1
|
Quave CB, Vasquez AM, Aquino-Miranda G, Marín M, Bora EP, Chidomere CL, Zhang XO, Engelke DS, Do-Monte FH. Neural correlates of opioid-induced risk-taking behavior in the prelimbic prefrontal cortex. J Neurosci 2025; 45:e2422242025. [PMID: 40097184 PMCID: PMC12060622 DOI: 10.1523/jneurosci.2422-24.2025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2024] [Revised: 02/26/2025] [Accepted: 03/06/2025] [Indexed: 03/19/2025] Open
Abstract
Opioid use disorder occurs alongside impaired risk-related decision-making, but the underlying neural correlates are unclear. We developed an approach-avoidance conflict task using a modified conditioned place preference procedure to study neural signals of risky opioid seeking in the prefrontal cortex, a region implicated in executive decision-making. Following morphine conditioned place preference, rats underwent a conflict test in which fear-inducing cat odor was introduced in the previously drug-paired side of the apparatus. While the saline-exposed control group avoided cat odor, the morphine group included two subsets of rats that either maintained a preference for the paired side despite the presence of cat odor (Risk-Takers) or exhibited increased avoidance (Risk-Avoiders), as revealed by K-means clustering. Single-unit recordings from the prelimbic cortex (PL) demonstrated decreased neuronal activity upon acute morphine exposure in both Risk-Takers and Risk-Avoiders, but this firing rate suppression was absent after repeated morphine administration. Risk-Avoiders also displayed distinct post-morphine excitation in PL which persisted across conditioning. During the preference test, subpopulations of PL neurons in all groups were either excited or inhibited when rats entered the paired side. Interestingly, the inhibition in PL activity was lost during the subsequent conflict test in both saline and Risk-Avoider groups, but persisted in Risk-Takers. Additionally, Risk-Takers showed an increase in the proportion of PL neurons displaying location-specific firing in the drug-paired side from the preference to the conflict test. Together, our results suggest that persistent PL inhibitory signaling in the drug-associated context during motivational conflict may underlie increased risk-taking behavior following opioid exposure.Significance statement Risky opioid use is well established in opioid use disorder, but the underlying neural correlates are poorly understood. In this study, we present findings from a novel behavioral task in which rats face a motivational conflict between contextual opioid reward memory and a naturalistic predator threat. Performing neuronal recordings in the prelimbic prefrontal cortex (PL), a brain region critical for executive decision-making, we demonstrate enhanced representation of drug-associated context and persistent inhibitory signaling by PL neurons that occur alongside opioid-induced risk-taking behavior. Our findings refine a preclinical model for studying addiction, establish PL as a prime region for investigating drug-environment interactions, and positions the prefrontal cortex as a candidate region for translational studies targeting risky opioid use.
Collapse
Affiliation(s)
- Cana B Quave
- Dept. of Neurobiology & Anatomy, The University of Texas Health Science Center, Houston, TX 77030, USA
- McGovern Medical School at UTHealth Houston, The University of Texas MD Anderson Cancer Center UTHealth Houston Graduate School of Biomedical Sciences, The University of Texas Health Science Center at Houston, Houston, Texas 77030, USA
| | - Andres M Vasquez
- Dept. of Neurobiology & Anatomy, The University of Texas Health Science Center, Houston, TX 77030, USA
- Dept. of Neuroscience, Rice University, Houston, TX 77005, USA
| | - Guillermo Aquino-Miranda
- Dept. of Neurobiology & Anatomy, The University of Texas Health Science Center, Houston, TX 77030, USA
| | - Milagros Marín
- Dept. of Neurobiology & Anatomy, The University of Texas Health Science Center, Houston, TX 77030, USA
| | - Esha P Bora
- Dept. of Neurobiology & Anatomy, The University of Texas Health Science Center, Houston, TX 77030, USA
| | - Chinenye L Chidomere
- Dept. of Neurobiology & Anatomy, The University of Texas Health Science Center, Houston, TX 77030, USA
- Dept. of Biomedical Engineering, University of Houston, Houston, TX 77204, USA
| | - Xu O Zhang
- Dept. of Neurobiology & Anatomy, The University of Texas Health Science Center, Houston, TX 77030, USA
- McGovern Medical School at UTHealth Houston, The University of Texas MD Anderson Cancer Center UTHealth Houston Graduate School of Biomedical Sciences, The University of Texas Health Science Center at Houston, Houston, Texas 77030, USA
| | - Douglas S Engelke
- Dept. of Neurobiology & Anatomy, The University of Texas Health Science Center, Houston, TX 77030, USA;
| | - Fabricio H Do-Monte
- Dept. of Neurobiology & Anatomy, The University of Texas Health Science Center, Houston, TX 77030, USA;
- McGovern Medical School at UTHealth Houston, The University of Texas MD Anderson Cancer Center UTHealth Houston Graduate School of Biomedical Sciences, The University of Texas Health Science Center at Houston, Houston, Texas 77030, USA
| |
Collapse
|
2
|
Quave CB, Vasquez AM, Aquino-Miranda G, Marín M, Bora EP, Chidomere CL, Zhang XO, Engelke DS, Do-Monte FH. Neural signatures of opioid-induced risk-taking behavior in the prelimbic prefrontal cortex. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.02.05.578828. [PMID: 38370807 PMCID: PMC10871263 DOI: 10.1101/2024.02.05.578828] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/20/2024]
Abstract
Opioid use disorder occurs alongside impaired risk-related decision-making, but the underlying neural correlates are unclear. We developed an approach-avoidance conflict task using a modified conditioned place preference procedure to study neural signals of risky opioid seeking in the prefrontal cortex, a region implicated in executive decision-making. Following morphine conditioned place preference, rats underwent a conflict test in which fear-inducing cat odor was introduced in the previously drug-paired side of the apparatus. While the saline-exposed control group avoided cat odor, the morphine group included two subsets of rats that either maintained a preference for the paired side despite the presence of cat odor (Risk-Takers) or exhibited increased avoidance (Risk-Avoiders), as revealed by K-means clustering. Single-unit recordings from the prelimbic cortex (PL) demonstrated decreased neuronal activity upon acute morphine exposure in both Risk-Takers and Risk-Avoiders, but this firing rate suppression was absent after repeated morphine administration. Risk-Avoiders also displayed distinct post-morphine excitation in PL which persisted across conditioning. During the preference test, subpopulations of PL neurons in all groups were either excited or inhibited when rats entered the paired side. Interestingly, the inhibition in PL activity was lost during the subsequent conflict test in both saline and Risk-Avoider groups, but persisted in Risk-Takers. Additionally, Risk-Takers showed an increase in the proportion of PL neurons displaying location-specific firing in the drug-paired side from the preference to the conflict test. Together, our results suggest that persistent PL inhibitory signaling in the drug-associated context during motivational conflict may underlie increased risk-taking behavior following opioid exposure.
Collapse
Affiliation(s)
- Cana B. Quave
- Dept. of Neurobiology & Anatomy, The University of Texas Health Science Center, Houston, TX 77030, USA
- McGovern Medical School at UTHealth Houston, The University of Texas MD Anderson Cancer Center UTHealth Houston Graduate School of Biomedical Sciences, The University of Texas Health Science Center at Houston, Houston, Texas 77030, USA
| | - Andres M. Vasquez
- Dept. of Neurobiology & Anatomy, The University of Texas Health Science Center, Houston, TX 77030, USA
- Dept. of Neuroscience, Rice University, Houston, TX 77005, USA
| | - Guillermo Aquino-Miranda
- Dept. of Neurobiology & Anatomy, The University of Texas Health Science Center, Houston, TX 77030, USA
| | - Milagros Marín
- Dept. of Neurobiology & Anatomy, The University of Texas Health Science Center, Houston, TX 77030, USA
| | - Esha P. Bora
- Dept. of Neurobiology & Anatomy, The University of Texas Health Science Center, Houston, TX 77030, USA
| | - Chinenye L. Chidomere
- Dept. of Neurobiology & Anatomy, The University of Texas Health Science Center, Houston, TX 77030, USA
- Dept. of Biomedical Engineering, University of Houston, Houston, TX 77204, USA
| | - Xu O. Zhang
- Dept. of Neurobiology & Anatomy, The University of Texas Health Science Center, Houston, TX 77030, USA
- McGovern Medical School at UTHealth Houston, The University of Texas MD Anderson Cancer Center UTHealth Houston Graduate School of Biomedical Sciences, The University of Texas Health Science Center at Houston, Houston, Texas 77030, USA
| | - Douglas S. Engelke
- Dept. of Neurobiology & Anatomy, The University of Texas Health Science Center, Houston, TX 77030, USA
| | - Fabricio H. Do-Monte
- Dept. of Neurobiology & Anatomy, The University of Texas Health Science Center, Houston, TX 77030, USA
- McGovern Medical School at UTHealth Houston, The University of Texas MD Anderson Cancer Center UTHealth Houston Graduate School of Biomedical Sciences, The University of Texas Health Science Center at Houston, Houston, Texas 77030, USA
| |
Collapse
|
3
|
Bensing PC, Moye C, Leong KC. Oxytocin attenuates cocaine-associated place preference via the dorsal hippocampus in male and female rats. Physiol Behav 2024; 282:114599. [PMID: 38823754 DOI: 10.1016/j.physbeh.2024.114599] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2023] [Revised: 02/23/2024] [Accepted: 05/29/2024] [Indexed: 06/03/2024]
Abstract
Cocaine addiction is the third largest cause of overdose-related deaths in the United States. Research investigating therapeutic targets for cocaine reward processes is key to combating this issue. The neuropeptide oxytocin (OXT) has been shown to reduce cocaine reward processes, though specific mechanisms are not understood. This study examines the effect of intra-dorsal hippocampal (DH) OXT on the expression of cocaine context associations using a conditioned place preference (CPP) paradigm. In this paradigm, one of two visually distinct chambers is paired with a drug. With repeated pairings, control animals display preference for the drug-associated context by spending more time in that context at test. In the present study, four conditioning days took place where male and female rats were injected with either cocaine or saline and placed into the corresponding chamber. On test day, rats received infusions of OXT or saline (VEH) into the DH and were allowed access to both chambers. The results show that while VEH-infused rats displayed cocaine CPP, OXT-infused rats did not prefer the cocaine-paired chamber. These findings implicate the DH as necessary in the mechanism by which OXT acts to block the expression of cocaine-context associations, providing insight into how OXT may exert its therapeutic effect in cocaine reward processes.
Collapse
Affiliation(s)
- Paige C Bensing
- Department of Psychology, Trinity University, San Antonio, Texas
| | - Chase Moye
- Department of Psychology, Trinity University, San Antonio, Texas
| | - Kah-Chung Leong
- Department of Psychology, Trinity University, San Antonio, Texas.
| |
Collapse
|
4
|
Palombo P, Maeda R, Riberti Zaniboni C, Antonagi Engi S, Yokoyama T, Bonetti Bertagna N, Anesio A, Cristina Bianchi P, Righi T, Emily Boaventura Tavares G, Souccar C, da Silva FBR, Cardoso Cruz F. Unlocking the role of dorsal hippocampal α4β2 nicotinic acetylcholine receptors in Ethanol-Induced conditioned place preference in mice. Neurosci Lett 2024; 824:137666. [PMID: 38331019 DOI: 10.1016/j.neulet.2024.137666] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2023] [Revised: 01/22/2024] [Accepted: 02/01/2024] [Indexed: 02/10/2024]
Abstract
Alcohol Use Disorder (AUD) presents a significant and challenging public health concern, marked by a dearth of effective pharmacological treatments. Understanding the neurobiological underpinnings of AUD is of paramount importance for the development of efficacious interventions. The process of addiction entails the acquisition of associative behaviors, prominently engaging the dorsal region of the hippocampus for encoding these associative memories. Nicotinic receptor systems have been implicated in mediating the rewarding effects of ethanol, as well as memory and learning processes. In our current investigation, we delved into the role of α4β2 nicotinic acetylcholine receptors (nAChRs) within the dorsal hippocampus in the context of ethanol-induced conditioned place preference (CPP), a robust model for scrutinizing the rewarding properties and drug-associated behaviors. To establish CPP, ethanol (2 g/kg) was administered intraperitoneally during a 8-day conditioning phase. Fos immunohistochemistry was employed to assess the involvement of discrete subregions within the dorsal hippocampus in ethanol-induced CPP. Additionally, we probed the influence of α4β2 nAChRs on CPP via microinjections of a selective nAChR antagonist, dihydro-β-erythroidine (DHBE, at dosages of 6, 12, and 18 µg/0.5 µL per hemisphere) within the hippocampus. Our results unveiled that ethanol-induced CPP was associated with an increase Fos -positive cells in various subregions of the dorsal hippocampus, including CA1, CA2, CA3, and the dentate gyrus. Intrahippocampal administration of DHBE (at doses of 6 and 18 µg/0.50 µL per hemisphere) effectively blocked ethanol-induced CPP, while leaving locomotor activity unaffected. These findings underscore the critical involvement of the dorsal hippocampus and α4β2 nAChRs in the acquisition of ethanol-associated learning and reward.
Collapse
Affiliation(s)
- Paola Palombo
- Department of Pharmacology, Escola Paulista de Medicina, Universidade Federal de São Paulo, São Paulo, Brazil.
| | - Roberta Maeda
- Department of Pharmacology, Escola Paulista de Medicina, Universidade Federal de São Paulo, São Paulo, Brazil
| | - Caroline Riberti Zaniboni
- Department of Pharmacology, Escola Paulista de Medicina, Universidade Federal de São Paulo, São Paulo, Brazil
| | - Sheila Antonagi Engi
- Department of Pharmacology, Escola Paulista de Medicina, Universidade Federal de São Paulo, São Paulo, Brazil
| | - Thais Yokoyama
- Department of Pharmacology, Escola Paulista de Medicina, Universidade Federal de São Paulo, São Paulo, Brazil
| | - Natalia Bonetti Bertagna
- Department of Pharmacology, Escola Paulista de Medicina, Universidade Federal de São Paulo, São Paulo, Brazil
| | - Augusto Anesio
- Department of Pharmacology, Escola Paulista de Medicina, Universidade Federal de São Paulo, São Paulo, Brazil
| | - Paula Cristina Bianchi
- Department of Pharmacology, Escola Paulista de Medicina, Universidade Federal de São Paulo, São Paulo, Brazil
| | - Thamires Righi
- Department of Pharmacology, Escola Paulista de Medicina, Universidade Federal de São Paulo, São Paulo, Brazil
| | | | - Caden Souccar
- Department of Pharmacology, Escola Paulista de Medicina, Universidade Federal de São Paulo, São Paulo, Brazil
| | | | - Fabio Cardoso Cruz
- Department of Pharmacology, Escola Paulista de Medicina, Universidade Federal de São Paulo, São Paulo, Brazil
| |
Collapse
|
5
|
Brice-Tutt AC, Montgomery DS, Kramer CM, Novotny PM, Malphurs WL, Sharma A, Caudle RM, Bruijnzeel AW, Setlow B, Neubert JK, Murphy NP. An ethogram analysis of cutaneous thermal pain sensitivity and oxycodone reward-related behaviors in rats. Sci Rep 2023; 13:10482. [PMID: 37380739 PMCID: PMC10307779 DOI: 10.1038/s41598-023-36729-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2023] [Accepted: 06/08/2023] [Indexed: 06/30/2023] Open
Abstract
Inter-relationships between pain sensitivity, drug reward, and drug misuse are of considerable interest given that many analgesics exhibit misuse potential. Here we studied rats as they underwent a series of pain- and reward-related tests: cutaneous thermal reflex pain, induction and extinction of conditioned place preference to oxycodone (0.56 mg/kg), and finally the impact of neuropathic pain on reflex pain and reinstatement of conditioned place preference. Oxycodone induced a significant conditioned place preference that extinguished throughout repeated testing. Correlations identified of particular interest included an association between reflex pain and oxycodone-induced behavioral sensitization, and between rates of behavioral sensitization and extinction of conditioned place preference. Multidimensional scaling analysis followed by k-clustering identified three clusters: (1) reflex pain, rate of behavioral sensitization and rate of extinction of conditioned place preference (2) basal locomotion, locomotor habituation, acute oxycodone-stimulated locomotion and rate of change in reflex pain during repeated testing, and (3) magnitude of conditioned place preference. Nerve constriction injury markedly enhanced reflex pain but did not reinstate conditioned place preference. These results suggest that high rates of behavioral sensitization predicts faster rates of extinction of oxycodone seeking/reward, and suggest that cutaneous thermal reflex pain may be predictive of both.
Collapse
Affiliation(s)
| | | | - Cassidy M Kramer
- Departments of Orthodontics, University of Florida, Gainesville, FL, USA
| | - Peter M Novotny
- Departments of Orthodontics, University of Florida, Gainesville, FL, USA
| | - Wendi L Malphurs
- Departments of Orthodontics, University of Florida, Gainesville, FL, USA
| | - Abhisheak Sharma
- Department of Pharmaceutics, University of Florida, Gainesville, FL, USA
| | - Robert M Caudle
- Department of Oral and Maxillofacial Surgery, University of Florida, Gainesville, FL, USA
| | - Adriaan W Bruijnzeel
- Department of Psychiatry, University of Florida, Gainesville, FL, USA
- Center for Addiction Research and Education, University of Florida, Gainesville, FL, USA
| | - Barry Setlow
- Department of Psychiatry, University of Florida, Gainesville, FL, USA
- Center for Addiction Research and Education, University of Florida, Gainesville, FL, USA
| | - John K Neubert
- Departments of Orthodontics, University of Florida, Gainesville, FL, USA
| | - Niall P Murphy
- Departments of Orthodontics, University of Florida, Gainesville, FL, USA.
| |
Collapse
|
6
|
Dolgetta A, Johnson M, Fruitman K, Siegel L, Zhou Y, McEwen BS, Kreek MJ, Milner TA. Sex and chronic stress alter the distribution of glutamate receptors within rat hippocampal CA3 pyramidal cells following oxycodone conditioned place preference. Neurobiol Stress 2022; 17:100431. [PMID: 35535260 PMCID: PMC9076964 DOI: 10.1016/j.ynstr.2022.100431] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2021] [Revised: 01/02/2022] [Accepted: 01/19/2022] [Indexed: 12/01/2022] Open
Abstract
Glutamate receptors have a key role in the neurobiology of opioid addiction. Using electron microscopic immunocytochemical methods, this project elucidates how sex and chronic immobilization stress (CIS) impact the redistribution of GluN1 and GluA1 within rat hippocampal CA3 pyramidal cells following oxycodone (Oxy) conditioned place preference (CPP). Four groups of female and male Sprague-Dawley rats subjected to CPP were used: Saline- (Sal) and Oxy-injected (3 mg/kg, I.P.) naïve rats; and Sal- and Oxy-injected CIS rats. GluN1: In both naive and CIS rats, Sal-females compared to Sal-males had elevated cytoplasmic and total dendritic GluN1. Following Oxy CPP, near plasmalemmal, cytoplasmic, and total GluN1 decreased in CA3 dendrites of unstressed females suggesting reduced pools of GluN1 available for ligand binding. Following CIS, Oxy-males (which did not acquire CPP) had increased GluN1 in all compartments of dendrites and spines of CA3 neurons. GluA1: There were no differences in the distribution GluA1 in any cellular compartments of CA3 dendrites in naïve females and males following either Sal or Oxy CPP. CIS alone increased the percent of GluA1 in CA3 dendritic spines in males compared to females. CIS Oxy-males compared to CIS Sal-males had an increase in cytoplasmic and total dendritic GluA1. Thus, in CIS Oxy-males increased pools of GluN1 and GluA1 are available for ligand binding in CA3 neurons. Together with our prior experiments, these changes in GluN1 and GluA1 following CIS in males may contribute to an increased sensitivity of CA3 neurons to glutamate excitation and a reduced capacity to acquire Oxy CPP.
Collapse
Key Words
- ABC, avidin-biotin complex
- AMPA receptors
- BSA, bovine serum albumin
- CIS, chronic immobilization stress
- CPP, conditioned place preference
- DAB, diaminobenzidine
- DG, dentate gyrus
- DOR, delta opioid receptor
- Drug associative-learning
- Electron microscopy
- GABA, Gamma-amino butyric acid
- GluA1, AMPA glutamate receptor subunit 1
- GluN1, NMDA, glutamate receptor subunit 1
- LTP, long-term potentiation
- MOR, mu opioid receptor
- NMDA receptors
- NMDA, N-methyl-D-aspartate
- NPY, neuropeptide Y
- Oxy, oxycodone
- PARV, parvalbumin
- PB, phosphate buffer
- PFA, paraformaldehyde
- PM, plasma membrane
- Pyramidal cells
- ROI, region of interest
- SLM, stratum lacunosum-moleculare
- SLu, stratum lucidum
- SO, stratum oriens
- SOM, somatostatin
- SR, stratum radiatum
- Sal, saline
- TS, tris-buffered saline
- ir, immunoreactivity
Collapse
Affiliation(s)
- Alexandra Dolgetta
- Feil Family Brain and Mind Research Institute, Weill Cornell Medicine, 407 East 61st Street, New York, NY, 10065, USA
| | - Megan Johnson
- Feil Family Brain and Mind Research Institute, Weill Cornell Medicine, 407 East 61st Street, New York, NY, 10065, USA
| | - Kate Fruitman
- Feil Family Brain and Mind Research Institute, Weill Cornell Medicine, 407 East 61st Street, New York, NY, 10065, USA
| | - Luke Siegel
- Feil Family Brain and Mind Research Institute, Weill Cornell Medicine, 407 East 61st Street, New York, NY, 10065, USA
| | - Yan Zhou
- The Laboratory of the Biology of Addictive Diseases, The Rockefeller University, 1230 York Avenue, New York, NY, 10065, USA
| | - Bruce S. McEwen
- Harold and Margaret Milliken Hatch Laboratory of Neuroendocrinology, The Rockefeller University, 1230 York Avenue, New York, NY, 10065, USA
| | - Mary Jeanne Kreek
- The Laboratory of the Biology of Addictive Diseases, The Rockefeller University, 1230 York Avenue, New York, NY, 10065, USA
| | - Teresa A. Milner
- Feil Family Brain and Mind Research Institute, Weill Cornell Medicine, 407 East 61st Street, New York, NY, 10065, USA
- Harold and Margaret Milliken Hatch Laboratory of Neuroendocrinology, The Rockefeller University, 1230 York Avenue, New York, NY, 10065, USA
| |
Collapse
|
7
|
Sex differences in the rodent hippocampal opioid system following stress and oxycodone associated learning processes. Pharmacol Biochem Behav 2022; 212:173294. [PMID: 34752798 PMCID: PMC8748406 DOI: 10.1016/j.pbb.2021.173294] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/14/2021] [Revised: 10/20/2021] [Accepted: 10/27/2021] [Indexed: 01/03/2023]
Abstract
Over the past two decades, opioid abuse has risen especially among women. In both sexes hippocampal neural circuits involved in associative memory formation and encoding of motivational incentives are critically important in the transition from initial drug use to drug abuse/dependence. Opioid circuits, particularly the mossy fiber pathway, are crucial for associative memory processes important for addiction. Our anatomical studies, especially those utilizing electron microscopic immunocytochemistry, have provided unique insight into sex differences in the distribution of opioid peptides and receptors in specific hippocampal circuits and how these distributions are altered following stress and oxycodone-associative learning processes. Here we review the hippocampal opioid system in rodents with respect to ovarian hormones effects and baseline sex differences then sex differences following acute and chronic stress. Next, we review sex differences in the hippocampal opioid system in unstressed and chronically stressed rats following oxycodone conditioned place preference. We show that opioid peptides and receptors are distributed within hippocampal circuits in females with elevated estrogen states in a manner that would enhance sensitivity to endogenous and exogenous opioids. Moreover, chronic stress primes the opioid system in females in a manner that would promote opioid-associative learning processes. In contrast, chronic stress has limited effects on the opioid system in males and reduces its capacity to support opioid-mediated learning processes. Interestingly, acute stress appears to prime males for opioid associative learning. On a broader scale the findings highlighted in this review have important implications in understanding sex differences in opioid drug use and abuse.
Collapse
|
8
|
Fan X, Shi G, He X, Li X, Wan Y, Jian L. Oxytocin prevents cue-induced reinstatement of oxycodone seeking: Involvement of DNA methylation in the hippocampus. Addict Biol 2021; 26:e13025. [PMID: 33609013 DOI: 10.1111/adb.13025] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2020] [Revised: 01/26/2021] [Accepted: 02/05/2021] [Indexed: 12/20/2022]
Abstract
Oxycodone is one of the most commonly used analgesics in the clinic. However, long-term use can contribute to drug dependence. Accumulating evidence of changes in DNA methylation after opioid relapse has provided insight into mechanisms underlying drug-associated memory. The neuropeptide oxytocin is reported to be a potential treatment for addiction. The present study sought to identify changes in global and synaptic gene methylation after cue-induced reinstatement of oxycodone conditioned place preference (CPP) and the effect of oxytocin. We analyzed hippocampal mRNA of synaptic genes and also synaptic density in response to oxycodone CPP. We determined the mRNA levels of DNA methyltransferases (Dnmts) and ten-eleven translocations (Tets), observed global 5-methylcytosine (5-mC) and 5-hydroxymethylcytosine (5-hmC) levels, and measured DNA methylation status of four synaptic genes implicated in learning and memory (Arc, Dlg1, Dlg4, and Syn1). Both synaptic density and the transcription of 15 hippocampal synaptic genes significantly increased following cue-induced reinstatement of oxycodone CPP. Oxycodone relapse was also related to markedly decreased 5-mC levels and decreased transcription of Dnmt1, Dnmt3a, and Dnmt3b; in contrast, 5-hmC levels and the transcription of Tet1 and Tet3 were increased. Oxycodone exposure induced DNA hypomethylation at the exons of the Arc, Dlg1, Dlg4, and Syn1 genes. Intracerebroventricular (ICV) administration of oxytocin (2.5 μg/μl) specifically blocked oxycodone relapse, possibly by inhibition of Arc, Dlg1, Dlg4, and Syn1 hypomethylation in oxycodone-treated rats. Together, these data indicate the occurrence of epigenetic changes in the hippocampus following oxycodone relapse and the potential role of oxytocin in oxycodone addiction.
Collapse
Affiliation(s)
- Xin‐Yu Fan
- Department of Pharmacy Shengjing Hospital of China Medical University Shenyang China
| | - Guang Shi
- Department of Neurology, People's Hospital of Liaoning Province Shenyang China
| | - Xiao‐Jing He
- Department of Pharmacy Shengjing Hospital of China Medical University Shenyang China
| | - Xin‐Yang Li
- Department of Pharmacy Shengjing Hospital of China Medical University Shenyang China
| | - Yu‐Xiao Wan
- Department of Anesthesiology Shengjing Hospital of China Medical University Shenyang China
| | - Ling‐Yan Jian
- Department of Pharmacy Shengjing Hospital of China Medical University Shenyang China
| |
Collapse
|
9
|
Windisch KA, Mazid S, Johnson MA, Ashirova E, Zhou Y, Gergoire L, Warwick S, McEwen BS, Kreek MJ, Milner TA. Acute Delta 9-tetrahydrocannabinol administration differentially alters the hippocampal opioid system in adult female and male rats. Synapse 2021; 75:e22218. [PMID: 34255372 DOI: 10.1002/syn.22218] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2021] [Revised: 06/21/2021] [Accepted: 06/24/2021] [Indexed: 12/22/2022]
Abstract
Our prior studies demonstrated that the rat hippocampal opioid system can undergo sex-specific adaptations to external stimuli that can influence opioid-associated learning processes. This opioid system extensively overlaps with the cannabinoid system. Moreover, acute administration of Δ9 Tetrahydrocannabinoid (THC), the primary psychoactive constituent of cannabis, can alter cognitive behaviors that involve the hippocampus. Here, we use light and electron microscopic immunocytochemical methods to examine the effects of acute THC (5 mg/kg, i.p., 1 h) on mossy fiber Leu-Enkephalin (LEnk) levels and the distribution and phosphorylation levels of delta and mu opioid receptors (DORs and MORs, respectively) in CA3 pyramidal cells and parvalbumin dentate hilar interneurons of adult female and male Sprague-Dawley rats. In females with elevated estrogen states (proestrus/estrus stage), acute THC altered the opioid system so that it resembled that seen in vehicle-injected females with low estrogen states (diestrus) and males: (1) mossy fiber LEnk levels in CA2/3a decreased; (2) phosphorylated-DOR levels in CA2/3a pyramidal cells increased; and (3) phosphorylated-MOR levels increased in most CA3b laminae. In males, acute THC resulted in the internalization of MORs in parvalbumin-containing interneuron dendrites which would decrease disinhibition of granule cells. In both sexes, acute THC redistributed DORs to the near plasma membrane of CA3 pyramidal cell dendrites, however, the dendritic region varied with sex. Additionally, acute THC also resulted in a sex-specific redistribution of DORs within CA3 pyramidal cell dendrites which could differentially promote synaptic plasticity and/or opioid-associated learning processes in both females and males.
Collapse
Affiliation(s)
- Kyle A Windisch
- The Laboratory of the Biology of Addictive Diseases, The Rockefeller University, New York, New York
| | - Sanoara Mazid
- Feil Family Brain and Mind Research Institute, Weill Cornell Medicine, New York, New York
| | - Megan A Johnson
- Feil Family Brain and Mind Research Institute, Weill Cornell Medicine, New York, New York
| | - Elina Ashirova
- Feil Family Brain and Mind Research Institute, Weill Cornell Medicine, New York, New York
| | - Yan Zhou
- The Laboratory of the Biology of Addictive Diseases, The Rockefeller University, New York, New York
| | - Lennox Gergoire
- Feil Family Brain and Mind Research Institute, Weill Cornell Medicine, New York, New York
| | - Sydney Warwick
- Feil Family Brain and Mind Research Institute, Weill Cornell Medicine, New York, New York
| | - Bruce S McEwen
- Harold and Margaret Milliken Hatch Laboratory of Neuroendocrinology, The Rockefeller University, New York, New York
| | - Mary Jeanne Kreek
- The Laboratory of the Biology of Addictive Diseases, The Rockefeller University, New York, New York
| | - Teresa A Milner
- The Laboratory of the Biology of Addictive Diseases, The Rockefeller University, New York, New York.,Feil Family Brain and Mind Research Institute, Weill Cornell Medicine, New York, New York
| |
Collapse
|
10
|
Abstract
This paper is the forty-second consecutive installment of the annual anthological review of research concerning the endogenous opioid system, summarizing articles published during 2019 that studied the behavioral effects of molecular, pharmacological and genetic manipulation of opioid peptides and receptors as well as effects of opioid/opiate agonists and antagonists. The review is subdivided into the following specific topics: molecular-biochemical effects and neurochemical localization studies of endogenous opioids and their receptors (1), the roles of these opioid peptides and receptors in pain and analgesia in animals (2) and humans (3), opioid-sensitive and opioid-insensitive effects of nonopioid analgesics (4), opioid peptide and receptor involvement in tolerance and dependence (5), stress and social status (6), learning and memory (7), eating and drinking (8), drug abuse and alcohol (9), sexual activity and hormones, pregnancy, development and endocrinology (10), mental illness and mood (11), seizures and neurologic disorders (12), electrical-related activity and neurophysiology (13), general activity and locomotion (14), gastrointestinal, renal and hepatic functions (15), cardiovascular responses (16), respiration and thermoregulation (17), and immunological responses (18).
Collapse
Affiliation(s)
- Richard J Bodnar
- Department of Psychology and Neuropsychology Doctoral Sub-Program, Queens College, City University of New York, 65-30 Kissena Blvd., Flushing, NY, 11367, United States.
| |
Collapse
|
11
|
Johnson MA, Contoreggi NH, Kogan JF, Bryson M, Rubin BR, Gray JD, Kreek MJ, McEwen BS, Milner TA. Chronic stress differentially alters mRNA expression of opioid peptides and receptors in the dorsal hippocampus of female and male rats. J Comp Neurol 2021; 529:2636-2657. [PMID: 33483980 DOI: 10.1002/cne.25115] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2020] [Revised: 01/12/2021] [Accepted: 01/13/2021] [Indexed: 02/06/2023]
Abstract
Chronic immobilization stress (CIS) results in sex-dependent changes in opioid peptide levels and receptor subcellular distributions within the rat dorsal hippocampus, which are paralleled with an inability for males to acquire conditioned place preference (CPP) to oxycodone. Here, RNAScope in situ hybridization was used to determine the expression of hippocampal opioid peptides and receptors in unstressed (US) and CIS estrus female and male adult (∼2.5 months old ) Sprague Dawley rats. In all groups, dentate granule cells expressed PENK and PDYN; additionally, numerous interneurons expressed PENK. OPRD1 and OPRM1 were primarily expressed in interneurons, and to a lesser extent, in pyramidal and granule cells. OPRK1-was expressed in sparsely distributed interneurons. There were few baseline sex differences: US females compared to US males had more PENK-expressing and fewer OPRD1-expressing granule cells and more OPRM1-expressing CA3b interneurons. Several expression differences emerged after CIS. Both CIS females and males compared to their US counterparts had elevated: (1) PENK-expressing dentate granule cells and interneurons in CA1 and CA2/3a; (2) OPRD1 probe number and cell expression in CA1, CA2/3a and CA3b and the dentate gyrus; and (3) OPRK1-expressing interneurons in the dentate hilus. Also, CIS males compared to US males had elevated: (1) PDYN expression in granule cells; (2) OPRD1 probe and interneuron expression in CA2/3a; (3) OPRM1 in granule cells; and (4) OPRK1 interneuron expression in CA2/3a. The sex-specific changes in hippocampal opioid gene expression may impact network properties and synaptic plasticity processes that may contribute to the attenuation of oxycodone CPP in CIS males.
Collapse
Affiliation(s)
- Megan A Johnson
- Feil Family Brain and Mind Research Institute, Weill Cornell Medicine, New York, New York, USA
| | - Natalina H Contoreggi
- Feil Family Brain and Mind Research Institute, Weill Cornell Medicine, New York, New York, USA
| | - Joshua F Kogan
- Harold and Margaret Milliken Hatch Laboratory of Neuroendocrinology, The Rockefeller University, New York, New York, USA
| | - Matthew Bryson
- Harold and Margaret Milliken Hatch Laboratory of Neuroendocrinology, The Rockefeller University, New York, New York, USA
| | - Batsheva R Rubin
- Feil Family Brain and Mind Research Institute, Weill Cornell Medicine, New York, New York, USA
| | - Jason D Gray
- Harold and Margaret Milliken Hatch Laboratory of Neuroendocrinology, The Rockefeller University, New York, New York, USA
| | - Mary Jeanne Kreek
- The Laboratory of the Biology of Addictive Diseases, The Rockefeller University, New York, New York, USA
| | - Bruce S McEwen
- Harold and Margaret Milliken Hatch Laboratory of Neuroendocrinology, The Rockefeller University, New York, New York, USA
| | - Teresa A Milner
- Feil Family Brain and Mind Research Institute, Weill Cornell Medicine, New York, New York, USA.,Harold and Margaret Milliken Hatch Laboratory of Neuroendocrinology, The Rockefeller University, New York, New York, USA
| |
Collapse
|
12
|
Rubin BR, Johnson MA, Berman JM, Goldstein E, Pertsovskaya V, Zhou Y, Contoreggi NH, Dyer AG, Gray JD, Waters EM, McEwen BS, Kreek MJ, Milner TA. Sex and chronic stress alter delta opioid receptor distribution within rat hippocampal CA1 pyramidal cells following behavioral challenges. Neurobiol Stress 2020; 13:100236. [PMID: 33344692 PMCID: PMC7739044 DOI: 10.1016/j.ynstr.2020.100236] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2020] [Revised: 06/13/2020] [Accepted: 06/15/2020] [Indexed: 12/17/2022] Open
Abstract
Following oxycodone (Oxy) conditioned place preference (CPP), delta opioid receptors (DORs) differentially redistribute in hippocampal CA3 pyramidal cells in female and male rats in a manner that would promote plasticity and opioid-associative learning processes. However, following chronic immobilization stress (CIS), males do not acquire Oxy-CPP and the trafficking of DORs in CA3 pyramidal neurons is attenuated. Here, we examined the subcellular distribution of DORs in CA1 pyramidal cells using electron microscopy in these same cohorts. CPP Saline (Sal)-females compared to Sal-males have more cytoplasmic and total DORs in dendrites and more DOR-labeled spines. Following Oxy-CPP, DORs redistribute from near-plasmalemma pools in dendrites to spines in males. CIS Control females compared to control males have more near-plasmalemmal dendritic DORs. Following CIS, dendritic DORs are elevated in the cytoplasm in females and near-plasmalemma in males. CIS plus CPP CIS Sal-females compared to CIS Sal-males have more DORs on the plasmalemma of dendrites and in spines. After Oxy, the distribution of DORs does not change in either females or males. Conclusion Following Oxy-CPP, DORs within CA1 pyramidal cells remain positioned in naïve female rats to enhance sensitivity to DOR agonists and traffic to dendritic spines in naïve males where they can promote plasticity processes. Following CIS plus behavioral enrichment, DORs are redistributed within CA1 pyramidal cells in females in a manner that could enhance sensitivity to DOR agonists. Conversely, CIS plus behavioral enrichment does not alter DORs in CA1 pyramidal cells in males, which may contribute to their diminished capacity to acquire Oxy-CPP.
Collapse
Affiliation(s)
- Batsheva R. Rubin
- Feil Family Brain and Mind Research Institute, Weill Cornell Medicine, 407 East 61st Street, New York, NY, 10065, United States
| | - Megan A. Johnson
- Feil Family Brain and Mind Research Institute, Weill Cornell Medicine, 407 East 61st Street, New York, NY, 10065, United States
| | - Jared M. Berman
- Feil Family Brain and Mind Research Institute, Weill Cornell Medicine, 407 East 61st Street, New York, NY, 10065, United States
| | - Ellen Goldstein
- Feil Family Brain and Mind Research Institute, Weill Cornell Medicine, 407 East 61st Street, New York, NY, 10065, United States
| | - Vera Pertsovskaya
- Feil Family Brain and Mind Research Institute, Weill Cornell Medicine, 407 East 61st Street, New York, NY, 10065, United States
| | - Yan Zhou
- The Laboratory of the Biology of Addictive Diseases, The Rockefeller University, 1230 York Avenue, New York, NY, 10065, United States
| | - Natalina H. Contoreggi
- Feil Family Brain and Mind Research Institute, Weill Cornell Medicine, 407 East 61st Street, New York, NY, 10065, United States
| | - Andreina G. Dyer
- Feil Family Brain and Mind Research Institute, Weill Cornell Medicine, 407 East 61st Street, New York, NY, 10065, United States
| | - Jason D. Gray
- Harold and Margaret Milliken Hatch Laboratory of Neuroendocrinology, The Rockefeller University, 1230 York Avenue, New York, NY, 10065, United States
| | - Elizabeth M. Waters
- Harold and Margaret Milliken Hatch Laboratory of Neuroendocrinology, The Rockefeller University, 1230 York Avenue, New York, NY, 10065, United States
| | - Bruce S. McEwen
- Harold and Margaret Milliken Hatch Laboratory of Neuroendocrinology, The Rockefeller University, 1230 York Avenue, New York, NY, 10065, United States
| | - Mary Jeanne Kreek
- The Laboratory of the Biology of Addictive Diseases, The Rockefeller University, 1230 York Avenue, New York, NY, 10065, United States
| | - Teresa A. Milner
- Feil Family Brain and Mind Research Institute, Weill Cornell Medicine, 407 East 61st Street, New York, NY, 10065, United States
- Harold and Margaret Milliken Hatch Laboratory of Neuroendocrinology, The Rockefeller University, 1230 York Avenue, New York, NY, 10065, United States
- Corresponding author. Feil Family Brain and Mind Research Institute, Weill Cornell Medicine, 407 East 61st Street, RM 307 New York, NY 10065, United States.
| |
Collapse
|
13
|
Ashirova E, Contoreggi NH, Johnson MA, Al-Khayat FJ, Calcano GA, Rubin BR, O'Cinneide EM, Zhang Y, Zhou Y, Gregoire L, McEwen BS, Kreek MJ, Milner TA. Oxycodone injections not paired with conditioned place preference have little effect on the hippocampal opioid system in female and male rats. Synapse 2020; 75:e22182. [PMID: 32654187 DOI: 10.1002/syn.22182] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2020] [Revised: 06/28/2020] [Accepted: 07/03/2020] [Indexed: 12/12/2022]
Abstract
Oxycodone (Oxy) conditioned place preference (CPP) in Sprague Dawley rats results in sex-specific alterations in hippocampal opioid circuits in a manner that facilitates opioid-associative learning processes, particularly in females. Here, we examined if Oxy (3 mg/kg, I.P.) or saline (Sal) injections not paired with behavioral testing similarly affect the hippocampal opioid system. Sal-injected females compared to Sal-injected males had: (1) higher densities of cytoplasmic delta opioid receptors (DOR) in GABAergic hilar dendrites suggesting higher baseline reserve DOR pools and (2) elevated phosphorylated DOR levels, but lower phosphorylated mu opioid receptor (MOR) levels in CA3a suggesting that the baseline pools of activated opioid receptors vary in females and males. In contrast to CPP studies, Oxy-injections in the absence of behavioral tests resulted in few changes in the hippocampal opioid system in either females or males. Specifically, Oxy-injected males compared to Sal-injected males had fewer DORs near the plasma membrane of CA3 pyramidal cell dendrites and in CA3 dendritic spines contacted by mossy fibers, and lower pMOR levels in CA3a. Oxy-injected females compared to Sal-injected females had higher total DORs in GABAergic dendrites and lower total MORs in parvalbumin-containing dendrites. Thus, unlike Oxy CPP, Oxy-injections redistributed opioid receptors in hippocampal neurons in a manner that would either decrease (males) or not alter (females) excitability and plasticity processes. These results indicate that the majority of changes within hippocampal opioid circuits that would promote opioid-associative learning processes in both females and males do not occur with Oxy administration alone, and instead must be paired with CPP.
Collapse
Affiliation(s)
- Elina Ashirova
- Feil Family Brain and Mind Research Institute, Weill Cornell Medicine, New York, NY, USA
| | - Natalina H Contoreggi
- Feil Family Brain and Mind Research Institute, Weill Cornell Medicine, New York, NY, USA
| | - Megan A Johnson
- Feil Family Brain and Mind Research Institute, Weill Cornell Medicine, New York, NY, USA
| | - Fatima J Al-Khayat
- Weill Cornell Medicine in Qatar, Qatar Foundation, Education City, Doha, Qatar
| | - Gabriela A Calcano
- Feil Family Brain and Mind Research Institute, Weill Cornell Medicine, New York, NY, USA
| | - Batsheva R Rubin
- Feil Family Brain and Mind Research Institute, Weill Cornell Medicine, New York, NY, USA
| | - Emma M O'Cinneide
- Harold and Margaret Milliken Hatch Laboratory of Neuroendocrinology, The Rockefeller University, New York, NY, USA
| | - Yong Zhang
- The Laboratory of the Biology of Addictive Diseases, The Rockefeller University, New York, NY, USA
| | - Yan Zhou
- The Laboratory of the Biology of Addictive Diseases, The Rockefeller University, New York, NY, USA
| | - Lennox Gregoire
- Feil Family Brain and Mind Research Institute, Weill Cornell Medicine, New York, NY, USA
| | - Bruce S McEwen
- Harold and Margaret Milliken Hatch Laboratory of Neuroendocrinology, The Rockefeller University, New York, NY, USA
| | - Mary Jeanne Kreek
- The Laboratory of the Biology of Addictive Diseases, The Rockefeller University, New York, NY, USA
| | - Teresa A Milner
- Feil Family Brain and Mind Research Institute, Weill Cornell Medicine, New York, NY, USA
| |
Collapse
|