Accepted: 02/21/2021] [Indexed: 12/17/2022]
Abstract
The objective of our study was to explore the deleterious effects of diabetes on the visual functions of the retina and to address whether the administration of vitamin A and carrot root extract (CE) confer retinal protection in hyperglycemic rats via modulation of oxidative stress, biochemical alternations, and retinal neurotransmission. Fifty male Wistar albino rats weighing 180 ± 12.41 g were randomized into five groups (n = 10): controls, diabetic group (injected with 40 mg/kg dissolved in 0.1 sodium citrate buffer), diabetic group treated with vitamin A (2,500 IU/kg, low dose), diabetic group treated with vitamin (5,000 IU/kg, high dose), and diabetic groups administered CE (200 mg/kg/every other day). Our findings showed that, compared to controls, diabetic rats showed a significant decrease in their retinal thickness, increased apoptotic ganglion cells, and a noticeable degeneration of their synaptic layers. The inner retina displayed increased activity of neovascularization; however, the outer retina exhibited vacuolar degeneration of the photoreceptor cell layer. Our biochemical assessments showed reduced levels of CAT, SOD, and GST along with increased lipid peroxidation. Concurrently, cellular angiogenic and stress markers were significantly elevated associated with increased apoptotic activities as evidenced by increased expressions of annexin-V and PARP. Furthermore, the neurotransmitter content of the retina was altered in diabetic rats compared to controls and diabetic-treated groups. Paradoxically, vitamin A and CE supplementation attenuate these retinal insults in diabetic animals and normalized aforementioned assayed parameters; evidencing that both treatments exerted ameliorative impacts and restored visual functions by diminishing oxidative stress and neuronal degeneration. PRACTICAL APPLICATIONS: Diabetes is a complex disease that involves various physiological perturbations especially visual functions. In our study, we showed that vitamin A and carrot root extract (CE) confer remarkable protection against retinal degeneration in STZ-induced diabetic rats. Our findings showed that the chemical and phytochemical ingredients of the vitamin A and CE substantially attenuated the histopathological changes, oxidative stress, inflammatory reactions, and cellular death in diabetic rats. These favorable changes are attributable to the high content of retinoic acid, carotenoids, and phenolic compounds that effectively regulates the production of visual pigments, increases the antioxidant defense system, and diminishes the pro-inflammatory and apoptotic pathways. Thus, the nutritional values of vitamin A and CE represent promising therapeutic choices to mitigate the retinal-induced diabetic insults.
Collapse
Affiliation(s)
- Ahmed A El-Mansi
- Biology Department, Faculty of Science, King Khalid University, Abha, Saudi Arabia.,Zoology Department, Faculty of Science, Mansoura University, Mansoura, Egypt
| | - M A Al-Kahtani
- Biology Department, Faculty of Science, King Khalid University, Abha, Saudi Arabia
| | - Ahmed M Rady
- Biology Department, Faculty of Science, King Saud University, Riyadh, Saudi Arabia
| | - Eman A El-Bealy
- Biology Department, Faculty of Science, King Khalid University, Abha, Saudi Arabia
| | - A M Al-Asmari
- Biology Department, Faculty of Science, King Khalid University, Abha, Saudi Arabia
| |
Collapse
|
5
|
Abstract
Diabetic retinopathy is now well understood as a neurovascular disease. Significant deficits early in diabetes are found in the inner retina that consists of bipolar cells that receive inputs from rod and cone photoreceptors, ganglion cells that receive inputs from bipolar cells, and amacrine cells that modulate these connections. These functional deficits can be measured in vivo in diabetic humans and animal models using the electroretinogram (ERG) and behavioral visual testing. Early effects of diabetes on both the human and animal model ERGs are changes to the oscillatory potentials that suggest dysfunctional communication between amacrine cells and bipolar cells as well as ERG measures that suggest ganglion cell dysfunction. These are coupled with changes in contrast sensitivity that suggest inner retinal changes. Mechanistic in vitro neuronal studies have suggested that these inner retinal changes are due to decreased inhibition in the retina, potentially due to decreased gamma aminobutyric acid (GABA) release, increased glutamate release, and increased excitation of retinal ganglion cells. Inner retinal deficits in dopamine levels have also been observed that can be reversed to limit inner retinal damage. Inner retinal targets present a promising new avenue for therapies for early-stage diabetic eye disease.
Collapse
|
6
|
Xiao F, Wang Y, Shao T, Jin G. Acetonitrilated Unsymmetric BODIPYs having glycine fluorescence responsive quenching: Design, synthesis and spectroscopic properties. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2020; 233:118211. [PMID: 32155579 DOI: 10.1016/j.saa.2020.118211] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/08/2020] [Revised: 02/29/2020] [Accepted: 02/29/2020] [Indexed: 06/10/2023]
Abstract
A series of novel N≡C-CH2-B-F system BODIPY were designed and synthesized by introducing aldehyde and acetonitrile units which gave positive influence to spectroscopic and chemical properties of BODIPY derivatives. The effects of glycine (Gly) on the target products were studied via ultraviolet and visible spectrophotometry (UV-Vis) and photoluminescence (PL) under different conditions of the presence and absence of cations (K+, Ca2+, Zn2+). It was showed that glycine has an intense quenching effect on the compounds in both the presence and absence of ions with a dramatic color change from notable red to light orange owing to the addition of Gly. With regard to cells imaging investigation, the products showed the prominent fluorescence in cholangiocarcinoma cells. The luminescent effect of compounds 1 and 3 entering the cells was significantly stronger than that of compound 2. In addition, pertaining to anticancer properties, two human cancer cell lines (RBE, HCCC-9810) and one normal cell line (L-02) were evaluated for in vitro cytotoxicity. The target compounds, 1-3, exhibited moderate antitumor activity, of which compound 1 was found to be the most potent derivative with IC50 values of 119.31 ± 6.25, 114.73 ± 3.25, and 106.33 ± 5.22 against RBE, HCCC-9810, and L-02 cells, respectively, slightly weaker than the positive control 5-FU.
Collapse
Affiliation(s)
- Fuyan Xiao
- School of Pharmacy, Jiangsu University, Zhenjiang 212013, China
| | - Yuling Wang
- School of Pharmacy, Jiangsu University, Zhenjiang 212013, China
| | - Tingyu Shao
- School of Pharmacy, Jiangsu University, Zhenjiang 212013, China
| | - Guofan Jin
- School of Pharmacy, Jiangsu University, Zhenjiang 212013, China.
| |
Collapse
|