1
|
Yamamura K, Kiriu N, Tomura S, Kawauchi S, Murakami K, Sato S, Saitoh D, Yokoe H. The cause of acute lethality of mice exposed to a laser-induced shock wave to the brainstem. Sci Rep 2022; 12:9490. [PMID: 35676447 PMCID: PMC9177849 DOI: 10.1038/s41598-022-13826-6] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2022] [Accepted: 05/27/2022] [Indexed: 11/10/2022] Open
Abstract
Air embolism is generally considered the most common cause of death within 1 h of a blast injury. Shock lung, respiratory arrest, and circulatory failure caused by vagal reflexes contribute to fatal injuries that lead to immediate death; however, informative mechanistic data are insufficient. Here we used a laser-induced shock wave (LISW) to determine the mechanism of acute fatalities associated with blast injuries. We applied the LISW to the forehead, upper neck, and thoracic dorsum of mice and examined their vital signs. Moreover, the LISW method is well suited for creating site-specific damage. Here we show that only mice with upper neck exposure, without damage elsewhere, died more frequently compared with the other injured groups. The peripheral oxygen saturation (SpO2) of the former mice significantly decreased for < 1 min [p < 0.05] but improved within 3 min. The LISW exposure to the upper neck region was the most lethal factor, affecting the respiratory function. Protecting the upper neck region may reduce fatalities that are related to blast injuries.
Collapse
Affiliation(s)
- Koji Yamamura
- Department of Oral and Maxillofacial Surgery, National Defense Medical College, Tokorozawa, Japan.
| | - Nobuaki Kiriu
- Division of Traumatology, Research Institute, National Defense Medical College, Tokorozawa, Japan.,Department of Traumatology and Critical Care Medicine, National Defense Medical College, Tokorozawa, Japan
| | - Satoshi Tomura
- Division of Traumatology, Research Institute, National Defense Medical College, Tokorozawa, Japan
| | - Satoko Kawauchi
- Division of Bioinformation and Therapeutic Systems, Research Institute, National Defense Medical College, Tokorozawa, Saitama, Japan
| | - Kaoru Murakami
- Department of Oral and Maxillofacial Surgery, National Defense Medical College, Tokorozawa, Japan
| | - Shunichi Sato
- Division of Bioinformation and Therapeutic Systems, Research Institute, National Defense Medical College, Tokorozawa, Saitama, Japan
| | - Daizoh Saitoh
- Division of Traumatology, Research Institute, National Defense Medical College, Tokorozawa, Japan.,Department of Traumatology and Critical Care Medicine, National Defense Medical College, Tokorozawa, Japan
| | - Hidetaka Yokoe
- Department of Oral and Maxillofacial Surgery, National Defense Medical College, Tokorozawa, Japan
| |
Collapse
|
2
|
Pouladian P, Yamauchi T, Wakida NM, Gomez-Godinez V, Berns MW, Preece D. Combining quantitative phase microscopy and laser-induced shockwave for the study of cell injury. BIOMEDICAL OPTICS EXPRESS 2021; 12:4020-4031. [PMID: 34457396 PMCID: PMC8367238 DOI: 10.1364/boe.427693] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/15/2021] [Revised: 05/22/2021] [Accepted: 05/24/2021] [Indexed: 06/13/2023]
Abstract
In this paper, we propose a new system for studying cellular injury. The system is a biophotonic work station that can generate Laser-Induced Shockwave (LIS) in the cell culture medium combined with a Quantitative Phase Microscope (QPM), enabling the real-time measurement of intracellular dynamics and quantitative changes in cellular thickness during the damage and recovery processes. In addition, the system is capable of Phase Contrast (PhC) and Differential Interference Contrast (DIC) microscopy. Our studies showed that QPM allows us to discern changes that otherwise would be unnoticeable or difficult to detect using phase or DIC imaging. As one application, this system enables the study of traumatic brain injury in vitro. Astrocytes are the most numerous cells in the central nervous system (CNS) and have been shown to play a role in the repair of damaged neuronal tissue. In this study, we use LIS to create a precise mechanical force in the culture medium at a controlled distance from astrocytes and measure the quantitative changes, in order of nanometers, in cell thickness. Experiments were performed in different cell culture media in order to evaluate the reproducibility of the experimental method.
Collapse
Affiliation(s)
- Pegah Pouladian
- Beckman Laser Institute, Department of Biomedical Engineering, University of California Irvine, CA 92617, USA
| | - Toyohiko Yamauchi
- Hamamatsu Photonics K. K., 5000 Hirakuchi, Hamakita, Shizuoka 434-8601, Japan
| | - Nicole M Wakida
- Beckman Laser Institute, Department of Biomedical Engineering, University of California Irvine, CA 92617, USA
| | - Veronica Gomez-Godinez
- Institute of Engineering in Medicine, University of California, San Diego, San Diego CA 92093, USA
| | - Michael W Berns
- Beckman Laser Institute, Department of Biomedical Engineering, University of California Irvine, CA 92617, USA
| | - Daryl Preece
- Beckman Laser Institute, Department of Biomedical Engineering, University of California Irvine, CA 92617, USA
| |
Collapse
|
3
|
Miyai K, Kawauchi S, Kato T, Yamamoto T, Mukai Y, Yamamoto T, Sato S. Axonal damage and behavioral deficits in rats with repetitive exposure of the brain to laser-induced shock waves: Effects of inter-exposure time. Neurosci Lett 2021; 749:135722. [PMID: 33592306 DOI: 10.1016/j.neulet.2021.135722] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2020] [Revised: 02/05/2021] [Accepted: 02/06/2021] [Indexed: 10/22/2022]
Abstract
Much attention has been given to effects of repeated exposure to a shock wave as a possible factor causing severe higher brain dysfunction and post-traumatic stress disorder (PTSD)-like symptoms in patients with mild to moderate blast-induced traumatic brain injury (bTBI). However, it is unclear how the repeated exposure and the inter-exposure time affect the brain. In this study, we topically applied low-impulse (∼54 Pa·s) laser-induced shock waves (LISWs; peak pressure, ∼75.7 MPa) to the rat brain once or twice with the different inter-exposure times (15 min, 1 h, 3 h, 24 h and 7 days) and examined anxiety-related behavior and motor dysfunction in the rats as well as expression of β-amyloid precursor protein (APP) as an axonal damage marker in the brains of the rats. The averaged APP expression scores for the rat brains doubly-exposed to LISWs with inter-exposure times from 15 min to 24 h were significantly higher than those for rats with a single exposure (P < 0.0001). The rats with double exposure to LISWs showed significantly more frequent anxiety-related behavior (P < 0.05) and poorer motor function (P < 0.01) than those of rats with a single exposure. When the inter-exposure time was extended to 7 days, however, the rats showed no significant differences either in axonal damage score or level of motor dysfunction. The results suggest that the cumulative effects of shock wave-related brain injury can be avoided with an appropriate inter-exposure time. However, clinical bTBI occurs in much more complex environments than those in our model. Further study considering other factors, such as the effects of acceleration, is needed to know the clinically-relevant, necessary inter-exposure time.
Collapse
Affiliation(s)
- Kosuke Miyai
- Military Medicine Research Unit, Japan Ground Self Defense Force, Setagaya, Tokyo, Japan
| | - Satoko Kawauchi
- Division of Biomedical Information Sciences, National Defense Medical College Research Institute, Tokorozawa, Saitama, Japan
| | - Tamaki Kato
- Military Medicine Research Unit, Japan Ground Self Defense Force, Setagaya, Tokyo, Japan
| | - Tetsuo Yamamoto
- Military Medicine Research Unit, Japan Ground Self Defense Force, Setagaya, Tokyo, Japan
| | - Yasuo Mukai
- Military Medicine Research Unit, Japan Ground Self Defense Force, Setagaya, Tokyo, Japan
| | - Taisuke Yamamoto
- Military Medicine Research Unit, Japan Ground Self Defense Force, Setagaya, Tokyo, Japan
| | - Shunichi Sato
- Division of Biomedical Information Sciences, National Defense Medical College Research Institute, Tokorozawa, Saitama, Japan.
| |
Collapse
|
4
|
Seno S, Tomura S, Miyazaki H, Sato S, Saitoh D. Effects of Selective Serotonin Reuptake Inhibitors on Depression-Like Behavior in a Laser-Induced Shock Wave Model. Front Neurol 2021; 12:602038. [PMID: 33643190 PMCID: PMC7902879 DOI: 10.3389/fneur.2021.602038] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2020] [Accepted: 01/20/2021] [Indexed: 11/13/2022] Open
Abstract
Primary blast injury can result in depression-like behavior in the long-term. However, the effects of the selective serotonin reuptake inhibitor (SSRI) on the depression induced by mild blast traumatic brain injury (bTBI) in the long-term remain unclear. We generated a mouse model of mild bTBI using laser-induced shock wave (LISW) and administered an SSRI to mice by oral gavage for 14 days after LISW exposure. This study aimed to investigate the mechanisms of SSRI-mediated alleviation of depression-like behavior induced by mild bTBI. Animals were divided into three groups: sham, LISW-Vehicle, and LISW-SSRI. LISW was applied to the head of anesthetized mice at 0.5 J/cm2. Twenty-eight days after the LISW, mice in the LISW-SSRI group exhibited reduced depression-like behavior, a significant increase in the number of cells co-stained for 5-bromo-2'-deoxyuridine (Brd-U) and doublecortin (DCX) in the dentate gyrus (DG) as well as increased brain-derived neurotrophic factor (BDNF) and serotonin levels in the hippocampus compared to the sham and LISW-Vehicle groups. Additionally, levels of phosphorylated cAMP response element binding protein (pCREB) in the DG were significantly decreased in the LISW-Vehicle group compared to that in the sham group. Importantly, pCREB levels were not significantly different between LISW-SSRI and sham groups suggesting that SSRI treatment may limit the downregulation of pCREB induced by mild bTBI. In conclusion, recovery from depression-like behavior after mild bTBI may be mediated by hippocampal neurogenesis induced by increased BDNF and serotonin levels as well as the inhibition of pCREB downregulation in the hippocampus.
Collapse
Affiliation(s)
- Soichiro Seno
- Division of Traumatology, Research Institute, National Defense Medical College, Saitama, Japan
| | - Satoshi Tomura
- Division of Traumatology, Research Institute, National Defense Medical College, Saitama, Japan
| | - Hiromi Miyazaki
- Division of Traumatology, Research Institute, National Defense Medical College, Saitama, Japan
| | - Shunichi Sato
- Division of Bioinformation and Therapeutic Systems, Research Institute, National Defense Medical College, Saitama, Japan
| | - Daizoh Saitoh
- Division of Traumatology, Research Institute, National Defense Medical College, Saitama, Japan
| |
Collapse
|
5
|
Clark LR, Yun S, Acquah NK, Kumar PL, Metheny HE, Paixao RCC, Cohen AS, Eisch AJ. Mild Traumatic Brain Injury Induces Transient, Sequential Increases in Proliferation, Neuroblasts/Immature Neurons, and Cell Survival: A Time Course Study in the Male Mouse Dentate Gyrus. Front Neurosci 2021; 14:612749. [PMID: 33488351 PMCID: PMC7817782 DOI: 10.3389/fnins.2020.612749] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2020] [Accepted: 12/02/2020] [Indexed: 12/17/2022] Open
Abstract
Mild traumatic brain injuries (mTBIs) are prevalent worldwide. mTBIs can impair hippocampal-based functions such as memory and cause network hyperexcitability of the dentate gyrus (DG), a key entry point to hippocampal circuitry. One candidate for mediating mTBI-induced hippocampal cognitive and physiological dysfunction is injury-induced changes in the process of DG neurogenesis. There are conflicting results on how TBI impacts the process of DG neurogenesis; this is not surprising given that both the neurogenesis process and the post-injury period are dynamic, and that the quantification of neurogenesis varies widely in the literature. Even within the minority of TBI studies focusing specifically on mild injuries, there is disagreement about if and how mTBI changes the process of DG neurogenesis. Here we utilized a clinically relevant rodent model of mTBI (lateral fluid percussion injury, LFPI), gold-standard markers and quantification of the neurogenesis process, and three time points post-injury to generate a comprehensive picture of how mTBI affects adult hippocampal DG neurogenesis. Male C57BL/6J mice (6-8 weeks old) received either sham surgery or mTBI via LFPI. Proliferating cells, neuroblasts/immature neurons, and surviving cells were quantified via stereology in DG subregions (subgranular zone [SGZ], outer granule cell layer [oGCL], molecular layer, and hilus) at short-term (3 days post-injury, dpi), intermediate (7 dpi), and long-term (31 dpi) time points. The data show this model of mTBI induces transient, sequential increases in ipsilateral SGZ/GCL proliferating cells, neuroblasts/immature neurons, and surviving cells which is suggestive of mTBI-induced neurogenesis. In contrast to these ipsilateral hemisphere findings, measures in the contralateral hemisphere were not increased in key neurogenic DG subregions after LFPI. Our work in this mTBI model is in line with most literature on other and more severe models of TBI in showing TBI stimulates the process of DG neurogenesis. However, as our DG data in mTBI provide temporal, subregional, and neurogenesis-stage resolution, these data are important to consider in regard to the functional importance of TBI-induction of the neurogenesis process and future work assessing the potential of replacing and/or repairing DG neurons in the brain after TBI.
Collapse
Affiliation(s)
- Lyles R. Clark
- Department of Anesthesiology and Critical Care Medicine, The Children’s Hospital of Philadelphia (CHOP) Research Institute, Philadelphia, PA, United States
- Mahoney Institute for Neurosciences, Perelman School of Medicine, Philadelphia, PA, United States
| | - Sanghee Yun
- Department of Anesthesiology and Critical Care Medicine, The Children’s Hospital of Philadelphia (CHOP) Research Institute, Philadelphia, PA, United States
- Mahoney Institute for Neurosciences, Perelman School of Medicine, Philadelphia, PA, United States
| | - Nana K. Acquah
- Department of Anesthesiology and Critical Care Medicine, The Children’s Hospital of Philadelphia (CHOP) Research Institute, Philadelphia, PA, United States
- Biological Basis of Behavior Program, University of Pennsylvania, Philadelphia, PA, United States
| | - Priya L. Kumar
- Department of Anesthesiology and Critical Care Medicine, The Children’s Hospital of Philadelphia (CHOP) Research Institute, Philadelphia, PA, United States
- Biomechanical Engineering, University of Pennsylvania, Philadelphia, PA, United States
| | - Hannah E. Metheny
- Department of Anesthesiology and Critical Care Medicine, The Children’s Hospital of Philadelphia (CHOP) Research Institute, Philadelphia, PA, United States
| | - Rikley C. C. Paixao
- Department of Anesthesiology and Critical Care Medicine, The Children’s Hospital of Philadelphia (CHOP) Research Institute, Philadelphia, PA, United States
| | - Akivas S. Cohen
- Department of Anesthesiology and Critical Care Medicine, The Children’s Hospital of Philadelphia (CHOP) Research Institute, Philadelphia, PA, United States
- Mahoney Institute for Neurosciences, Perelman School of Medicine, Philadelphia, PA, United States
| | - Amelia J. Eisch
- Department of Anesthesiology and Critical Care Medicine, The Children’s Hospital of Philadelphia (CHOP) Research Institute, Philadelphia, PA, United States
- Mahoney Institute for Neurosciences, Perelman School of Medicine, Philadelphia, PA, United States
| |
Collapse
|
6
|
Effect of Early Normobaric Hyperoxia on Blast-Induced Traumatic Brain Injury in Rats. Neurochem Res 2020; 45:2723-2731. [DOI: 10.1007/s11064-020-03123-x] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2020] [Revised: 07/28/2020] [Accepted: 09/03/2020] [Indexed: 10/23/2022]
|