1
|
Zaback M, Villemer S, Missen KJ, Inglis JT, Carpenter MG. Habituation of vestibular-evoked balance responses after repeated exposure to a postural threat. J Physiol 2025; 603:1567-1587. [PMID: 39982119 PMCID: PMC11908485 DOI: 10.1113/jp287391] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2024] [Accepted: 01/06/2025] [Indexed: 02/22/2025] Open
Abstract
Vestibular-evoked balance responses are facilitated when faced with threats to stability. However, the extent to which these sensorimotor adaptations covary with changes in emotional and autonomic state remains unclear. This study repeatedly exposed individuals to the same postural threat while vestibular-motor responses were probed using stochastic vestibular stimulation (SVS; 2-25 Hz). This allowed emotional and autonomic state to be manipulated within the same threat environment to determine if vestibular-evoked balance responses are coupled with the emotional/autonomic changes induced by the threat or are facilitated in a strictly context-dependent manner. Twenty-three young adults stood with their head turned 90° while receiving SVS at LOW (0.8 m above ground, away from edge) and HIGH (3.2 m above ground, at edge) conditions. LOW trials were completed before and after a block of 10 HIGH trials. Ground reaction forces (GRFs) and plantar flexor (soleus and medial gastrocnemius (MG)) EMG were recorded. Vestibular-evoked responses recorded from GRFs and EMG were quantified in terms of signal coupling (coherence and cumulant density) and gain, and emotional and autonomic state were assessed from self-reports and electrodermal activity. Vestibular-evoked balance responses were facilitated with initial threat exposure. After repeated exposure, there was significant habituation of the emotional response to threat, which was accompanied by reductions in vestibular-evoked balance responses, most notably for GRFs and MG-EMG. This suggests that threat-related changes in vestibular-motor function are tightly coupled with the emotional and autonomic changes induced by the threat, and not an invariant response to context-specific features of the threat. KEY POINTS: Balance corrective responses mediated through vestibular-motor pathways are facilitated when stability is threatened; however, the extent to which these sensorimotor adaptations covary with changes in emotional state remains unclear. By having young adults repeatedly stand at the edge of an elevated surface, this study examined how vestibular-evoked balance responses, probed using stochastic vestibular stimulation and recorded from ground reaction forces and plantar flexor EMG, changed alongside estimates of emotional state. Vestibular-evoked responses were facilitated when individuals were first exposed to the postural threat, but demonstrated marked habituation alongside estimates of emotional state after repeated exposure. This suggests that threat-related changes in vestibular-motor function are coupled to the emotional response to threat, and are not an invariant response to context-specific features of the threat. These changes in vestibular-motor function are likely part of a multisensory adaptation process that primes the nervous system to respond to sudden destabilizing forces when fearful of falling.
Collapse
Affiliation(s)
- Martin Zaback
- School of KinesiologyUniversity of British ColumbiaVancouverBCCanada
- Department of Health and Rehabilitation SciencesTemple UniversityPhiladelphiaPAUSA
- Department of BioengineeringTemple UniversityPhiladelphiaPAUSA
| | - Solenne Villemer
- School of KinesiologyUniversity of British ColumbiaVancouverBCCanada
| | - Kyle J. Missen
- School of KinesiologyUniversity of British ColumbiaVancouverBCCanada
- International Collaboration on Repair Discoveries (ICORD)University of British ColumbiaVancouverBCCanada
| | - J. Timothy Inglis
- School of KinesiologyUniversity of British ColumbiaVancouverBCCanada
- International Collaboration on Repair Discoveries (ICORD)University of British ColumbiaVancouverBCCanada
- Djavad Mowafaghian Centre for Brain HealthUniversity of British ColumbiaVancouverBCCanada
| | - Mark G. Carpenter
- School of KinesiologyUniversity of British ColumbiaVancouverBCCanada
- International Collaboration on Repair Discoveries (ICORD)University of British ColumbiaVancouverBCCanada
- Djavad Mowafaghian Centre for Brain HealthUniversity of British ColumbiaVancouverBCCanada
| |
Collapse
|
2
|
Parr JVV, Mills R, Kal E, Bronstein AM, Ellmers TJ. A "Conscious" Loss of Balance: Directing Attention to Movement Can Impair the Cortical Response to Postural Perturbations. J Neurosci 2024; 44:e0810242024. [PMID: 39358045 PMCID: PMC11604137 DOI: 10.1523/jneurosci.0810-24.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2024] [Revised: 08/20/2024] [Accepted: 09/26/2024] [Indexed: 10/04/2024] Open
Abstract
"Trying too hard" can interfere with skilled movement, such as sports and music playing. Postural control can similarly suffer when conscious attention is directed toward it ("conscious movement processing"; CMP). However, the neural mechanisms through which CMP influences balance remain poorly understood. We explored the effects of CMP on electroencephalographic (EEG) perturbation-evoked cortical responses and subsequent balance performance. Twenty healthy young adults (age = 25.1 ± 5 years; 10 males and 10 females) stood on a force plate-embedded moveable platform while mobile EEG was recorded. Participants completed two blocks of 50 discrete perturbations, containing an even mix of slower (186 mm/s peak velocity) and faster (225 mm/s peak velocity) perturbations. One block was performed under conditions of CMP (i.e., instructions to consciously control balance), while the other was performed under "Control" conditions with no additional instructions. For both slow and fast perturbations, CMP resulted in significantly smaller cortical N1 signals (a perturbation-evoked potential localized to the supplementary motor area) and lower sensorimotor beta EEG activity 200-400 ms postperturbation. Significantly greater peak velocities of the center of pressure (i.e., greater postural instability) were also observed during the CMP condition. Our findings provide the first evidence that disruptions to postural control during CMP may be a consequence of insufficient cortical activation relevant for balance (i.e., insufficient cortical N1 responses followed by enhanced beta suppression). We propose that conscious attempts to minimize postural instability through CMP acts as a cognitive dual-task that dampens the sensitivity of the sensorimotor system for future losses of balance.
Collapse
Affiliation(s)
- Johnny V V Parr
- Manchester Metropolitan University Institute of Sport, Manchester M1 7EL, United Kingdom
| | - Richard Mills
- Manchester Metropolitan University Institute of Sport, Manchester M1 7EL, United Kingdom
| | - Elmar Kal
- Department of Health Sciences, College of Health, Medicine, and Life Sciences, Centre for Cognitive and Clinical Neuroscience, Brunel University London, Uxbridge UB8 3PH, United Kingdom
| | - Adolfo M Bronstein
- Department of Brain Sciences, Centre for Vestibular Neurology, Imperial College, London W6 8RP, United Kingdom
| | - Toby J Ellmers
- Department of Brain Sciences, Centre for Vestibular Neurology, Imperial College, London W6 8RP, United Kingdom
| |
Collapse
|
3
|
Hill MW, Johnson E, Ellmers TJ. The influence of false interoceptive feedback on emotional state and balance responses to height-induced postural threat. Biol Psychol 2024; 189:108803. [PMID: 38663458 DOI: 10.1016/j.biopsycho.2024.108803] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2023] [Revised: 03/01/2024] [Accepted: 04/18/2024] [Indexed: 06/19/2024]
Abstract
Postural threat elicits a robust emotional response (e.g., fear and anxiety about falling), with concomitant modifications in balance. Recent theoretical accounts propose that emotional responses to postural threats are manifested, in part, from the conscious monitoring and appraisal of bodily signals ('interoception'). Here, we empirically probe the role of interoception in shaping emotional responses to a postural threat by experimentally manipulating interoceptive cardiac feedback. Sixty young adults completed a single 60-s trial under the following conditions: Ground (no threat) without heart rate (HR) feedback, followed by Threat (standing on the edge of a raised surface), during which participants received either false heart rate feedback (either slow [n = 20] or fast [n = 20] HR feedback) or no feedback (n = 20). Participants provided with false fast HR feedback during postural threat felt more fearful, reported feeling less stable, and rated the task more difficult than participants who did not receive HR feedback, or those who received false slow HR feedback (Cohen's d effect size = 0.79 - 1.78). However, behavioural responses did not significantly differ across the three groups. When compared to the no HR feedback group, false slow HR feedback did not significantly affect emotional or behavioural responses to the postural threat. These observations provide the first experimental evidence for emerging theoretical accounts describing the role of interoception in the generation of emotional responses to postural threats.
Collapse
Affiliation(s)
- Mathew W Hill
- Centre for Physical Activity, Sport and Exercise Sciences, Coventry University, Warwickshire, United Kingdom.
| | - Ellie Johnson
- Centre for Physical Activity, Sport and Exercise Sciences, Coventry University, Warwickshire, United Kingdom
| | - Toby J Ellmers
- Department of Brain Sciences, Imperial College London, London, United Kingdom
| |
Collapse
|
4
|
Hall KJ, Van Ooteghem K, McIlroy WE. Emotional state as a modulator of autonomic and somatic nervous system activity in postural control: a review. Front Neurol 2023; 14:1188799. [PMID: 37719760 PMCID: PMC10500443 DOI: 10.3389/fneur.2023.1188799] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2023] [Accepted: 08/07/2023] [Indexed: 09/19/2023] Open
Abstract
Advances in our understanding of postural control have highlighted the need to examine the influence of higher brain centers in the modulation of this complex function. There is strong evidence of a link between emotional state, autonomic nervous system (ANS) activity and somatic nervous system (somatic NS) activity in postural control. For example, relationships have been demonstrated between postural threat, anxiety, fear of falling, balance confidence, and physiological arousal. Behaviorally, increased arousal has been associated with changes in velocity and amplitude of postural sway during quiet standing. The potential links between ANS and somatic NS, observed in control of posture, are associated with shared neuroanatomical connections within the central nervous system (CNS). The influence of emotional state on postural control likely reflects the important influence the limbic system has on these ANS/somatic NS control networks. This narrative review will highlight several examples of behaviors which routinely require coordination between the ANS and somatic NS, highlighting the importance of the neurofunctional link between these systems. Furthermore, we will extend beyond the more historical focus on threat models and examine how disordered/altered emotional state and ANS processing may influence postural control and assessment. Finally, this paper will discuss studies that have been important in uncovering the modulatory effect of emotional state on postural control including links that may inform our understanding of disordered control, such as that observed in individuals living with Parkinson's disease and discuss methodological tools that have the potential to advance understanding of this complex relationship.
Collapse
Affiliation(s)
- Karlee J. Hall
- Department of Kinesiology and Health Sciences, University of Waterloo, Waterloo, ON, Canada
| | | | | |
Collapse
|
5
|
Danneels M, Van Hecke R, Leyssens L, van de Berg R, Dhooge I, Cambier D, Delrue S, Van Rompaey V, Maes L. The impact of vestibular function on cognitive-motor interference: a case-control study on dual-tasking in persons with bilateral vestibulopathy and normal hearing. Sci Rep 2023; 13:13772. [PMID: 37612342 PMCID: PMC10447548 DOI: 10.1038/s41598-023-40465-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2022] [Accepted: 08/10/2023] [Indexed: 08/25/2023] Open
Abstract
Bilateral vestibulopathy (BV) is a chronic vestibular disorder, characterized by bilaterally absent or significantly impaired vestibular function. Symptoms typically include, but are not limited to, unsteadiness and movement-induced blurred vision (oscillopsia). This prospective case-control study aimed to elucidate the impact of BV on cognitive and motor performance and on cognitive-motor interference. Cognitive and motor performance, as well as cognitive-motor interference were measured in persons with BV and normal hearing using the 2BALANCE dual-task protocol. The experimental group was matched to a healthy control group based on age, sex, and educational level. The 2BALANCE protocol comprises cognitive tests assessing visuospatial memory, mental rotation, visual and auditory response inhibition, visual and auditory working memory, and processing speed. The cognitive tests were performed in single-task condition (while seated), and in dual-task condition (during a static and a dynamic motor task). The static motor task consisted of balancing on a force platform with foam pad. The dynamic motor task consisted of walking at a self-selected speed. These motor tasks were also performed in single-task condition. A generalized estimating equations model was used to investigate group differences for all cognitive and motor outcome measures. The estimated marginal means, as well as the odds ratios (OR), and their 95% confidence intervals (CI) were calculated. For the backward digit recall test, a baseline measurement was performed and analyzed using a student-t test. A total of 22 patients with BV and normal hearing and 22 healthy control subjects were assessed [mean age (SD), BV = 53.66 (13.35) and HC = 53.21 (13.35), 68% male]. The BV group had poorer mental rotation skills in single-task condition, compared to the control group [odds ratio (OR) = 2.30, confidence interval (CI) = 1.12-4.73, P = 0.024]. Similarly, auditory and visual working memory were also poorer in the BV group in single-task condition (P = 0.028 and P = 0.003, respectively). The BV group also performed poorer on the mental rotation task and the visual response inhibition task in dual-task condition (OR = 2.96, CI = 1.57-5.59, P < 0.001 and OR = 1.08, CI = 1.01-1.16, P = 0.032, respectively). Additionally, an interaction effect, indicating increased cognitive-motor interference in the BV group, was observed for mental rotation, response inhibition, and auditory working memory (P = 0.003 to 0.028). All static motor outcome parameters indicated more postural sway in the BV group compared to the control group for all test conditions (P < 0.001 to 0.026). No group differences were noted for the dynamic motor task. These findings suggest a link between vestibular function and cognitive performance, as well as a greater interference between cognitive and motor performance in BV, compared to healthy controls.
Collapse
Affiliation(s)
- Maya Danneels
- Department of Rehabilitation Sciences, Ghent University, Corneel Heymanslaan 10, 9000, Ghent, Belgium.
| | - Ruth Van Hecke
- Department of Rehabilitation Sciences, Ghent University, Corneel Heymanslaan 10, 9000, Ghent, Belgium
| | - Laura Leyssens
- Department of Rehabilitation Sciences, Ghent University, Corneel Heymanslaan 10, 9000, Ghent, Belgium
| | - Raymond van de Berg
- Department of Otorhinolaryngology and Head and Neck Surgery, Maastricht University Medical Center, Maastricht, The Netherlands
- Faculty of Physics, Tomsk State Research University, Tomsk, Russia
| | - Ingeborg Dhooge
- Department of Otorhinolaryngology, Ghent University Hospital, Ghent, Belgium
- Department of Head and Skin, Ghent University, Ghent, Belgium
| | - Dirk Cambier
- Department of Rehabilitation Sciences, Ghent University, Corneel Heymanslaan 10, 9000, Ghent, Belgium
| | - Stefan Delrue
- Department of Otorhinolaryngology and Head and Neck Surgery, Sint Lucas Hospital, Ghent, Belgium
| | - Vincent Van Rompaey
- Department of Otorhinolaryngology and Head and Neck Surgery, Antwerp University Hospital, Edegem, Belgium
- Faculty of Medicine and Health Sciences, University of Antwerp, Antwerp, Belgium
| | - Leen Maes
- Department of Rehabilitation Sciences, Ghent University, Corneel Heymanslaan 10, 9000, Ghent, Belgium
- Department of Otorhinolaryngology, Ghent University Hospital, Ghent, Belgium
| |
Collapse
|
6
|
Ellmers TJ, Wilson MR, Kal EC, Young WR. The perceived control model of falling: developing a unified framework to understand and assess maladaptive fear of falling. Age Ageing 2023; 52:afad093. [PMID: 37466642 PMCID: PMC10355179 DOI: 10.1093/ageing/afad093] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2022] [Indexed: 07/20/2023] Open
Abstract
BACKGROUND fear of falling is common in older adults and can have a profound influence on a variety of behaviours that increase fall risk. However, fear of falling can also have potentially positive outcomes for certain individuals. Without progressing our understanding of mechanisms underlying these contrasting outcomes, it is difficult to clinically manage fear of falling. METHODS this paper first summarises recent findings on the topic of fear of falling, balance and fall risk-including work highlighting the protective effects of fear. Specific focus is placed on describing how fear of falling influences perceptual, cognitive and motor process in ways that might either increase or reduce fall risk. Finally, it reports the development and validation of a new clinical tool that can be used to assess the maladaptive components of fear of falling. RESULTS we present a new conceptual framework-the Perceived Control Model of Falling-that describes specific mechanisms through which fear of falling can influence fall risk. The key conceptual advance is the identification of perceived control over situations that threaten one's balance as the crucial factor mediating the relationship between fear and increased fall risk. The new 4-item scale that we develop-the Updated Perceived Control over Falling Scale (UP-COF)-is a valid and reliable tool to clinically assess perceived control. CONCLUSION this new conceptualisation and tool (UP-COF) allows clinicians to identify individuals for whom fear of falling is likely to increase fall risk, and target specific underlying maladaptive processes such as low perceived control.
Collapse
Affiliation(s)
| | - Mark R Wilson
- Department of Public Health and Sports Sciences, University of Exeter, Exeter, UK
| | - Elmar C Kal
- Centre for Cognitive Neuroscience, Brunel University London, London, UK
| | - William R Young
- Centre for Cognitive Neuroscience, Brunel University London, London, UK
- Department of Public Health and Sports Sciences, University of Exeter, Exeter, UK
| |
Collapse
|
7
|
Fischer OM, Missen KJ, Tokuno CD, Carpenter MG, Adkin AL. Postural threat increases sample entropy of postural control. Front Neurol 2023; 14:1179237. [PMID: 37342783 PMCID: PMC10277644 DOI: 10.3389/fneur.2023.1179237] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2023] [Accepted: 05/12/2023] [Indexed: 06/23/2023] Open
Abstract
Introduction Postural threat elicits modifications to standing balance. However, the underlying neural mechanism(s) responsible remain unclear. Shifts in attention focus including directing more attention to balance when threatened may contribute to the balance changes. Sample entropy, a measure of postural sway regularity with lower values reflecting less automatic and more conscious control of balance, may support attention to balance as a mechanism to explain threat-induced balance changes. The main objectives were to investigate the effects of postural threat on sample entropy, and the relationships between threat-induced changes in physiological arousal, perceived anxiety, attention focus, sample entropy, and traditional balance measures. A secondary objective was to explore if biological sex influenced these relationships. Methods Healthy young adults (63 females, 42 males) stood quietly on a force plate without (No Threat) and with (Threat) the expectation of receiving a postural perturbation (i.e., forward/backward support surface translation). Mean electrodermal activity and anterior-posterior centre of pressure (COP) sample entropy, mean position, root mean square, mean power frequency, and power within low (0-0.05 Hz), medium (0.5-1.8 Hz), and high-frequency (1.8-5 Hz) components were calculated for each trial. Perceived anxiety and attention focus to balance, task objectives, threat-related stimuli, self-regulatory strategies, and task-irrelevant information were rated after each trial. Results and Discussion Significant threat effects were observed for all measures, except low-frequency sway. Participants were more physiologically aroused, more anxious, and directed more attention to balance, task objectives, threat-related stimuli, and self-regulatory strategies, and less to task-irrelevant information in the Threat compared to No Threat condition. Participants also increased sample entropy, leaned further forward, and increased the amplitude and frequency of COP displacements, including medium and high-frequency sway, when threatened. Males and females responded in the same way when threatened, except males had significantly larger threat-induced increases in attention to balance and high-frequency sway. A combination of sex and threat-induced changes in physiological arousal, perceived anxiety, and attention focus accounted for threat-induced changes in specific traditional balance measures, but not sample entropy. Increased sample entropy when threatened may reflect a shift to more automatic control. Directing more conscious control to balance when threatened may act to constrain these threat-induced automatic changes to balance.
Collapse
Affiliation(s)
- Olivia M. Fischer
- Department of Kinesiology, Brock University, St. Catharines, ON, Canada
| | - Kyle J. Missen
- School of Kinesiology, University of British Columbia, Vancouver, BC, Canada
| | - Craig D. Tokuno
- Department of Kinesiology, Brock University, St. Catharines, ON, Canada
| | - Mark G. Carpenter
- School of Kinesiology, University of British Columbia, Vancouver, BC, Canada
- Djavad Mowafaghian Centre for Brain Health, University of British Columbia, Vancouver, BC, Canada
- International Collaboration on Repair Discoveries, University of British Columbia, Vancouver, BC, Canada
| | - Allan L. Adkin
- Department of Kinesiology, Brock University, St. Catharines, ON, Canada
| |
Collapse
|
8
|
Zaback M, Adkin AL, Chua R, Timothy Inglis J, Carpenter MG. Facilitation and habituation of cortical and subcortical control of standing balance following repeated exposure to a height-related postural threat. Neuroscience 2022; 487:8-25. [DOI: 10.1016/j.neuroscience.2022.01.012] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2021] [Revised: 12/23/2021] [Accepted: 01/17/2022] [Indexed: 01/21/2023]
|
9
|
Danneels M, Hecke RV, Leyssens L, Cambier D, van de Berg R, Van de Velde L, Rompaey VV, Maes L. 2BALANCE: Test-retest reliability of a cognitive-motor dual-task protocol. J Vestib Res 2021; 32:341-353. [PMID: 34974447 DOI: 10.3233/ves-210069] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
PURPOSE Aside from typical symptoms such as dizziness and vertigo, persons with vestibular disorders often have cognitive and motor problems. These symptoms have been assessed in single-task condition. However, dual-tasks assessing cognitive-motor interference might be an added value as they reflect daily life situations better. Therefore, the 2BALANCE protocol was developed. In the current study, the test-retest reliability of this protocol was assessed. METHODS The 2BALANCE protocol was performed twice in 20 healthy young adults with an in-between test interval of two weeks. Two motor tasks and five different cognitive tasks were performed in single and dual-task condition. Intraclass correlation coefficients (ICC), the standard error of measurement, and the minimal detectable difference were calculated. RESULTS All cognitive tasks, with the exception of the mental rotation task, had favorable reliability results (0.26≤ICC≤0.91). The dynamic motor task indicated overall substantial reliability values in all conditions (0.67≤ICC≤0.98). Similar results were found for the static motor task during dual-tasking (0.50≤ICC≤0.92), but were slightly lower in single-task condition (-0.26≤ICC≤0.75). CONCLUSIONS The 2BALANCE protocol was overall consistent across trials. However, the mental rotation task showed lowest reliability values.
Collapse
Affiliation(s)
- Maya Danneels
- Ghent University, Department of Rehabilitation Sciences, Ghent, Belgium
| | - Ruth Van Hecke
- Ghent University, Department of Rehabilitation Sciences, Ghent, Belgium
| | - Laura Leyssens
- Ghent University, Department of Rehabilitation Sciences, Ghent, Belgium
| | - Dirk Cambier
- Ghent University, Department of Rehabilitation Sciences, Ghent, Belgium
| | - Raymond van de Berg
- Maastricht University Medical Center, Department of Otorhinolaryngology and Head and Neck Surgery, Maastricht, Netherlands.,Faculty of Physics, Tomsk State Research University, Tomsk, Russia
| | | | - Vincent Van Rompaey
- Department of Otorhinolaryngology and Head & Neck Surgery, Antwerp University Hospital, Edegem, Belgium.,Faculty of Medicine and Health Sciences, University of Antwerp, Antwerp, Belgium
| | - Leen Maes
- Ghent University, Department of Rehabilitation Sciences, Ghent, Belgium.,Ghent University Hospital, Department of Otorhinolaryngology, Ghent, Belgium
| |
Collapse
|
10
|
Lubetzky AV, Aharoni MMH, Arie L, Krasovsky T. People with persistent postural-perceptual dizziness demonstrate altered postural strategies in complex visual and cognitive environments. J Vestib Res 2021; 31:505-517. [PMID: 33749625 DOI: 10.3233/ves-201552] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
BACKGROUND People with PPPD report imbalance, increase in symptoms and impaired function within complex visual environments, but understanding of the mechanism for these behaviors is still lacking. OBJECTIVE To investigate postural control in PPPD we compared changes in center of pressure (COP) and head kinematics of people with PPPD (N = 22) and healthy controls (N = 20) in response to different combinations of visual and cognitive perturbations during a challenging balance task. METHODS Participants stood in a tandem position. Static or moving stars (0.2 Hz, 5 mm or 32 mm amplitude, anterior-posterior direction) were displayed through a head-mounted display (HTC Vive). On half the trials, participants performed a serial-3 subtraction task. We measured medio-lateral and anterior-posterior path and acceleration of COP and head. RESULTS Controls significantly increased all COP and head parameters with the cognitive task whereas PPPD increased only COP ML path and acceleration. Only controls significantly increased head anterior-posterior & medio-lateral acceleration with moving visual load. Cognitive task performance was similar between groups. CONCLUSIONS We observed altered postural strategies in people with PPPD, in the form of reduced movement with challenge, particularly around the head segment. The potential of this simple and portable head-mounted display setup for differential diagnosis of vestibular disorders should be further explored.
Collapse
Affiliation(s)
- Anat V Lubetzky
- Department of Physical Therapy, Steinhardt School of Culture Education and Human Development, New York University, New York, NY, USA
| | | | - Liraz Arie
- Department of Physical Therapy, Steinhardt School of Culture Education and Human Development, New York University, New York, NY, USA
| | - Tal Krasovsky
- Department of Physical Therapy, University of Haifa, Haifa, Israel.,Pediatric Rehabilitation Department, Sheba Medical Center, Ramat Gan, Israel
| |
Collapse
|
11
|
Consciously processing balance leads to distorted perceptions of instability in older adults. J Neurol 2020; 268:1374-1384. [PMID: 33141249 PMCID: PMC7990754 DOI: 10.1007/s00415-020-10288-6] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2020] [Revised: 10/15/2020] [Accepted: 10/20/2020] [Indexed: 12/13/2022]
Abstract
Background Persistent dizziness without a clear cause is common in older adults. We explored whether an anxiety-driven preoccupation with consciously processing balance may underpin the distorted perceptions of unsteadiness that characterises ‘unexplained’ dizziness in older adults. Methods We experimentally induced anxiety about losing one’s balance (through a postural threat manipulation) in a cohort of asymptomatic older adults and evaluated associated changes in perceived stability, conscious movement processing and postural control. These outcomes were also assessed when performing a distracting cognitive task designed to prevent anxiety-related conscious movement processing, in addition to during baseline conditions (ground level). Results Despite a lack of increase in postural sway amplitude (p = 0.316), participants reported reductions in perceived stability during postural threat compared to baseline (p < 0.001). A multiple linear regression revealed that anxiety-related conscious movement processing independently predicted perceptions of instability during this condition (p = 0.006). These changes were accompanied by alterations in postural control previously associated with functional dizziness, namely high-frequency postural sway and disrupted interaction between open- and closed-loop postural control (ps < 0.014). While the distraction task successfully reduced conscious processing (p = 0.012), leading to greater perceived stability (p = 0.010), further increases in both postural sway frequency (p = 0.002) and dominance of closed-loop control (p = 0.029) were observed. Conclusion These findings implicate the role of conscious movement processing in the formation of distorted perceptions of unsteadiness, suggesting that such perceptions may be modifiable by reducing an over-reliance on conscious processes to regulate balance.
Collapse
|
12
|
Acrophobia and visual height intolerance: advances in epidemiology and mechanisms. J Neurol 2020; 267:231-240. [PMID: 32444982 PMCID: PMC7718183 DOI: 10.1007/s00415-020-09805-4] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2020] [Revised: 03/16/2020] [Accepted: 03/18/2020] [Indexed: 12/24/2022]
Abstract
Historical descriptions of fear at heights date back to Chinese and Roman antiquity. Current definitions distinguish between three different states of responses to height exposure: a physiological height imbalance that results from an impaired visual control of balance, a more or less distressing visual height intolerance, and acrophobia at the severest end of the spectrum. Epidemiological studies revealed a lifetime prevalence of visual height intolerance including acrophobia in 28% of adults (32% in women; 25% in men) and 34% among prepubertal children aged 8–10 years without gender preponderance. Visual height intolerance first occurring in adulthood usually persists throughout life, whereas an early manifestation in childhood usually shows a benign course with spontaneous relief within years. A high comorbidity was found with psychiatric disorders (e.g. anxiety and depressive syndromes) and other vertigo syndromes (e.g. vestibular migraine, Menière’s disease), but not with bilateral vestibulopathy. Neurophysiological analyses of stance, gait, and eye movements revealed an anxious control of postural stability, which entails a co-contraction of anti-gravity muscles that causes a general stiffening of the whole body including the oculomotor apparatus. Visual exploration is preferably reduced to fixation of the horizon. Gait alterations are characterized by a cautious slow walking mode with reduced stride length and increased double support phases. Anxiety is the critical factor in visual height intolerance and acrophobia leading to a motor behavior that resembles an atavistic primitive reflex of feigning death. The magnitude of anxiety and neurophysiological parameters of musculoskeletal stiffening increase with increasing height. They saturate, however, at about 20 m of absolute height above ground for postural symptoms and about 40 m for anxiety (70 m in acrophobic participants). With respect to management, a differentiation should be made between behavioral recommendations for prevention and therapy of the condition. Recommendations for coping strategies target behavioral advices on visual exploration, control of posture and locomotion as well as the role of cognition. Treatment of severely afflicted persons with distressing avoidance behavior mainly relies on behavioral therapy.
Collapse
|